首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为探究氮添加对高寒草原生态系统土壤酶活性的影响,于2018年在中国科学院巴音布鲁克草原生态系统研究站,选择4个氮添加水平(对照,N0,0 kg·hm-2·a-1;低氮,N1,10 kg·hm-2·a-1;中氮,N3,30 kg·hm-2·a-1;高氮,N9,90 kg·hm-2·a-1),开展土壤酶活性对氮添加响应的研究,分析土壤酶活性对氮添加的响应特点,土壤酶化学计量比以及土壤酶活性与土壤环境因子的关系。结果表明:与对照相比,氮添加在N3水平显著增加β-1,4葡萄糖苷酶(βG)、β-D-纤维二糖水解酶(CBH)和β-1,4木糖苷酶(βX)酶活性(P < 0.05),N1和N3水平显著增加碱性磷酸酶(AKP)活性(P < 0.05),N3水平显著降低多酚氧化酶(PPO)活性(P < 0.05),氮添加对亮氨酸氨基肽酶(LAP)活性影响不显著,N3水平下显著增加N-乙酰-β-D氨基葡萄糖苷酶(NAG)活性(P < 0.05)。相关分析表明,8种土壤酶活性均与土壤有机碳(SOC、NAG除外)和总磷(TP)显著相关,与土壤总氮(TN)不相关。研究区土壤酶活性C∶N∶P化学计量比为1∶1∶1.2,与全球生态系统的土壤酶活性C∶N∶P的比值1∶1∶1相偏离,表明该研究区土壤微生物生长受磷素限制。冗余分析(RDA)进一步揭示出土壤有机碳和土壤全磷含量是影响土壤酶活性的主要因子。  相似文献   

2.
长期施肥对黄土丘陵坡地农田土壤质量和谷子产量的影响   总被引:1,自引:0,他引:1  
以坡地农田生态系统长期定位试验(1995—2019年)为基础,选取裸地(LD)、对照(CK,不施肥)、单施氮肥(N1、N2处理分别为:尿素55.2、110.4 kg·hm~(-2))、氮磷肥配施(N1P、N2P处理分别为:尿素+过磷酸钙55.2+90、110.4+90 kg·hm~(-2))6个处理,研究长期施肥对土壤质量、谷子产量的影响。结果表明:(1)与CK相比,长期单施氮肥土壤碱解氮含量提高了24.81%~39.92%;长期氮磷肥配施土壤有机碳、全磷、碱解氮和有效磷含量分别提高了7.82%~16.81%、58.18%、21.59%~22.89%、450.5%~660.3%,土壤pH值降低了0.04~0.08。(2)与CK相比,长期单施氮肥碱性磷酸酶(AP)活性提高了13.34%~19.43%;长期氮磷平衡施肥土壤的β-1,4-N-乙酰氨基葡萄糖苷酶与亮氨酸氨基肽酶(NAG+LAP)、葡萄糖苷酶(βG)活性分别显著提高了16.76%~71.01%、47.12%~59.94%。与裸地相比,长期轮作种植作物使βG、LAP+NAG、AP活性显著提高了68.74%~342.42%,N1P处理下酶化学计量比最接近1∶1∶1稳态。(3)与CK相比,N1P处理谷子生物量和产量增加了105.25%~230.05%。谷子产量与土壤全磷、有效磷呈极显著正相关,而与土壤pH值呈显著负相关。总之,长期施肥能显著提高黄土丘陵区坡耕地土壤质量和谷子产量,低氮磷配施(N1P)效果最好。  相似文献   

3.
选取陕北毛乌素沙地从半固定沙地到恢复2354a的灌木和乔木固沙林地,采用密度分组法分析表层土壤轻、重组分碳氮含量、C/N的演变及累积速率、固定碳氮贡献率特征。结果表明:固沙林从恢复2354a,乔木和灌木林土壤轻组碳分别增加了14.040.6倍和8.819.2倍,显著高于对应重组碳3.27.7倍和3.58.1倍的增幅;对应轻组氮分别增加了14.540.9倍和11.829.1倍,也显著高于重组氮4.68.5倍和4.412.6倍的增幅,说明轻组碳氮相对重组碳氮对固沙林恢复更加敏感。土壤轻重组碳氮含量增加使得乔木和灌木林轻组碳密度增速分别达0.57mg·hm^-2·a^-1和0.26mg·hm^-2·a^-1,重组碳密度增速则仅为0.18mg·hm^-2·a^-1和0.20mg·hm^-2·a^-1;同时,轻组氮密度增速分别达0.03mg·hm^-2·a^-1和0.02mg·hm^-2·a^-1,重组氮密度增速则分别达0.02mg·hm^-2·a^-1和0.04mg·hm^-2·a^-1。按此碳氮组分增速,到固沙林恢复54a时,乔木林和灌木林土壤轻组碳可分别贡献75.9%和59.4%的全有机碳增量;土壤重组氮则可贡献44.6%和63.9%的全氮增量。另外,恢复54a两种林地土壤重组C/N分别比半固定沙地降低11.4%和38.5%。但轻组C/N在乔木林并无显著变化,在灌木林恢复2354a土壤轻组C/N降低了21.7%31.0%,显著改变了土壤碳库性质。表明陕北固沙林恢复土壤表现出显著的固定碳氮效应,并且乔木林有更好的固碳能力,灌木林则有较好的固氮效应。  相似文献   

4.
与碳(C)、氮(N)和磷(P)分解矿化相关的土壤胞外酶的相对活性可以揭示微生物的生长和代谢过程。为探讨不同放牧强度对典型草原土壤胞外酶活性的影响,本研究对不同放牧强度下0-10和10-20cm土层的胞外酶活性展开调查。本研究的胞外酶包括:β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰葡糖氨糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)、磷酸酶(AP)。结果显示:0-10cm土层,轻度放牧强度显著增加NAG和LAP活性;中度放牧强度显著增加了BG, NAG, LAP和AP活性;重度放牧强度显著增加LAP活性。10-20cm土层,轻度放牧强度显著增加NAG和LAP活性;中度放牧强度显著增加BG, NAG和LAP活性。随放牧强度的增加,两个土层土壤胞外酶活性均呈先增加后降低趋势;随土壤深度增加酶活性均呈降低趋势。冗余分析结果表明,土壤胞外酶活性(EEA)在0-10cm土层主要受微生物碳、铵态氮和土壤水分的影响,而10-20cm层受微生物氮、pH值、土壤水分和硝态氮的影响。在本研究区域尺度上,轻度和中度放牧强度下的土壤胞外酶具有更高的活性。  相似文献   

5.
银川平原草甸湿地土壤养分特征与植物响应   总被引:1,自引:0,他引:1  
为探究草甸湿地土壤养分特征,阐明草甸湿地土壤养分对植物养分的影响,在银川平原选取3种生境的草甸湿地(沼泽草甸、典型草甸和盐生草甸)作为研究对象,通过野外调查、实验室分析,结合经典统计学方法对土壤养分及植物养分进行分析。结果表明:①水平梯度上,除全磷(TP)外,3种草甸湿地之间土壤养分含量在土层020cm变化显著(P<0.05)。②在垂直梯度上,全氮(TN)、碱解氮(AN)在盐生草甸中垂直变化不显著(P>0.05),但在典型草甸与沼泽草甸垂直方向上波动幅度较大;TP在草甸湿地土壤中垂直变化不显著(P>0.05);速效磷(AP)与速效钾(AK)在草甸湿地表层具有一定程度的富集效应,并且在不同草甸湿地土层垂直方向上变化显著(P<0.05)。③土壤中C、N和P含量的变化趋势一致;AK与土壤P具有显著的相关性(P<0.05)。④草甸湿地植物养分均表现为N限制,其中C∶N、C∶P与土壤养分呈负相关,植物N∶P受土壤有机碳(SOC)、AN影响较为显著。  相似文献   

6.
依托在贝加尔针茅草原建立的长期模拟氮沉降试验平台(始于2010年),运用PVC顶盖埋管法进行原位培养试验,研究不同氮添加下贝加尔针茅草原土壤碳氮组分、净硝化速率、净氨化速率、有机碳转化速率的变化特征及碳氮耦合关系。试验处理包括:对照N0,低氮添加(15、30、50 kg·hm~(-2)·a~(-1))记为N15、N30和N50,高氮添加(100、150、200、300 kg·hm~(-2)·a~(-1))记为N100、N150、N200和N300。结果表明:培养期间,N15、N30、N50和N100处理的净硝化速率显著高于对照N0(P0.05),分别增加了40.80%、110.31%、206.83%和202.04%;N30、N50和N100净氨化速率显著低于对照N0(P0.05),分别降低了16.88%、169.60%和150.67%;N15和N30处理的净矿化速率高于对照N0,分别增加了150%和50%;N50、N100、N150和N200处理的净矿化速率低于对照N0,分别降低了254.52%、161.50%、33.90%和79.85%。土壤有机碳与土壤全氮呈极显著正相关,土壤可溶性有机碳与土壤可溶性有机氮呈极显著正相关,土壤微生物生物量碳与土壤微生物生物量氮呈极显著负相关。有机碳转化速率显著影响微生物生物量氮转化速率,且符合一元线性回归方程。连续高氮沉降会降低土壤净氮矿化速率和有机碳转化速率,对土壤碳氮循环产生负面影响。  相似文献   

7.
生物炭对土壤理化性质和玉米生长的影响   总被引:3,自引:0,他引:3  
以玉米品种‘利禾1号’为试验材料,设计6个施肥处理,分别为空白对照(CK,不施肥);常规施肥处理(T1,N∶P_2O_5∶K_2O=27∶12∶6);在常规施肥处理基础上减氮20%并分别增施生物炭,生物炭施用量分别为2.25 (T2)、4.50 (T3)、6.75 (T4)、9.00 t·hm~(-2)(T5),研究生物质炭基施对宁夏扬黄灌区土壤理化性质和玉米生长的影响。结果表明:在常规施肥减氮20%的基础上,与T1相比,T2、T3、T4、T5处理的有机质含量分别显著增加27.06%、30.59%、37.65%、48.24%,速效钾含量分别显著增加10.84%、11.82%、20.20%、43.84%(P0.05);随着生物质炭施用量的增加,土壤稳定性显著增强,其中T3、T4、T5的水稳性大团聚体(0.25 mm)数量较T1分别显著增加55.35%,128.49%、133.50%(P0.05);当生物质炭的施用量达到4.5 t·hm~(-2)时,细菌数和总菌数达到最大值;土壤酶活性在生物炭施用量超过4.5 t·hm~(-2)时显著增加,其中蔗糖酶活性在T4处理处达到最大,较T1显著增加了140.23%(P0.05);另外T4处理的农艺性状表现最好,产量较T1增加了41.4%;施用生物质炭均能显著增加氮肥利用效率、氮肥农学效率、氮肥偏生产力,其中T4处理增加的最为明显,较T1处理分别增加38.02%、18.79 kg·kg~(-1)和23.54 kg·kg~(-1)。推荐常规施肥减氮20%配施生物炭6.75 t·hm~(-2)作为扬黄灌区玉米生物炭配施化肥的参考配比。  相似文献   

8.
以吉林蛟河针阔混交红松林监测样地作为研究对象,对春榆混交林、白牛槭混交林、千金榆混交林和色木槭混交林四种林分进行林分结构调查与土壤采样,并测定土壤有机碳及养分含量,分析了不同林分类型对土壤有机碳积累的影响及土壤养分与有机碳相关性的差异。结果表明:1)该研究区四种林分土壤有机碳密度千金榆混交林(18.21kg·m-2)>春榆混交林(16.16kg·m-2)>白牛槭混交林(15.75kg·m-2)>色木槭混交林(14.23kg·m-2)。2)四种林分土壤有机碳含量及密度的变异程度规律基本遵循春榆混交林>白牛槭混交林>千金榆混交林>色木槭混交林。3)四种林分的土壤有机碳与养分的相关性规律不尽相同,全磷与千金榆、春榆混交林土壤有机碳相关性显著,速效钾只与千金榆混交林土壤有机碳具有相关性,土壤全氮和碱解氮与四种林分土壤有机碳的相关性均显著。相关分析结果说明四种林分类型土壤有机碳与土壤养分状况密切相关。  相似文献   

9.
为探究不同水肥条件对高原夏季露地紫甘蓝产量和土壤理化性状的影响效应,筛选适宜水肥管理制度,以当地灌水量和施肥量为对照(CK),设置3个灌水下限水平,即土壤相对含水量分别为田间持水量的80%(W1)、60%(W2)、40%(W3),3个施肥水平分别为当地常规施肥量的100%(F1:N、P、K分别为466.5 kg·hm~(-2)、756 kg·hm~(-2)、269.91 kg·hm~(-2))、80%(F2:N、P、K为373.2 kg·hm~(-2)、604.8 kg·hm~(-2)、215.93 kg·hm~(-2))、60%(F3:N、P、K为279.9 kg·hm~(-2)、453.6 kg·hm~(-2)、161.95 kg·hm~(-2)),共10个处理,分析紫甘蓝产量、土壤养分积累、pH、EC、土壤酶、土壤呼吸对不同水肥组合的响应规律。结果表明:(1)水肥一体化处理紫甘蓝单球重、经济产量、生物产量和经济系数均大于当地施肥灌水(CK)处理,其中,W2F2处理单球重、经济产量和经济系数较CK显著提高,分别提高了16.37%、16.37%、10.42%;(2)水肥一体化处理土壤蔗糖酶活性、过氧化氢酶活性和土壤呼吸强度均高于CK,其中,中水中肥(W2F2)处理较CK土壤有机质含量显著提升,增加26.76%;(3)在灌水下限相同时,随施肥量的增加,土壤蔗糖酶活性、过氧化氢酶活性和土壤呼吸强度表现为中肥(F2)处理高于高肥(F1)和低肥(F3)处理,土壤有机质含量表现为先升后降的趋势,在中水(W2)处理中F1、F2显著高于F3处理,而W1和W3各处理间并无显著差异;(4)施肥水平相同时,土壤蔗糖酶活性、过氧化氢酶活性和土壤呼吸强度表现为中水(W2)处理高于高水(W1)和低水(W3)处理。因此,60%田间持水量和N、P、K分别为373.2、604.8、215.93 kg·hm~(-2)的组合(W2F2)在节水减肥的基础上能最大程度提高产量和维持土壤理化性状,是高原夏季露地紫甘蓝适宜的灌水施肥组合。  相似文献   

10.
采用现场调查取样、实验室分析的方法,研究了新疆准噶尔盆地西缘天然梭梭(Haloxylon ammodendron)林下土壤有机碳和养分的分布特征,并分析了其与梭梭盖度的关系。结果表明:(1)天然梭梭林下土壤有机碳含量与梭梭盖度正相关,盖度≥70%(密盖度)时,SOC平均含量达4.17g/kg;盖度50-69%(中盖度)时,SOC平均含量达1.94g/kg;盖度30-49%(疏盖度)时,平均为1.79g/kg,表明土壤有机碳主要来源于梭梭林;(2)密盖度的土壤全N、全P、全K以及速效N、速效P和速效K均大于中、疏两种盖度;(3)土壤有机碳含量与全N、全P、速效N、速效K均呈显著或极显著正相关;(4)在土壤垂直剖面中,上层土SOC及养分含量稍大于下层土,表明梭梭体内积累的氮、磷、钾还可以归还土壤。总体上看,林下土壤中的SOC与氮、磷、钾的分布都受控于梭梭的分布与生长状况。  相似文献   

11.
以华北落叶松人工林为对象,研究不同林分密度下(分别为740、1480、2000和2170株.hm-2)各土层的土壤有机碳含量、有机碳密度、养分特征以及它们之间的相关关系。结果表明:土壤有机碳含量及碳密度随着土壤深度增加而减少,呈明显的垂直分布特征;当林分密度增大到2170株.hm-2时,土壤有机碳含量及碳密度显著增加至最大,分别为25.45g.kg-1和15.68kg.m-2,并与740株.hm-2林地土壤有机碳含量及碳密度差异显著。当林分密度由740株.hm-2增加到2170株.hm-2时,各种养分变化规律不尽一致,但当林分密度为2170株.hm-2时,0-60cm深度的土壤全氮、全磷及速效钾含量均保持在一个相对较高的水平,而土壤全钾和有效磷含量仅在0-20cm土层较高。对于落叶松人工林地整个土壤剖面,土壤有机碳含量及碳密度与土壤全氮、全磷、速效钾含量均呈显著或极显著正相关。从林地土壤固碳的角度,建议将华北落叶松人工林的林分密度控制在2170株.hm-2。  相似文献   

12.
陕西省眉县猕猴桃园土壤碳氮磷生态化学计量学特征   总被引:2,自引:0,他引:2  
以眉县猕猴桃园土壤为研究对象,对土壤pH值、含水率、有机碳(SOC)、总氮(TN)、总磷(TP)的分布及其生态化学计量学特征进行研究。结果表明:研究区域猕猴桃园土壤含水率、pH值、SOC、TN和TP含量均存在显著性差异,分别处于1.12%~3.46%、7.12~8.40、4.22~13.90 g·kg~(-1)、0.77~1.84 g·kg~(-1)和0.73~2.45 g·kg~(-1)之间,均值分别为2.73%、7.83、7.66 g·kg~(-1)、1.20 g·kg~(-1)和1.40 g·kg~(-1),其表现C、N元素相对匮乏,而P元素相对丰富;其次,不同区域及不同品种园区土壤中C、N和P的生态化学计量学特征均存在显著性差异,C/N、C/P和N/P的变异系数分别为28.30%、35.71%和21.15%,变化范围分别为3.06~11.99、2.68~10.90和0.48~1.41,均值分别为6.57、5.91和0.90,均低于全国平均水平;相关分析表明,在0.05水平上,pH值与C/P呈显著正相关性;在0.01水平上,pH值与TN、pH值与TP、TN与C/N、TN与C/P、TP与C/N、TP与C/P、TP与N/P呈显著的负相关性,pH值与C/N、SOC与C/N、SOC与C/P、TN与TP、C/N与C/P及C/P与N/P呈显著正相关性。  相似文献   

13.
HAI Xuying 《干旱区科学》2022,14(10):1109-1123
Manipulated precipitation patterns can profoundly influence the metabolism of soil microorganisms. However, the responses of soil organic carbon (SOC) and nutrient turnover to microbial metabolic limitation under changing precipitation conditions remain unclear in semi-arid ecosystems. This study measured the potential activities of enzymes associated with carbon (C: β-1,4-glucosidase (BG) and β-D-cellobiosidase (CBH)), nitrogen (N: β-1,4-N-acetylglucosaminidase (NAG) and L-leucine aminopeptidase (LAP)) and phosphorus (P: alkaline phosphatase (AP)) acquisition, to quantify soil microbial metabolic limitations using enzymatic stoichiometry, and then identify the implications for soil microbial metabolic limitations and carbon use efficiency (CUE) under decreased precipitation by 50% (DP) and increased precipitation by 50% (IP) in a temperate grassland. The results showed that soil C and P were the major elements limiting soil microbial metabolism in temperate grasslands. There was a strong positive dependence between microbial C and P limitations under manipulated precipitation. Microbial metabolism limitation was promoted by DP treatment but reversed by IP treatment. Moreover, CUE was inhibited by DP treatment but promoted by IP treatment. Soil microbial metabolism limitation was mainly regulated by soil moisture and soil C, N, and P stoichiometry, followed by available nutrients (i.e., NO- 3, NH+ 4, and dissolved organic C) and microbial biomass (i.e., MBC and MBN). Overall, these findings highlight the potential role of changing precipitation in regulating ecosystem C turnover by limiting microbial metabolism and CUE in temperate grassland ecosystems.  相似文献   

14.
Land use change significantly influences soil properties.There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties.We compared soil carbon(C) and nitrogen(N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia.Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland.The results showed that soil C and N storage,soil texture,and soil nutrient contents varied with land use types and cropland ages(P<0.01).In the 0-30 cm soil layer,the soil organic carbon(SOC) density was significantly lower in the croplands(3.28 kg C/m2 for C50 soil) than in the grasslands(6.32 kg C/m2).After 5,10,15,20,35,and 50 years of crop planting(years since the onset of cultivation),the SOC losses were 17%,12%,19%,47%,46%,and 48%,respectively,compared with the grasslands.The soil total nitrogen(TN) density of the grasslands was 65 g N/m2,and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting.Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age(P<0.0001,R2=0.8528;P<0.0001,R2=0.9637).The dissolved organic carbon(DOC) content,soil available potassium(AK) content,clay content,and pH value were decreased;and the soil bulk density and sand content were increased since the conversion of grassland into cropland during the 50-year period.Our results show soil nutrients were higher in grassland than in cropland.The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties.The reclamation time of cultivated soil(cropland age) had significant effects on soil properties in the study area.  相似文献   

15.
樟子松固沙林土壤理化特性对林分密度的响应   总被引:1,自引:0,他引:1  
为了研究樟子松人工固沙林林分密度对土壤理化特性的影响,在章古台地区选取林分密度分别为625(P1)、775(P2)、1 025(P3)、1 175(P4)株·hm^-2和1 250(P5)株·hm^-2的樟子松中龄林(林龄为23~27 a)为研究对象,对0~100 cm深度的樟子松林地土壤按0~10、10~20、20~40、40~60、60~80、80~100 cm进行分层,分析其理化特性。结果表明:0~10 cm土层全氮和20~40 cm土层土壤容重随密度增加呈上升趋势,P5显著高于P1(P <0. 05);0~80 cm土层全钾和0~60 cm土层pH随密度增加先升高后降低,P3最高,且P3样地全钾在10~60 cm土层显著高于P1(P <0. 05);pH在0~40 cm土层显著高于其他样地(P <0. 05);0~10 cm土层全磷随密度增加而减小,P1显著高于P3~P5(P <0. 05);P4或P5样地有效钾在0~40 cm土层显著高于P1、P2样地(P <0. 05),在40~100 cm土层显著高于P3样地(P <0. 05);P2~P4样地的土壤孔隙度在40~100 cm土层低于P1和P5样地。综合考虑林分密度对樟子松中龄林土壤理化特性的影响,章古台地区樟子松林的合理林分密度为1 025~1 175株·hm^-2,可采取间伐等营林管理措施调节林分密度,确保樟子松固沙林生长具有良好的土壤条件。  相似文献   

16.
Soil enzyme activity plays an important role in the conversion of soil organic carbon into inorganic carbon,which is significant for the global carbon cycle.In this study,we investigated the soil enzyme activities of two ligninolytic enzymes(peroxidase and polyphenol oxidase)and five non-ligninolytic enzymes(α-1,4-glucosidase(AG);β-1,4-glucosidase(BG);N-acetyl-β-glucosaminidase(NAG);β-D-cellobiosidase(CBH);andβ-xylosidase(BXYL))in four plant communities of the Sangong River basin in Fukang,North Xinjiang,China.The four typical plant communities were dominated by Haloxylon ammodendron,Reaumuria soongonica,Salsola passerina,and Tamarix rarmosissima,respectively,with saline soils of varied alkalinity.The results showed that the soil peroxidase activity decreased seasonally.The activities of the five non-ligninolytic enzymes decreased with increasing soil depths,while those of the two ligninolytic enzymes did not show such a trend.In the four plant communities,BG had the highest activity among the five non-ligninolytic enzymes,and the activities of the two ligninolytic enzymes were higher than those of the four non-ligninolytic ones(AG,NAG,CBH,and BXYL).The community of H.ammodendron displayed the highest activity with respect to the two ligninolytic enzymes in most cases,but no significant differences were found among the four plant communities.The geometric mean of soil enzyme activities of the four plant communities was validated through an independently performed principal component analysis(PCA),which indicated that different plant communities had different soil enzyme activities.The correlation analysis showed that soil polyphenol oxidase activity was significantly positively correlated with the activities of the five non-ligninolytic enzymes.The soil pH value was positively correlated with the activities of all soil enzymes except peroxidase.Soil microbial carbon content also showed a significant positive correlation(P0.01)with the activities of all soil enzymes except polyphenol oxidase.The results suggested that the H.ammodendron community has the highest ability to utilize soil organic carbon,and glucoside could be the most extensively utilized non-ligninolytic carbon source in the saline soil of arid areas in Xinjiang.  相似文献   

17.
Soil acidification is a major global issue of sustainable development for ecosystems. The increasing soil acidity induced by excessive nitrogen(N) fertilization in farmlands has profoundly impacted the soil carbon dynamics. However, the way in which changes in soil p H regulating the soil carbon dynamics in a deep soil profile is still not well elucidated. In this study, through a 12-year field N fertilization experiment with three N fertilizer treatments(0, 120, and 240 kg N/(hm~2·a)) in a dryland agroecosystem of China, we explored the soil p H changes over a soil profile up to a depth of 200 cm and determined the responses of soil organic carbon(SOC) and soil inorganic carbon(SIC) to the changed soil p H. Using a generalized additive model, we identified the soil depth intervals with the most powerful statistical relationships between changes in soil p H and soil carbon dynamics. Hierarchical responses of SOC and SIC dynamics to soil acidification were found. The results indicate that the changes in soil p H explained the SOC dynamics well by using a non-linear relationship at the soil depth of 0–80 cm(P=0.006), whereas the changes in soil p H were significantly linearly correlated with SIC dynamics at the 100–180 cm soil depth(P=0.015). After a long-term N fertilization in the experimental field, the soil p H value decreased in all three N fertilizer treatments. Furthermore, the declines in soil p H in the deep soil layer(100–200 cm) were significantly greater(P=0.035) than those in the upper soil layer(0–80 cm). These results indicate that soil acidification in the upper soil layer can transfer excess protons to the deep soil layer, and subsequently, the structural heterogeneous responses of SOC and SIC to soil acidification were identified because of different buffer capacities for the SOC and SIC. To better estimate the effects of soil acidification on soil carbon dynamics, we suggest that future investigations for soil acidification should be extended to a deeper soil depth, e.g., 200 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号