首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于双GNSS天线及单陀螺的车轮转角测量系统   总被引:5,自引:0,他引:5  
针对农业机械自动导航中,传统绝对角度传感器连接件多、安装复杂且容易出现故障,而陀螺测量前轮转角虽然安装容易,但陀螺零偏等仪器误差造成测量误差随时间累积的问题,提出了基于双GNSS天线和单轴MEMS陀螺组合测角系统,该系统通过双GNSS天线解算的航向角、速度等信息计算观测量,通过卡尔曼滤波器对陀螺计算的角度进行实时校正,提高了车轮转角的测量精度。实车试验结果表明,该系统具有较好的合理性和准确性,车轮转角测量结果与绝对角度传感器输出结果比较:直线试验误差在0.5°以内,曲线试验误差在1°以内,满足了农业机械自动导航的测角精度要求。  相似文献   

2.
基于自校准变结构Kalman的农机导航BDS失锁续航方法   总被引:2,自引:0,他引:2  
针对农机自动导航作业过程中存在的BDS信号失锁导致系统突然失控的问题,提出了一种适用于轮式农机的基于自校准变结构Kalman滤波器的农机导航BDS失锁续航方法。依据4自由度农机运动学模型,设计了BDS/INS信息融合Kalman滤波器;进行INS导航定位误差不确定度分析,并设计了基于自回归模型的航向校准方法、INS传感器角速率测量零偏实时校准方法,结合上述方法设计了自校准变结构滤波器,进行位姿信息处理,结合导航跟踪控制方法实现失锁续航功能。根据分米级精度要求,进行了机器人直线、矩形路径失锁续航试验和农机田间直线续航试验。机器人续航试验结果表明:行驶速度为1 m/s时,与运用未校准滤波器的续航系统相比,该方法实际平均横向偏差减小34%,横向偏差达到20 cm时机器人在路径上的平均行驶距离提高80%。农机田间续航试验结果表明:行驶速度为1 m/s时,在实际偏差小于20 cm的条件下,农机在路径上的行驶平均距离达到16. 65 m。  相似文献   

3.
基于Kalman滤波和纯追踪模型的农业机械导航控制   总被引:8,自引:0,他引:8  
以KUBOTA SPU-68水田插秧机为试验平台,以RTK-DGPS为主要导航方式,辅以航向姿态参考系统AHRS500GA-227,研究提高农业机械导航控制精度的方法.在重点对GPS倾斜误差校正的基础上,设计了Kalman滤波器对定位数据进行平滑处理,同时实现磁航向传感器偏移误差的在线辨识与航向校正.采用纯追踪模型实现农业机械直线跟踪控制,基于ITAE优化准则,仿真研究了最佳前视距离的确定方法.试验结果表明:GPS倾斜误差校正和Kalman滤波后的导航参数可以更真实地反映插秧机水田实际运动状态;纯追踪模型可以用于插秧机田间作业直线导航,当行进速度0.6m/s时,直线跟踪最大误差小于0.17m,平均误差小于0.02m.  相似文献   

4.
基于Kalman滤波的田间导航车辆定位校正方法研究   总被引:1,自引:0,他引:1  
以装载了RTK-DGPS导航系统的KUBOTASPU-68水田插秧机为试验平台,以姿态测量系统提供载体姿态信息,研究农业机械导航的姿态校正方法。在分析车载GPS倾斜误差产生原因基础上,提出了采用多传感器联合测量载体姿态角以提供校正信息。采用MEMS传感器集成模块ADIS16355作为惯性测量单元,卡尔曼滤波实现传感器信息融合以计算姿态角,设计了姿态测量系统。阐述了两种传感器融合测量实时姿态角的算法,基于ARM7Cotex-M3微处理器设计了姿态测量系统硬件。  相似文献   

5.
拖拉机作业时滑转率过高会降低作业效率,准确监滑转率具有重要意义。针对基于最小轮速的滑转率测量方法在转向工况下失效的问题,提出一种基于阿克曼转向原理的滑转率测量方法。通过建立转向时的滑转率测量模型,得到滑转率与理论车速、右前轮车速、右前轮转向角的关系。基于约翰迪尔4720型拖拉机设计滑转率测量系统,包括右前轮轮速测量装置,CAN总线解析模块和滑转率计算模块。水泥路面直行工况下滑转率测量试验结果表明,直行工况滑转率的平均值为3.0%。在水泥路面转向工况下,进行目标理论速度分别为0.5、0.8、1.0、1.2、1.5 m/s的滑转率测量试验。试验结果表明:转向工况滑转率的平均值分别为3.9%、3.4%、3.7%、3.8%、2.9%,处于直行工况的滑转率区间;因此认为此方法可行,为农机田间转向工况滑转率测量提供支撑。  相似文献   

6.
以角速度为转向动作反馈的拖拉机自动导航控制系统   总被引:1,自引:0,他引:1  
针对传统农机导航控制系统中转向角度传感器安装麻烦、可靠性较低的缺点,采用角速度计作为拖拉机转向动作的反馈传感器,结合拖拉机加装的基于CAN总线结构的导航控制装置,设计了串级PID自动导航控制系统,内环PID控制器用于转向控制,外环PID控制器用于路径跟踪控制。由于角速度计噪声误差较大,为避免对角速度的积分运算引起误差持续累积增大,角速度计的测量数据仅直接用作内环PID控制器的反馈;外环PID控制器的控制量也设计为角速度值。因此,在以转向角为控制量的比例控制算法基础上,本文又推导、设计了以角速度为控制量的外环PID控制算法。路面实验结果表明,本文设计的以角速度为转向动作反馈的拖拉机自动导航控制系统,直线路径的稳态跟踪误差平均值约为4.1cm,误差绝对值最大为12.9cm,验证了角速度计在农机导航控制系统中应用的可行性及所提控制方法的正确性。  相似文献   

7.
针对“精准农业”的作业需求,为提高植保机械的作业精度,降低驾驶人员的工作强度,设计了一种四轮转向液压底盘自动驾驶系统。该系统主要由车载电脑、行车控制器、RTK-DGPS采集装置、电控液压转向装置及行车状态采集装置等组成。行车状态采集装置采集行车参数信息并基于i CAN通信协议进行系统通信。车载电脑根据导航控制模型和各传感器实时参数生成控制指令,行车控制器根据车载电脑指令根据四轮车运动模型生成电控信号,并通过各电磁阀控制液压马达和转向油缸实现对底盘4个轮的转向。试验结果表明:当底盘前进速度为2m/s时,平均跟踪误差不超过0.04m。  相似文献   

8.
接触式拖拉机导航控制系统   总被引:3,自引:0,他引:3  
为提高接触式拖拉机导航系统性能和导航精度,针对玉米秸秆行间作业,设计了双层控制器接触式导航控制系统.在分析接触式导航传感器检测信号的基础上,以触杆转角为输入、前轮目标转角为输出设计了模糊控制器作为导航控制的上层控制.下层控制针对电液系统的非线性,采用带非线性补偿的PID控制器实现对拖拉机前轮转向角的控制.该导航控制方法在Matlab/Simulink平台上进行了仿真,导航控制系统在秸秆行间进行了试验验证.仿真和田间试验结果表明,导航控制算法的响应快、稳定性好.当行驶速度不超过1 m/s时,拖拉机导航精度在50 mm以内,平均误差15 mm,能满足玉米秸秆行间作业要求.  相似文献   

9.
为获得更加准确、全面、实时的农田障碍物信息,提高农业机械智能体自主导航定位的精度,提出一种基于北斗系统和视觉导航的组合定位方法。针对农田环境,选择BDS、视觉CCD为外部传感器,设计一种基于扩展卡尔曼滤波器(EKF)的数据融合算法,该算法融合了BDS和视觉传感器数据,实时定位农机智能体的位置。系统通过对导航角度和行驶进度进行跟踪,完成绝对定位。通过机器视觉图像处理,获取导航基准和作业目标信息,完成相对定位。通过试验验证该算法的有效性,并通过卡尔曼滤波算法(KF)的成果进行对比分析。结果表明:滤波后的路径更平滑,抖动偏差减小,坐标数据比KF滤波结果更稳定、更平滑。此外,距离的平均误差可以从滤波前的0.119 5 m降低到滤波后的0.07 0 m,有效地降低了过程噪声。且位置偏差在±0.1 m以内,精度较高,提升了农机智能体自主导航的定位精度。  相似文献   

10.
农业机械(农机)运动学模型的精度影响导航控制精度和稳定性,为提高农机路径跟踪控制器精度,提出了一种基于运动特性的农机导航控制器设计方法。该方法主要是对传统二轮车运动学模型建模方法进行改进,针对传统二轮车模型小角度近似替代(方向角等于横摆角)的缺点,采用加入侧偏角的方法优化农机运动学建模过程。采用相同的控制方法(状态反馈控制)和不同的运动学模型设计控制器进行对照实验。直线路径跟踪时,侧偏角对模型精度影响较小,引入侧偏角可以在一定程度上影响农机的跟踪精度;曲线路径跟踪时,侧偏角对方向角的变化影响较大,可以大幅影响路径跟踪精度。以安装有自动导航设备的拖拉机为实验平台进行实地实验,结果表明:直线行驶的最大横向误差平均值为0.0454m,绝对平均误差平均值为0.0149m,标准差平均值为0.0119m;曲线行驶的最大横向误差平均值为0.1613m,绝对平均误差平均值为0.0688m,标准差平均值为0.0434m;基于本文提出的优化模型设计的路径跟踪控制器对直线路径跟踪有一定提升,对曲线跟踪精度有大幅提升。  相似文献   

11.
农业机械导航技术研究进展   总被引:31,自引:0,他引:31  
农业机械自动导航技术是实施精细农业的基础,可有效减轻农机操作人员的劳动强度,提高作业精度与作业效率。经典的农机自动导航关键技术包括定位测姿、路径规划和运动控制,针对这3项关键技术,分别阐述了基于全球导航卫星系统、惯性导航系统、机器视觉导航系统及多传感器信息融合的农机定位测姿方法,总结归纳了农机自动导航系统中的全局路径与局部路径规划算法,以及农机的运动学模型、导航决策控制方法、转向制动控制系统。随着信息技术的发展,农机智能导航技术受到越来越多的关注,保证作业安全与提高作业效率成为农机智能导航不同于传统自动导航的关键技术。以激光雷达和RGB相机为例综述了农机自主避障技术,并从协同导航模式、通信技术、协同控制、远程监控平台等角度阐明了多农机协同作业的关键技术。最后,结合无人农场和智慧农业对农机智能导航技术未来的发展方向进行了展望。  相似文献   

12.
XDNZ630型水稻插秧机GPS自动导航系统   总被引:14,自引:2,他引:12  
以XDNZ630型水稻插秧机为试验平台,采用RTK-GPS定位技术,进行农业机械自动导航试验.增加了插秧机转向机构、变速机构和栽插机构的电控功能,实现了自动控制.根据GPS接收机与车载传感器获取车辆姿态信息,采用PID控制方法,构建转向闭环控制系统,实现插秧机的自动对行导航及地头转向,并进行了插秧机路面与田间导航跟踪试验.试验结果表明,在插秧机对行导航作业中,车辆行进速度不大于0.6m/s时,对行跟踪误差小于10cm,完全可以满足插秧作业精度要求.  相似文献   

13.
基于CPF-EKF算法的大载荷植保无人机姿态解算方法   总被引:1,自引:0,他引:1  
为了解决传统人工喷洒农药的不足,更高效地进行病虫害的防治,设计了基于八轴十六旋翼无人机的农药喷洒系统,实现了农药的机载喷洒功能。使用共轴双桨和旋翼模块的倾斜配置,对八轴多旋翼无人机进行结构改进,提高了系统的安全性与可靠性。整个系统满载10 kg,喷洒飞行速度可到达5 m/s,飞行时间超过10 min。针对传统扩展卡尔曼滤波(Extended Kalman filter,EKF)姿态解算方法无法满足大载荷无人机强振动条件下的工作要求,导致姿态角解算精度不高,并且容易导致姿态角发散的问题,提出了基于20维状态量的CPF-EKF算法,额外引入了陀螺仪、加速度计和磁力计偏置误差作为状态量,使三轴姿态角的最优估计值更加准确,并且引入互补滤波(Complement filter,CPF)检测模块,当检测到EKF有发散趋势时,对EKF进行复位,从而简单高效地避免了EKF发散。采用实际飞行数据对算法进行验证,静态试验表明,该算法滚转角和俯仰角精度为±0.05°,偏航角精度为±0.2°。动态试验中以MTi传感器输出为参考,CPF-EKF在姿态解算过程中出现复位,三轴姿态角准确跟踪并未发散,并且动态精度与MTi相当,滚转角、俯仰角精度为±0.1°,偏航角精度为±0.5°,并且算法具有良好的实时性,证明了该算法的有效性。  相似文献   

14.
农田作业面积测量方法层出不穷,但在对小块田地与不规则田地进行面积测量时会出现较大的误差,为此设计基于改进后的Alpha Shapes算法农机作业面积测量方法。利用改进后的Alpha Shapes算法对农机作业定位点集进行处理,实现对小块农田和不规则农田作业轮廓的精准提取,采用Delaunay三角剖分算法计算出农田作业面积。试验结果表明:基于改进后的Alpha Shapes算法的小块农田和不规则农田进行面积测量时误差率分别为1.5%和3.5%,其他测量方法对小块农田和不规则农田进行面积测量误差率普遍维持在3.5%和5%以上。结果表明采用改进Alpha Shapes算法的农机作业面积测量方法在对小块农田和不规则田地进行面积测量时,精度较高,满足试验设计要求。  相似文献   

15.
为评价农业自动导航系统的稳定性和导航精度,大量的田间试验必不可少。若采用拖拉机、联合收获机等大型农业机械进行导航试验测试,在机械日常维护、控制系统开发及试验材料准备等方面的成本较高。为此,以易于操作的四轮电动车为车辆原型研制了用于农业自动导航系统测试的移动试验平台,其自动转向系统以直流电机为动力源,采用精密电位计测量前轮转向角。自动巡航系统由速度控制器监测实际车速,利用数字PID算法控制驱动电机的输出,保证试验平台以设定车速行驶。为便于接收导航系统的控制指令,基于CAN总线通信网络对各子系统进行模块化设计,预留CAN总线通信控制接口。试验测试表明:转向控制的角度分辨率小于0.4°、控制误差小于1.0°,自动巡航的速度控制误差小于0. 3m/s,控制精度和稳定性满足农业自动导航系统测试的基本要求。  相似文献   

16.
基于最优控制的导航拖拉机速度与航向联合控制方法   总被引:3,自引:0,他引:3  
为提高自动导航拖拉机工作效率和作业质量,以自动变速系统和自动转向系统为硬件支撑,结合最优控制理论,设计了基于速度和转向角的双参数最优控制算法.针对耙地作业要求,设计了直线路径跟踪与地头转弯路径跟踪控制器,运用Matlab软件对所设计的控制器进行了仿真分析,通过田间试验对所设计的控制器进行了验证.试验结果表明:控制器的横向偏差小于0.12m,航向偏差小于1.1°,速度偏差小于0.2 m/s,满足自动导航作业要求.  相似文献   

17.
为降低履带式联合收获机导航路径跟踪转向控制频率和提高控制系统的稳定性,提出了一种预瞄-切线局部跟踪路径动态规划算法。规划的局部跟踪路径由平滑连接的两段弧线组成,第1段圆弧由收获机当前位姿与1/2横向偏差线上的预瞄点确定,第2段圆弧由收获机在1/2横向偏差线的实际位姿与期望路径的几何关系确定;基于收获机实际转向运动特性建立了相适应的转向控制模型,左转、右转控制模型拟合的决定系数R2分别为0.978、0.980。田间直线导航跟踪对比试验表明:当前进速度为0.4、0.8m/s时,横向偏差的标准差分别为0.0489、0.0507m,航向偏差的标准差分别为3.94°、4.66°,转向控制次数分别为19、12次;与传统纯追踪算法相比,横向偏差的标准差分别减小19.04%、31.30%,航向偏差的标准差分别减小25.94%、9.16%,转向控制次数分别减少47.22%、42.86%。本研究可为履带式农机车辆导航控制器设计提供参考。  相似文献   

18.
直线型植保无人机航姿UKF两级估计算法   总被引:1,自引:0,他引:1  
针对直线型植保无人机航姿测量受磁场干扰严重、磁力计校准动态性能差、航姿估计精度低等问题,提出了一种基于磁力计实时校准的无人机航姿两级解算方法。依据地磁场矢量变化小的特点,利用列文伯格-马夸特(Levenberg-Marquardt,LM)算法和磁力计误差模型,建立磁力计实时校准模型,实时计算磁力计误差参数。考虑运动加速度、电机磁场以及环境磁场干扰,采用无迹卡尔曼滤波器(Unscented Kalman filter,UKF)融合陀螺仪和加速度计实现一级航姿估计,通过四元数精准解析出横滚角和俯仰角姿态信息;然后融合磁力计实时校准数据和陀螺仪修正航向角完成二级航姿估计,最终实现无人机姿态和航向的精准估计。试验结果表明,在外部磁场干扰高达30.97μT时,实时校准算法仍可快速计算出磁力计校准参数,模长均方根误差为0.59μT,减小了航向观测信息噪声。本文的航姿测量系统姿态角均方根误差不大于0.75°,航向角均方根误差为1.40°,较互补滤波算法,姿态角精度提高约0.6%,航向角估计精度提高1.38°;动态飞行试验中,姿态估计算法大幅减弱了磁干扰影响,航姿跟踪准确,航向角快速收敛,稳态精度更高。  相似文献   

19.
基于DGPS与双闭环控制的拖拉机自动导航系统   总被引:1,自引:0,他引:1  
以东方红X-804型拖拉机为平台,设计了一种基于RTK-DGPS定位和双闭环转向控制相结合的自动导航系统,研究提高农业机械导航控制精度的方法。阐述了导航系统整体设计方案,以RTK-DGPS和AHRS500GA分别提供位置信息和辅助修正信息实现准确定位,以电控液压转向系统实现转向控制。分析了整体控制的策略,建立了路径跟踪的传递函数模型,阐述了双闭环转向控制算法的建立过程,以及控制器的硬件实现。试验结果表明:GPS定位数据经过校正后,平均偏差降低至0.031 m;双闭环控制算法提高了自动转向系统性能,稳态时方波信号以及正弦波信号的跟踪误差平均值为0.40°;在拖拉机田间作业跟踪过程中,路径跟踪误差平均值不超过0.019 m,转向轮偏角跟踪误差平均值为0.43°,标准差不超过0.041 m。  相似文献   

20.
基于直流电机与全液压转向器直联的自动转向系统研究   总被引:3,自引:0,他引:3  
针对农机装备电控液压自动转向系统生产成本高及电动方向盘自动转向系统中控制力矩小、存在自由行程的问题,设计了基于直流电机与全液压转向器直联的自动转向机构及其电控系统,该系统主要包括自动转向执行机构、自动转向控制器和液压转向机构等。自动转向执行机构与原车液压转向机构连接实现自动转向功能,考虑了底盘阿克曼角的自动转向控制器实现车轮转向的精确控制,通过在转向驱动电机输出轴安装电磁离合器和转向柱扭矩传感器实现人工驾驶模式和自动驾驶模式的自动切换。试验结果表明,车轮转角响应平均稳态误差小于0.1°,最大稳态误差为0.158°,±20°阶跃信号最快响应时间达1.2 s,超调量小于1%,可以满足对各种轮式农机的自动导航辅助驾驶转向系统性能的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号