首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Summary The influence of 28 nitrification inhibitors on denitrification of nitrate in soil was studied by determining the effects of different amounts of each inhibitor on the amounts of nitrate lost and the amounts of nitrite, N2O and N2 produced when soil samples were incubated anaerobically after treatment with nitrate or with nitrate and mannitol. The inhibitors used included nitrapyrin (N-Serve), etridiazole (Dwell), potassium azide, 2-amino-4-chloro-6-methylpyrimidine (AM), sulfathiazole (ST), 4-amino-1,2,4-triazole(ATC),2,4-diamino-6-trichloromethyl-s-triazine (CL-1580), potassium ethylxanthate, guanylthiourea (ASU), 4-nitrobenzotrichloride, 4-mesylbenzotrichloride, sodium thiocarbonate (STC), phenylmercuric acetate (PMA), and dicyandiamide (DCD).Only one of the nitrification inhibitors studied (potassium azide) retarded denitrification when applied at the rate of 10 g g–1 soil, and only two (potassium azide and 2,4-diamino-6-trichloromethyl-s-triazine) inhibited denitrification when applied at the rate of 50 g g–1 soil. The other inhibitors either had no appreciable effect on denitrification, or enhanced denitrification, when applied at the rate of 10 or 50 g g–1 soil, enhancement being most marked with 3-mercapto-1,2,4-triazole. Seven of the inhibitors (potassium azide, sulfathiazole, potassium ethylxanthate, sodium isopropylxanthate, 4-nitrobenzotrichloride, sodium thiocarbonate, and phenylmercuric acetate) retarded denitrification when applied at the rate of 50 g g–1 soil to soil that had been amended with mannitol to promote microbial activity.Reports that nitrapyrin (N-Serve) and etridiazole (Dwell) inhibit denitrification when applied at rates as low as 0.5 g g–1 soil could not be confirmed. No inhibition of denitrification was observed when these compounds were applied at the rate of 10 g g–1 soil, and enhancement of denitrification was observed when they were applied at the rate of 50 or 100 g g–1 soil.  相似文献   

2.
Identification of ergosterol in vesicular-arbuscular mycorrhizae   总被引:1,自引:0,他引:1  
Summary Ergosta-5,7,22-tri-3-enol (ergosterol) was identified by gas chromatography-mass spectrometry in roots of berseem (Trifolium alexandrinum L., cv. Landsorte) and sweet corn (Zea mays L., cv. Honeycomb-F1) infected with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus intraradices. The fungal-derived compound ergosterol was determined quantitatively in root extracts using reverse-phase high performance liquid chromatography. The concentrations of ergosterol in VAM-infected roots reached 72 g-1 dry material in berseem and 52 g-1 in sweet corn after 80 days of growth, whereas concentrations in non-infected roots remained below 8 g-1 dry weight. Additionally, phytosterols such as -sitosterol, campesterol, and stigmasterol were detected in both infected and non-infected roots. Ergosterol, as a characteristic fungal substance, is proposed as an indicator of fungal biomass in the early stages of VAM infection.  相似文献   

3.
The degree to which floating aquatic plants concentrate Se in tissues was determined for four species grown in solutions containing various levels of Se. Results of this greenhouse study showed that all four plant species, Azolla caroliniana, Eichhornia crassipes, Salvinia rotundi folia, and Lemna minor absorbed Se quickly upon exposure to Se in water as concentrated as 2.5 g Se mL–1, and attained maximum tissue concentrations within 1 to 2 weeks. Azolla absorbed Se to the highest tissue concentration (about 1000 g Se g–1 dry matter) from the 2.5 g Se mL–1 solution, followed by Salvinia (700 g Se g–1), Lemna (500 g Se g–1),and Eichhornia (300 g Se g–1). Plant growth appeared unaffected by solution Se concentrations lower than about 1.25 g mL–1. These results indicate potential for rapid Se movement from water into aquatic food chains, and for use of aquatic plants for Se removal in wastewater treatment systems.  相似文献   

4.
Concentrations of CH4, a potent greenhouse gas, have been increasing in the atmosphere at the rate of 1% per year. The objective of these laboratory studies was to measure the effect of different forms of inorganic N and various N-transformation inhibitors on CH4 oxidation in soil. NH 4 + oxidation was also measured in the presence of the inhibitors to determine whether they had differential activity with respect to CH4 and NH 4 + oxidation. The addition of NH4Cl at 25 g N g-1 soil strongly inhibited (78–89%) CH4 oxidation in the surface layer (0–15 cm) of a fine sandy loam and a sandy clay loam (native shortgrass prairie soils). The nitrification inhibitor nitrapyrin (5 g g-1 soil) inhibited CH4 oxidation as effectively as did NH4Cl in the fine sandy loam (82–89%), but less effectively in the sandy clay loam (52–66%). Acetylene (5 mol mol-1 in soil headspace) had a strong (76–100%) inhibitory effect on CH4 consumption in both soils. The phosphoroamide (urease inhibitor) N-(n-butyl) thiophosphoric triamide (NBPT) showed strong inhibition of CH4 consumption at 25 g g-1 soil in the fine sandy loam (83%) in the sandy clay loam (60%), but NH 4 + oxidation inhibition was weak in both soils (13–17%). The discovery that the urease inhibitor NBPT inhibits CH4 oxidation was unexpected, and the mechanism involved is unknown.  相似文献   

5.
Summary We studied the effects of the organophosphorus insecticide methidathion, at concentrations of 10, 50, 100, 200 and 300 g g-1 in an agricultural soil, on fungi, total bacterial populations, aerobic N2-fixing bacteria, denitrifying bacteria, nitrifying bacteria (phases I and II), and nitrogenase activity (acetylene reduction assay). The presence of 10–300 g g-1 of methidathion significantly increased fungal populations (colony-forming units). Denitrifying bacteria, aerobic N2-fixing bacteria and N2 fixation were significantly increased at concentrations of 50–300 g g-1. The total number of bacteria increased significantly at concentrations of 100–300 g g-1. Nitrifying bacteria decreased initially at concentrations of 300 g g-1, but recovered rapidly to levels similar to those in the control soil without the insecticide.  相似文献   

6.
Abstract

The effects of 23 urease inhibitors on germination of seeds in soil were investigated. The urease inhibitors tested were 2/5‐dimethyl‐l,4‐benzoquinone, 1/4‐benzoquinone, hydroquinone, 2,5‐dichloro‐l,4‐benzoquinone, phenylmercuric acetate, catechol, phenylphosphorodiamidate, phosphoric triamide, N‐(4‐nitrophenyl)‐phosphoric triamide, N‐(diaminophosphinyl)benzeneacetamide, 4‐chloro‐N‐(diaminophosphinyl)benzamide, N‐3‐(trifluoromethyl‐phenyl)phosphoric triamide, 4‐fluoro‐N‐(diaminophosphinyl)‐benzamide/ 4‐cyano‐N‐(diaminophosphinyl)benzamide, N‐(diamino‐phosphinyl)‐3‐pyridinecarboxamide, N‐(diaminophosphinyl)‐benzamide, N‐phenylphosphoric triamide, phosphorodiamidic acid, N‐(n‐butyl)thiophosphoric triamide, thiophosphoric triamide, 4‐chlorophenylphosphorodiamidate, 2,4‐diphenoxy‐2,4,6,6‐tetraaminocyclotriphosphazene, and 2‐phenoxy‐2,4,4,6,6‐pentaaminocyclotriphosphazene. Germination tests were performed with seeds of alfalfa (Medicago sativa L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), sorghum [Sorghum bicolor (L.) Moench], and corn (Zea mays L.).

None of the inhibitors tested affected seed germination when applied at the rate of 250 μg g‐1 soil. One inhibitor (2,5‐dimethyl‐l,4‐benzoquinone) affected seed germination when applied at the rate of 500 μg g‐1 soil, and three inhibitors (2,5‐dimethyl‐1,4‐benzoquinone, 1,4‐benzoquinone, and hydroquinone) affected seed germination when applied at the rate of 2500 μg g‐1 soil. None of the other inhibitors tested affected seed germination when applied at the rate of 500 or 2500 μg g‐1 soil.  相似文献   

7.
Soils from 38 German forest sites, dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of overlying organic layers. Microbial biomass N and C were measured by fumigation-extraction. The pH of the soils varied between 3.5 and 8.3, covering a wide range of cation exchange capacity, organic C, total N, and soil C:N values. Maximum biomass C and biomass N contents were 2116 g C m-2 and 347 g N m-2, while minimum contents were 317 and 30 g m-2, respectively. Microbial biomass N and C were closely correlated. Large variations in microbial biomass C:N ratios were observed (between 5.4 and 17.3, mean 7.7), indicating that no simple relationship exists between these two parameters. The frequency distribution of the parameters for C and N availability to the microflora divided the soils into two subgroups (with the exception of one soil): (1) microbial: organic C>12 mg g-1, microbial:total N>28 mg g-1 (n=23), a group with high C and N availability, and (2) microbial:organic C12 mg g-1, microbial:total N28 mg g-1 (n=14), a group with low C and N availability. With the exception of a periodically waterlogged soil, the pH of all soils belonging to subgroup 2 was below 5.0 and the soil C:N ratios were comparatively high. Within these two subgroups no significant correlation between the microbial C:N ratio and soil pH or any other parameter measured was found. The data suggest that above a certain threshold (pH 5.0) microbial C:N values vary within a very small range over a wide range of pH values. Below this threshold, in contrast, the range of microbial C:N values becomes very large.  相似文献   

8.
Summary A 2-year study (1983–1984 to 1984–1985) was conducted to estimate temporal and seasonal changes and the effects of fertiliser on some soil chemical, biochemical and microbiological characteristics. The soil used was a Typic Vitrandept under grazed pasture. Soil samples were taken regularly to a depth of 75 mm from paired unfertilised and fertilised (500 kg ha 30% potassic superphosphate) plots. Except for organic C, fertiliser had little or no effect on the characteristics measured. Organic C averaged about 9.2% in unfertilised soil and was about 0.3% higher in the fertilised soil. The size of the microbial biomass fluctuated widely in the 1st year (3000 g C g–1 in February to 1300 g C g–1 in September) but there was less variation in the 2nd year (range 1900 g C g–1 to 2500 g C g–1 soil). CO2 production values (10- to 20-day estimates averaged 600 g of CO2-C g–1 soil) were generally higher in spring compared to the rest of the year. Water extractable C increased over winter and declined through spring in both years (range 50 g C g–1 soil to 150 g C g–1 soil). Mineral-N flush values were higher in summer (300 g N g–1 soil) and lower in winter months (200 g N g–1 soil). The pattern of variation of microbial N values was one of gradual accumulation followed by rapid decline. This rapid decline in values occurred in spring and autumn (range 130–220 g N g–1 soil). N mineralisation and bicarbonate-extractable N showed no clear trend; these values ranged from 100–200 and 122–190 g N g–1 soil, respectively. There was a significant correlation (0.1%) between N mineralisation and bicarbonate-extractable N in the late summer-autumn-early winter period (February–August) in both years but not in spring. These results and their relationships to climatic factors and rates of pasture production are discussed.  相似文献   

9.
Summary Increasing the sulfate concentration and concomitant increases in the organic S concentration failed to exert any effect on organic S mobilization in samples collected from all depths within the mineral soil profile, from 15 sites differing in soil type, vegetation, and geographic location. Mobilization capacities at saturating concentrations of sulfate for organic S formation generally tended to increase with increasing depth. The potentials for the accumulation of organic S with various sulfate inputs exhibited saturation kinetics similar to those observed for organic S formation; values for the former parameter ranged from 3×10-3 to 12.6 mol S g–1 dry weight 24 h-1 for the uppermost (A, E) soil horizons, 3 nmol to 10 mol S g-1 dry weight 24 h–1 for intermediate (primarily AB) soil horizons, and from 3 nmol to 13.4 mol S g-1 dry weight 24 h–1 for the lowermost (B, C) soil horizons. Irrespective of depth, the Fullerton, Tarklin, and Loblolly sites in Tennessee and the Florida site showed the least net accumulation of organic S at saturation (<0.2 mol S g-1 dry weight 24 h–1 for all horizons examined), while the Duke Forest (North Carolina), Douglas Fir (Washington), Whiteface (New York) and the Howland (Maine) sites had the highest potential net accumulation of organic S at saturation (>1.0 mol S g-1 dry weight 24 h-1 for most horizons examined).  相似文献   

10.
Bacterial and fungal contributions to microbial respiration in three beechwood soils rich in C (two basalt soils and one limestone soil) were investigated by using streptomycin and cycloheximide to inhibit substrate-induced respiration after glucose (8000 g g-1), N, and P addition to soil samples. The inhibitors were added as solutions (2000, 8000, and 16000 g g-1) and the reduction in substrate-induced respiration after separate and combined inhibitor addition was measured in an automated electrolytic microrespirometer. Bacterial and fungal contributions to microbial respiration were calculated using the interval 6–10 h after inhibitor application. The microbial biomas was smaller in the two basalt soils (Oberhang and Mittelhang) than in the limestone soil (Unterhang). In the presence of both inhibitors, microbial respiration was inhibited by a maximum of 45, 45, and 25% in the two basalt soils and the limestone soil, respectively. Inhibition of microbial respiration was at a maximum at streptomycin and cycloheximide concentrations of 16000 g g-1. The inhibitor additivity ratio approached 1.0 even at high inhibitor concentrations, indicating high inhibitor selectivity. Calculated prokaryote: eukaryote ratios indicated lower bacterial contributions to the microbial biomass in the Mettelhang (0.74) and Unterhang (0.73) than in the Oberhang (0.88) soil.  相似文献   

11.
Growth rate change in earthworms is considered to be a suitable endpoint when determining sublethal effects. In this study we evaluated growth and maturation in the vermicomposting earthworm speciesEudrilus eugeniae as marker of sublethal toxicity of copper and zinc. We also compared routes of uptake. Apart from exposing worms experimentally for 73 days to contaminated food, a series of contact filter paper tests was also performed to determine LD50 for copper and zinc. Both copper and zinc at sublethal concentrations affected growth and maturation in worms exposed to contaminated food. These worms had a copper content of 34.5 g g–1 after 73 days and a zinc content of 184.9 g g–1, showing a differential uptake. Copper was more toxic than zinc. Also in the contact test worms did take up more zinc than copper and the LD50 (48 h) for copper was 0.011 mg cm–2 and for zinc 0.066 mg cm–2, which translated to body burdens of 6 g g–1 for copper and 131 g g–1 for zinc. Indications were that a regulatory mechanism existed for both metals. Both metals were taken up through the body wall at a relatively fast rate. This study indicated that the skin was the major route of metal uptake. This study also showed a poor relation between the two types of tests for purposes of evaluating lethality of zinc and copper.  相似文献   

12.
Summary Strains of Bradyrhizobium influenced root colonization by a species of vesicular-arbuscular mycorrhizae (VAM), and species of VAM influenced root nodulation by strains of Bradyrhizobium in pot experiments. In a field experiment, the effects of VAM on competition amongst inoculated bradyrhizobia were less evident, but inoculation with Bradyrhizobium strains increased root colonization by VAM. Certain VAM/Bradyrhizobium inoculum strain combinations produced higher nodule numbers. Plants grown without Bradyrhizobium and VAM, but supplied with ammonium nitrate (300 g ml–1) and potassium phosphate (16 g ml–1), produced higher dry-matter yields than those inoculated with both symbionts in the pot experiment. Inoculation with either symbiont in the field did not result in higher pod and haulm yields at harvest.ICRISAT Journal Article No. 886  相似文献   

13.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

14.
Ergosterol and microbial biomass C were measured in 26 arable, 16 grassland and 30 forest soils. The ergosterol content ranged from 0.75 to 12.94 g g-1 soil. The geometric mean ergosterol content of grassland and forest soils was around 5.5 g g-1, that of the arable soils 2.14 g g-1. The ergosterol was significantly correlated with biomass C in the entire group of soils, but not in the subgroups of grassland and forest soils. The geometric mean of the ergosterol: microbial biomass C ratio was 6.0 mg g-1, increasing in the order grassland (5.1), arable land (5.4) and woodland (7.2). The ergosterol:microbial biomass C ratio had a strong negative relationship with the decreasing cation exchange capacity and soil pH, indicating that the fungal part of the total microbial biomass in soils increased when the buffer capacity decreased. The average ergosterol concentration calculated from literature data was 5.1 mg g-1 fungal dry weight. Assuming that fungi contain 46% C, the conversion factor from micrograms ergosterol to micrograms fungal biomass C is 90. For soil samples, neither saponification of the extract nor the more effective direct saponification during extraction seems to be really necessary.  相似文献   

15.
In February 1993 samples of litter from three different litter layers (upper, intermediate, and lower) were taken from a beechwood growing on basalt soil. Using the substrate-induced respiration method, we investigated the influence of fragmentation and glucose concentration on the maximum initial respiratory response. Glucose concentrations ranged between 0 and 160000 g g-1 dry weight. The initial respiratory response reached a maximum at 80000 g glucose g-1 dry weight. The addition of higher concentrations of glucose resulted in negligible changes in respiration. Litter materials of four different size classes (intact leaves, fragmented <100 mm2, <25 mm2, and <5 mm2) were amended with 80000 g glucose g-1 dry weight. Substrate-induced respiration was at a maximum in the size class <25 mm2. The addition of glucose to intact litter did not result in microbial growth. It is concluded that C is not the primary limiting element for the microflora in litter layers of the study site. Fragmentation of beech litter enabled the microorganisms to grow. Presumably, nutrients that limited microbial growth in intact litter were mobilized by the fragmentation procedure and enabled microorganisms to grow in fragmented litter materials.  相似文献   

16.
Summary The influence of the partial pressure of oxygen on denitrification and aerobic respiration was investigated at defined P02 values in a mull rendzina soil. The highest denitrification and respiration rates obtained in remoistened, glucose- and nitrate-amended soil were 43 1 N20 h–1g–1 soil and 130 1 O2 h–1g–1 soil, respectively. At -55 kPa matric water potential, corresponding to 40% water saturation, N20 was produced only below P02 40 hPa. The K m, for O2 was 3.0 x 106 M. Formation of N2O and consumption of O2 occurred simultaneously with half maximum rates at P02 6.7–13.3 hPa. Nitrite accumulated in soil below 40 hPa and increased with decreasing pO2. The upper threshold for N20 formation in amended soil was P02 33–40 hPa (39-47 M O2).  相似文献   

17.
Summary We compared the effects of N-(n-butyl) thiophosphoric triamide (NBPT), N-(diaminophosphinyl)-cyclohexylamine (DPCA), phenylphosphorodiamidate (PPD), and hydroquinone on transformations of urea N in soils. The ability of these urease inhibitors to retard urea hydrolysis, ammonia volatilization, and nitrite accumulation in soils treated with urea-decreased in the order NBPT > DPCA PPD > HQ. When five soils were incubated at 30°C for 14 days after treatment with urea (1 mg urea N g–1 soil), on average, the gaseous loss of urea N as ammonia and the accumulation of urea N as nitrite were decreased from 52 to 5 % and from 11 to 1%, respectively, by addition of NBPT at the rate of 10 g g–1 soil (0.47 parts of NBPT per 100 parts of urea). The data obtained support previous evidence that NBPT is more effective than PPD for reduction of the problems encountered in using urea as a fertilizer and deserves consideration as a fertilizer amendment for retarding hydrolysis of urea fertilizer in soil.  相似文献   

18.
Seasonal changes in microbial biomass and nutrient flush in forest soils   总被引:14,自引:0,他引:14  
Microbial biomass and N, P, K, and Mg flushes were estimated in spring, summer, autumn, and winter samples of different forest soils. The microbial biomass showed significant seasonal fluctuations with an average distribution of 880±270 g C g-1 soil in spring, 787±356 g C g-1 soil in winter, 589±295 g C g-1 soil in summer, and 560±318 g C g-1 soil in autumn. The average annual concentrations of C, N, P, K, and Ca in the microbial biomass were 704, 106, 82, 69 and 10 g g-1 soil, respectively. Microbial C represented between 0.5 and 2% of the organic soil C whereas the percentage of microbial N with respect to the total soil N was two-to threefold higher than that of C; the annual fluctuations in these percentages followed a similar trend to that of the microbial biomass. Microbial biomass was positively correlated with soil pH, moisture, organic C, and total N. The mean nutrient flush was 31, 15, 7, and 4 g g-1 soil for N, K, P, and Mg, respectively, and except for K, the seasonal distribution was autumn spring winter summer. The average increase in available nutrient due to the mineralization of dead microbial cells was 240% for N, and 30, 26, and 14% for P, K, and Mg, respectively. There was a positive relationship between microbial biomass and the N, P, K, and Mg flushes. All the variables studied were significantly affected by the season, the type of soil, and the interaction between type of soil and season, but soil type often explained most of the variance.  相似文献   

19.
Summary Studies on the distribution of l-asparaginase in soil profile samples revealed that its activity generally decreases with sample depth and is accompanied by a decrease in organic C content. Statistical analyses indicated that l-asparaginase activity was significantly correlated (** P<0.01) with organic C (r=0.86**) and total N (r=0.78**) in the 26 surface soil samples examined. There was no significant relationship between l-asparaginase activity and the percentage of clay or sand. There was, however, a significant correlation between l-asparaginase activity and amidase (r=0.82**) and urease (r=0.79**) activities in the surface samples studied. The effects of 21 trace elements, 12 herbicides, 2 fungicides, and 2 insecticides on l-asparaginase activity in soils showed that most of the trace elements and pesticides, at the concentrations used, inhibited the reaction catalyzed by this enzyme. The degree of inhibition varied among soils. When the trace elements were compared, at the rate of 5 mol g-1 soil, the average inhibition of l-asparaginase in three soils showed that Ag(I), Cd(II), Hg(II), Ni(II), Pb(II), and V(IV) were the most effective inhibitors (average inhibition 20%). The least effective inhibitors (average 10%) included Cu(I), Ba(II), Co(II), Sn(II), Zn(II), Al(III), Se(IV), As(V), and Mo(VI). Other trace elements that inhibited l-asparaginase activity in soils were Cu(II), Mn(II), As(III), B(III), Cr(III), Fe(III), Ti(IV), and W(VI). When the pesticides were compared, at the rate of 10 g active ingredient g-1 soil, the average inhibition of l-asparaginase activity in three soils ranged from 4% with Merpan to 46% with Malaspray. Other pesticides that inhibited l-asparaginase activity in soils (average inhibition in parentheses) were Aatrex (17%), Alanap (21%), Amiben (18%), Banvel (12%), Bladex (24%), 2,4-D (17%), Dinitramine (19%), Eradicane (16%), Lasso (40%), Paraquat (33%), Sutan (39%), treflan (7%), Menesan (18%), and Diazinon (33%).  相似文献   

20.
The surface ozone (O3) data show an increase by 2.6 % per year during the period 1982–1994 at the rural site of Lithuania. WHO (World Health Organization), UN-ECE (United Nations Economic Commission for Europe), CES (Commission of the European Communities) guideline values for the protection of vegetation from adverse effects are exceeded during the growing season at the Preila coastal station. Ozone exposures for different concentration threshold are estimated during daylight hours in April-September. These values above 60 g/m3 varied between 10 000 and 43 000 (g/m3) ·h, above 80 g/m3 — between 1700 and 15 000 (g/m3) ·h, above 100 g/m3 — between 130 and 3700 (g/m3) ·h during separate years. Maximum hourly ozone values were observed from 116 to 228 g/m3 during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号