首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yakun TANG 《干旱区科学》2018,10(6):833-849
It is essential to understand the water consumption characteristics and physiological adjustments of tree species under drought conditions, as well as the effects of pure and mixed plantations on these characteristics in semi-arid regions. In this study, the normalized sap flow (SFn), leaf water potential, stomatal conductance (gs), and photosynthetic rate (Pr) were monitored for two dominant species, i.e., Pinus tabuliformis and Hippophae rhamnoides, in both pure and mixed plantations in a semi-arid region of Chinese Loess Plateau. A threshold-delay model showed that the lower rainfall thresholds (RL) for P. tabuliformis and H. rhamnoides in pure plantations were 9.6 and 11.0 mm, respectively, and the time lags (τ) after rainfall were 1.15 and 1.76 d for corresponding species, respectively. The results indicated that P. tabuliformis was more sensitive to rainfall pulse than H. rhamnoides. In addition, strong stomatal control allowed P. tabuliformis to experience low gs and Pr in response to drought, while maintaining a high midday leaf water potential (Ψm). However, H. rhamnoides maintained high gs and Pr at a low Ψm expense. Therefore, P. tabuliformis and H. rhamnoides can be considered as isohydric and anisohydric species, respectively. In mixed plantation, the values of RL for P. tabuliformis and H. rhamnoides were 6.5 and 8.9 mm, respectively; and the values of τ were 0.86 and 1.61 d for corresponding species, respectively, which implied that mixed afforestation enhanced the rainfall pulse sensitivity for both two species, especially for P. tabuliformis. In addition, mixed afforestation significantly reduced SFn, gs, and Pr for P. tabuliformis (P<0.05), while maintaining a high leaf water potential status. However, no significant effect of mixed afforestation of H. rhamnoides was observed at the expense of leaf water potential status in response to drought. Although inconsistent physiological responses were adopted by these species, the altered water consumption characteristics, especially for P. tabuliformis indicated that the mixed afforestation requires further investigation.  相似文献   

2.
Stipagrostis ciliata (Desf.) De Winter is a pastoral C4 grass grown in arid regions. This research work focused on assessing the growth of S. ciliata accessions derived from two different climate regions (a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia (coded as WA), and a dry arid region from the Matmata Mountain in the south of Tunisia (coded as DA)) under water stress conditions. Specifically, the study aimed to investigate the phenological and physiological responses of potted S. ciliata seedlings under different water treatments: T1 (200 mm/a), T2 (150 mm/a), T3 (100 mm/a) and T4 (50 mm/a). Growth phenology, net photosynthesis (Pn), stomatal conductance (gs), midday leaf water potential (Ψmd), predawn leaf water potential (Ψpd), soil water content (SWC) and soil water potential (Ψs) were observed during the water stress cycle (from December 2016 to November 2017). The obtained results showed that the highest growth potential of the two accessions (WA and DA) was recorded under treatment T1. The two accessions responded differently and significantly to water stress. Photosynthetic parameters, such as Pn and gs, decreased sharply under treatments T2, T3 and T4 compared to treatment T1. The higher water stress increased the R/S ratio (the ratio of root dry biomass to shoot dry biomass), with values of 1.29 and 2.74 under treatment T4 for accessions WA and DA, respectively. Principal component analysis (PCA) was applied, and the separation of S. ciliata accessions on the first two axes of PCA (PC1 and PC2) suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T1 and T2. This accession was characterized by a high number of spikes. For treatments T3 and T4, both accessions were detected in the negative extremity of PC1 and PC2. They were characterized by a high root dry biomass. Therefore, S. ciliata accessions responded to water stress by displaying significant changes in their behaviours. Accession WA from the Bou Hedma National Park (wet arid region) showed higher drought tolerance than accession DA from the Matmata Mountain (dry arid region). S. ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.  相似文献   

3.
利用LI-6400光合作用仪野外原位测定混生的小叶锦鸡儿(Caragana microphylla)和人工杨树(Populus spp.)的光合特性,通过对比分析这两种天然和人工植物干旱时期与降水后光合特性的差异及其与生理环境因子的关系,揭示其对干旱和降水的适应特性和响应机制。结果表明:① 干旱时期,两种混生植物的净光合速率(Pn)、蒸腾速率([Tr)和气孔导度(Gs)大幅下降,出现明显的“午休”现象,且峰值提前,降水后小叶锦鸡儿“午休”现象消失;② [Gs和光合有效辐射(PAR)是影响小叶锦鸡儿和人工杨树Pn的主要生理和环境因子,干旱时期,小叶锦鸡儿光合特性主要受气孔调节作用的影响,降水后主要受环境因子(PAR)的影响;人工杨树不论在干旱时期还是降水后,其光合生理特性都相对较为稳定,且主要受PAR的影响;③ 小叶锦鸡儿通过保持较低的气孔开放程度,维持较低的Tr和较高的水分利用效率(WUE),以适应干旱环境,人工杨树则通过较高的Pn、Tr和较低的WUE避免干旱胁迫的影响;降水后,小叶锦鸡儿光合特性的变化较人工杨树显著,对降水的响应更加强烈。混生群落中,小叶锦鸡儿和人工杨树对干旱和降水的适应机制明显不同,小叶锦鸡儿对环境变化的适应性更强。  相似文献   

4.
Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level. However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species. In this study, we estimated water use (Ts) of Mongolian Scots pine (MSP; Pinus sylvestris var. mongolica Litv.) based on sap flux density measurements over four successive years (2013-2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China. The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period. The daily ratio of water use to reference evapotranspiration (Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer (0-1 m; P<0.01). The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation. However, this recovery ability failed under prolonged and severe droughts. The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level (gw) over the study period (P<0.01). We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season. The severity and duration of droughts in this layer greatly reduced Ts. Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought. These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.  相似文献   

5.
星天牛Anoplophora chinensis Forster为亚洲本土的林木钻蛀性害虫,近年来已入侵到一些欧洲国家,被列为重要的国际检疫对象。本文综述了国内外有关星天牛的自然天敌种类及其人工利用的研究进展。我国古代曾用黄猄蚁Oecophylla smaragdina Fabricius防治危害柑橘树的星天牛,近年来开展了野外释放天敌昆虫花绒寄甲Dastarcus helophoroides Fairmaire成虫和卵卡防治星天牛的实践,都取得了较好的防治效果。川硬皮肿腿蜂Sclerodermus sichuanensis Xiao对星天牛低龄幼虫具有一定的控制作用,天牛卵长尾啮小蜂Aprostocetus fukutai Miwa&Sonan显示出了良好的生物防治利用前景,在意大利对星天牛的卵寄生率最高达72%。一些欧洲本地拟寄生蜂种类,如柄腹茧蜂Spathius erythrocephalus Wesmael也可寄生入侵当地的星天牛自然种群。此外,利用昆虫病原微生物控制星天牛,也具有较好的防治前景,如用布氏白僵菌Beauveria brongniartii Petch制成的无纺布菌条已经在日本开发成为一种商品,真菌侵染可引起天牛高致死率。昆虫病原线虫夜蛾斯氏线虫Steinernema feltiae Filipjev和小卷蛾斯氏线虫S.carpocapsae Weiser也具有作为生物杀虫剂用于控制星天牛幼虫的开发前景。本文还讨论了目前星天牛生物防治中存在的不足及其原因,展望了今后研究的重点和方向。  相似文献   

6.
获得纯度高的青枯雷尔氏菌无致病力菌株,是研发青枯病植物疫苗和防治青枯病害的一种新途径。作者以青枯雷尔氏菌强致病力菌株FJAT-91为出发菌株,通过对hrpB基因敲除,获得无致病力突变菌株FJAT-91ΔhrpB。高效离子交换色谱分离结果表明:FJAT-91和FJAT-91ΔhrpB色谱峰型不同,主要表现在峰的保留时间上,FJAT-91只有单一色谱峰,保留时间为6 min;FJAT-91ΔhrpB有P_1和P_2 2个色谱峰,保留时间分别为0.6 min和4.5 min。利用高效离子交换色谱对FJAT-91ΔhrpB进行纯化,获得只有P_1峰的高纯度菌株FJAT-91ΔhrpB-P。FJAT-91ΔhrpB和FJAT-91ΔhrpB-P与其出发菌株FJAT-91的菌落和菌体形态差异明显。致病力测定结果表明:FJAT-91接种4 d番茄植株开始发病,10 d发病率达100%;FJAT-91ΔhrpB和FJAT-91ΔhrpB-P接种20 d均未发病。防效试验结果表明:纯化后的菌株FJAT-91ΔhrpB-P对番茄青枯病的防效(81.64%)比未纯化FJAT-91ΔhrpB防效(61.04%)提高了33.75%。本研究获得一株高纯度的青枯雷尔氏菌无致病力突变菌株FJAT-91ΔhrpB-P具有良好的生防潜力。  相似文献   

7.
A new leaf spot disease on Calathea rotundifolia cv. fasciata was observed in Guangdong, China. The pathogen of this disease was identified by pathogenicity, morphological characteristics and multi-gene sequences analysis of ITS, TEF and GAPDH. The result showed that leaf spot of C. rotundifolia cv. fasciata was caused by Bipolaris sivanesaniana. This is the first report of leaf spot disease on C. rotundifolia cv. fasciata caused by B. sivanesaniana.The results of host range determination showed that B. sivanesaniana could also infect Calathea veitchiana and cause leaf spot. This study will facilitate the timely detection and management of Bipolaris leaf spot.  相似文献   

8.
微管、微丝特异性抑制剂处理对水稻抗病性的影响   总被引:3,自引:0,他引:3  
 微管特异性抑制剂oryzalin、微丝特异性抑制剂细胞松弛素A (cytochalasin A,CA)和细胞松弛素D (cytochalasin D,CD)的试验表明:oryzalin在5~50μmol/L、CA在0.5~1.0μg/mL、CD在1~20μg/mL的浓度范围内,对稻瘟病菌孢子的萌发和附着胞的形成基本上没有影响。采用以上几种细胞骨架特异性抑制剂处理水稻叶鞘都可以不同程度地抑制寄主细胞抗病菌扩展的能力。在抑制剂处理的水稻叶鞘细胞中,病菌扩展的速度加快。进一步的观察发现,抑制剂处理抑制水稻细胞抗病菌的扩展能力与水稻的抗病防卫反应如原生质颗粒化、多酚类物质的积累和HR发生的延迟是相关的。  相似文献   

9.
正小麦纹枯病和小麦全蚀病是河南省小麦生产上重要的土传病害,发病面积分别在300万和30万hm~2~([1,2])。近年来,由于小麦高产栽培措施(早播、密植、高肥)的推广,以及气候条件适宜、农机跨区作业等原因,两种病害的发生面积日益增大,  相似文献   

10.
本文研究了巴氏新小绥螨Neoseiulus barkeri以水稻干尖线虫Aphelenchoides besseyi为食的生长发育特征及其对水稻干尖线虫的捕食功能.结果表明,巴氏新小绥螨以水稻干尖线虫为食时,能正常发育并完成生活史,其生长发育各个历期与取食腐食酪螨Tyrophagus putrescentiae相比无显...  相似文献   

11.
胶孢炭疽菌致病相关基因Plv2功能分析   总被引:1,自引:0,他引:1  
胶孢炭疽菌(Colletotrichum gloeosporioides)引起的橡胶树炭疽病是橡胶树三大叶部病害之一,严重威胁着橡胶树的生长。本研究从构建的胶孢炭疽菌RC178 T-DNA突变体库中筛选获得一株致病力明显减弱的突变菌株T1103,其T-DNA为单拷贝。采用TAIL-PCR克隆了该突变体T-DNA插入位点的侧翼序列,通过比对胶孢炭疽菌全基因组序列,发现该TDNA插入位点所在的序列包含一个5 400 bp的基因,将其命名为Plv2。Plv2基因包含3个外显子,编码一个假定的甾醇C-24甲基转移酶。敲除野生型菌株RC178中的Plv2,发现敲除突变体与T1103的致病力表现基本一致,由此推测Plv2基因为致病相关基因。  相似文献   

12.
柑橘溃疡病菌外膜蛋白XAC1347在耐受铜杀菌剂中的功能   总被引:1,自引:0,他引:1  
 细菌性溃疡是柑橘上的一种重要细菌病害,施用含铜化学药剂是防治该病的主要措施。本研究报道柑橘溃疡病菌外膜蛋白XAC1347在铜化学药剂耐药性中的功能。在平板抑菌试验中,46% Cu(OH)2散粒剂和33%王铜·Cu(OH)2悬浮剂的的最大稀释倍数分别为2 000倍和2 500倍,相对应的有效成分氢氧化铜和王铜的浓度分别为0. 023%和0.013 2%时,柑橘溃疡病菌的生长受到抑制。在2 000倍稀释浓度条件下,两种杀菌剂对外膜蛋白XAC1347突变体的抑菌圈分别增加了10倍和5倍。接种柑橘植物后,突变体ΔXAC1347中耐铜基因copAcopB基因的表达水平分别下降了37%和15%;在铜离子胁迫条件下,copAcopB基因的表达水平分别下降了33%和51%。在突变体中组成型表达XAC1347基因,均能部分恢复突变体的表型。这些结果表明,外膜蛋白XAC1347对柑橘溃疡病菌耐受含铜杀菌剂有重要作用。  相似文献   

13.
Frequent periods of drought conditions are known to limit plant performance,primary production,and ecosystem stability in arid and semi-arid desert steppe environments.Plants often avoid competition by shifting their water use seasonally,which affects the water-use patterns of dominant species as well as the composition and structure of plant communities.However,the water-use strategies of dominant herbaceous species,which grow under natural field conditions in the desert steppe region of Ningxia Hui Autonomous Region,China,are poorly known.Here,we explored the possible sources of water uptake and water-use efficiency(WUE)of three dominant herbaceous plant species(Stipa breviflora,Agropyron mongolicum,and Glycyrrhiza uralensis)in a native desert steppe in the semi-arid area of Ningxia through an analysis of multiple parameters,including(1)the stable isotopic oxygen and hydrogen(δ18O andδ2H)compositions of precipitation,soil water,and stem water,(2)the carbon isotope(13C)composition of leaves,and(3)the soil water contents,based on field sampling across varying water conditions from June to September,2017.Frequent small precipitation events replenished shallow soil water,whereas large events only percolated down to the deep soil layers.Changes in soil water availability affected the water-use patterns of plants.Generally,during light precipitation periods,the deep root system of G.uralensis accessed deeper(>80 cm)soil water,whereas S.breviflora and A.mongolicum,which only have shallow roots,primarily absorbed water from the shallow and middle soil layers.As precipitation increased,all three plant species primarily obtained water from the shallow soil layers.Variation in soil water uptake between the dry and wet seasons enabled plants to make better use of existing satoil water.In addition,theδ13C values of G.uralensis and S.breviflora were higher than those of A.mongolicum.Theδ13C values of the three plant species were significantly negatively correlated with soil water content.Therefore,G.uralensis and S.breviflora maintained a higher WUE through their conservative and water-saving strategies across the entire growing season.In contrast,A.mongolicum,with a relatively low WUE in the wet season but a high WUE in the dry season,exhibited a more flexible water-use strategy.The different water-use strategies of these dominant plant species demonstrated the mechanisms by which plant communities can respond to drought.  相似文献   

14.
ZHANG Yu 《干旱区科学》2022,14(6):653-672
Caragana korshinskii Kom. and Tamarix ramosissima Ledeb. are pioneer shrubs for water and soil conservation, and for windbreak and sand fixation in arid and semi-arid areas. Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs. In recent years, the stable isotope tracing technique has been used in exploring the water use strategies of plants. However, the widespread δ2H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas. In this study, we used three sets of hydrogen and oxygen stable isotope data (δ2H and δ18O, corrected δ2H_c1 based on SW-excess and δ18O, and corrected δ2H_c2 based on -8.1‰ and δ18O) as inputs for the MixSIAR model to explore the water use characteristics of C. korshinskii and T. ramosissima at different ages and in response to rainfall. The results showed that δ2H_c1 and δ18O have the best performance, and the contribution rate of deep soil water was underestimated because of δ2H offset. During the dry periods, C. korshinskii and T. ramosissima at different ages both obtained mostly water from deeper soil layers. After rainfall, the proportions of surface (0-10 cm) and shallow (10-40 cm) soil water for C. korshinskii and T. ramosissima at different ages both increased. Nevertheless, there were different response mechanisms of these two plants for rainfall. In addition, C. korshinskii absorbed various potential water sources, while T. ramosissima only used deep water. These flexible water use characteristics of C. korshinskii and T. ramosissima might facilitate the coexistence of plants once extreme rainfall occurs. Thus, reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.  相似文献   

15.
Drought is one of the most significant natural disasters in the arid and semi-arid areas of China. Populations or plant organs often differ in their responses to drought and other adversities at different growth stages. At present, little is known about the size- and leaf age-dependent differences in the mechanisms of shrub-related drought resistance in the deserts of China. Here, we evaluated the photosynthetic and physiological responses of Artemisia ordosica Krasch. to drought stress using a field experiment in Mu Us Sandy Land, Ningxia Hui Autonomous Region, China in 2018. Rainfall was manipulated by installing outdoor shelters, with four rainfall treatments applied to 12 plots (5 m×5 m). There were four rainfall levels, including a control and rainfall reductions of 30%, 50% and 70%, each with three replications. Taking individual crown size as the dividing basis, we measured the responses of A. ordosica photosynthetic and physiological responses to drought at different growth stages, i.e., large-sized (>0.5 m2) and small-sized (≤0.5 m2) plants. The leaves of A. ordosica were divided into old leaves and young leaves for separate measurement. Results showed that: (1) under drought stress, the transfer efficiency of light energy captured by antenna pigments to the photosystem II (PSII) reaction center decreased, and the heat dissipation capacity increased simultaneously. To resist the photosynthetic system damage caused by drought, A. ordosica enhanced its free radical scavenging capacity by activating its antioxidant enzyme system; and (2) growth stage and leaf age had effects on the reaction of the photosynthetic system to drought. Small A. ordosica plants could not withstand severe drought stress (70% rainfall reduction), whereas large A. ordosica individuals could absorb deep soil water to ensure their survival in severe drought stressed condition. Under 30% and 50% rainfall reduction conditions, young leaves had a greater ability to resist drought than old leaves, whereas the latter were more resistant to severe drought stress. The response of A. ordosica photosynthetic system reflected the trade-off at different growth stages and leaf ages of photosynthetic production under different degrees of drought. This study provides a more comprehensive and systematic perspective for understanding the drought resistance mechanisms of desert plants.  相似文献   

16.
二硫氰基甲烷对水稻恶苗病菌菌体作用机理研究   总被引:6,自引:1,他引:6  
 有机硫氰化合物二硫氰基甲烷(TH-88,浸种灵)可抑制水稻恶苗病菌(Fusarium moniliforme)对多菌灵(carbendazim)的抗性菌株和敏感菌株,EC50在0.393 3~1.641 2 μ g/ml之间,对菌丝和分生孢子的形态没有影响;该药剂(浓度为1 μ g/ml)对菌体的生物膜(透性)有一定抑制作用;用药剂处理萌芽期、非萌芽期的分生孢子及其初形成的菌丝,结果表明:药剂对菌丝和分生孢子的呼吸作用有影响,以分生孢子萌芽期最为敏感,用二硫氰基甲烷2 μ g/m l处理刚萌芽的分生孢子5 m in,呼吸作用比对照低64.15%;处理NADH细胞色素还原酶和NADH细胞色素氧化酶,前者没有影响,但对后者有54.32%的抑制。用二硫氰基甲烷(1 μ g/ml)处理啤酒酵母(Saccharomyces cerevisiae)的线粒体,呼吸控制速率(RCR)比对照低27.67%;磷氧比(P/O)比对照低9.3%。  相似文献   

17.
 为明确多种新型作用机制杀菌剂与引起梨树褐斑病、黑星病、白粉病等病原菌的有效对靶关系及制定梨树主要病害防治流程,采用菌丝生长速率法、离体叶片法与田间药效方法研究新型杀菌剂对靶标病原菌的毒力、对靶标病害的防效及其田间有效应用,建立替代梨树主要病害传统化学杀菌剂的防治流程技术。结果显示,双胍三辛烷基苯磺酸盐在离体叶片法下对褐斑病的防效大于85%,田间药效验证3次用药后7 d防效大于85%、30 d防效大于80%、90 d防效仍大于60%,兼治轮纹病菌其毒力EC50值均小于1 μg·mL-1。双胍三辛烷基苯磺酸盐、辛菌胺醋酸盐、吩嗪α-2羧酸在离体叶片法下对黑星病防效大于90%且毒力EC50值小于1 μg·mL-1;田间药效验证1次用药后7 d防效大于80%、30 d防效仍大于75%。噻肟菌酯、硝苯菌酯、丙硫菌唑在离体叶片法下对白粉病的防效大于85%;田间药效验证3次用药后7 d铲除效果大于70%、30 d仍大于60%。丙硫菌唑对黑斑、轮纹病菌毒力EC50值均小于1 μg·mL-1;吩嗪α-2羧酸同时对褐斑、黑斑、轮纹病菌毒力EC50值小于1 μg·mL-1。针对梨树主要病害发生期,选用新型杀菌剂替代传统杀菌剂制定防治技术流程,其综合防效达到88.94%。不同新型作用机制杀菌剂在防治梨树主要病害上的应用,能够降低抗药性产生,同时达到有效防治的目的。  相似文献   

18.
 为明确多种新型作用机制杀菌剂与引起梨树褐斑病、黑星病、白粉病等病原菌的有效对靶关系及制定梨树主要病害防治流程,采用菌丝生长速率法、离体叶片法与田间药效方法研究新型杀菌剂对靶标病原菌的毒力、对靶标病害的防效及其田间有效应用,建立替代梨树主要病害传统化学杀菌剂的防治流程技术。结果显示,双胍三辛烷基苯磺酸盐在离体叶片法下对褐斑病的防效大于85%,田间药效验证3次用药后7 d防效大于85%、30 d防效大于80%、90 d防效仍大于60%,兼治轮纹病菌其毒力EC50值均小于1 μg·mL-1。双胍三辛烷基苯磺酸盐、辛菌胺醋酸盐、吩嗪α-2羧酸在离体叶片法下对黑星病防效大于90%且毒力EC50值小于1 μg·mL-1;田间药效验证1次用药后7 d防效大于80%、30 d防效仍大于75%。噻肟菌酯、硝苯菌酯、丙硫菌唑在离体叶片法下对白粉病的防效大于85%;田间药效验证3次用药后7 d铲除效果大于70%、30 d仍大于60%。丙硫菌唑对黑斑、轮纹病菌毒力EC50值均小于1 μg·mL-1;吩嗪α-2羧酸同时对褐斑、黑斑、轮纹病菌毒力EC50值小于1 μg·mL-1。针对梨树主要病害发生期,选用新型杀菌剂替代传统杀菌剂制定防治技术流程,其综合防效达到88.94%。不同新型作用机制杀菌剂在防治梨树主要病害上的应用,能够降低抗药性产生,同时达到有效防治的目的。  相似文献   

19.
The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in arid and semi-arid regions that have poor water management measures. Leaf water potential (Ψ) is a physiological parameter that can be used to identify drought resistance in various species. Indeed, Ψ is one of the most important properties of a plant that can be measured using a pressure chamber. Drought avoiding or drought resistant species have a lower Ψ than plants that use normal or high levels of water. To determine drought resistance of species that are suitable for afforestation in arid urban regions, we evaluated twenty woody species in the Isfahan City, central Iran. The experimental design was random split-split plots with five replications. The species were planted outdoor in plastic pots and then subjected to treatments that consisted of two soil types and five drip irrigation regimes. To evaluate the resistance of each species to drought, we used the Ψ and the number of survived plants to obtain the drought resistance index (DRI). Then, cluster analysis, dendrogram, and similarity index were used to group the species using DRI. Result indicates that the evaluated species were classified into five groups: (1) high water consuming species (DRI>-60 MPa); (2) above normal water consuming species (-60 MPa≥DRI>-90 MPa); (3) normal water consuming species (-90 MPa≥DRI>-120 MPa); (4) semi-drought resistant species (-120 MPa≥DRI>-150 MPa); and (5) drought resistant species (DRI≤-150 MPa). According to the DRI, Salix babylonica L., Populus alba L., and P. nigra L. are high water consuming species, Platanus orientalis L. and Albizia julibrissin Benth are normal water consuming species, and Quercus infectoria Oliv. and Olea europaea L. can be considered as drought resistant species.  相似文献   

20.
 引起小麦赤霉病的禾谷镰孢菌(Fusarium graminearum)在华东地区对多菌灵已出现了高水平抗药性。本文报道了F.graminearum对多菌灵的敏感性基线及其抗药性菌株生物学特性。离体条件下多菌灵对100个野生敏感型菌株的平均EC50和MIC值分别为0.5748±0.0133 μg/ml和 < 1.4μg/ml。而对50个抗药性菌株的平均EC50和MIC值则分别为9.2375μg/ml和 > 100 μg/ml。在麦穗上多菌灵对50个敏感菌株和抗药性菌株防效的平均EC50分别为282.6 μg/ml和 > 2 000μg/ml。从田间获得的抗多菌灵菌株对苯菌灵、噻菌灵、甲基托布津表现交互抗药性,但不同于室内突变菌株,对乙霉威不表现负交互抗药性。抗药性菌株的无性和有性繁殖后代以及在无药培养基上菌丝体转代培养后,抗药水平保持不变。抗药性菌株的菌丝生长速率、产孢能力及致病力等与敏感菌株相比没有差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号