共查询到16条相似文献,搜索用时 64 毫秒
1.
根据桔子树干颜色的特点,提出了一种图像分割方法。首先,利用颜色特征定位ROI;然后,计算该区域的颜色特征向量提取桔子树干;最后,对不连续的桔子树干区域利用数学形态学方法进行自动修补。实验结果表明,该方法能够有效地提取出桔子树干,并确定其质心和面积,算法的平均识别率达到了86.93%。 相似文献
2.
基于颜色特征的牧草图像分割方法研究 总被引:1,自引:0,他引:1
针对自然光照条件下牧草图像的分割问题,分别研究了在RGB颜色空间和HSI颜色空间中牧草颜色特征的提取。在RGB颜色空间中,利用2G-B色差特征得到牧草和背景差值最大的色差灰度图像,使用最大类间方差图像分割法对色差灰度图像进行了图像分割。在HSI颜色空间中,根据牧草H分量的分布特点,使用模糊C-均值(FCM)的彩色图像分割方法对牧草的彩色图像进行了有效分割。实验表明,基于HIS彩色空间H色调的FCM方法对牧草的分割能够取得比较理想的效果,经二值化处理后得到的牧草轮廓要比基于2G-B色差特征的最大类间方差分割方法得到的牧草轮廓更加完整。 相似文献
3.
4.
基于颜色和形状特征的棉花害螨图像分割方法 总被引:1,自引:0,他引:1
针对棉花害螨图像成分复杂、病斑排列无规则等特点,提出了一种基于改进型超红特征和面积阈值的棉花害螨病斑的图像分割方法。该方法主要可分为3个步骤:首先利用改进后的超红特征2.1R-G-B提取出复杂背景下棉花害螨图像中的类病斑区域(具有相同红色的害螨病斑和茎杆);然后将类病斑区域与非类病斑区域的灰度图像进行二值化处理;最后利用面积阈值法将类病斑中的害螨病斑分割出来。实验结果表明,改进后的超红分割算法能有效地提取出棉花害螨病斑,准确率可达94.79%。 相似文献
5.
6.
7.
为了降低光照对林区道路的干扰,提高不同光照强度下道路的分割精度,将RGB道路图像的B分量分离出来获得灰度图,并通过Otsu对灰度图进行二值化.定量分析结果显示,精确率均值为0.9775、召回率均值为0.9969、F1均值为0.9869,精度较高,鲁棒性较好,为实现林区道路分割提供了一种思路. 相似文献
8.
基于颜色和形状特征的茶叶嫩芽识别方 总被引:5,自引:1,他引:5
与人工采摘茶叶相比,现有采茶机械虽能提高采摘速度,但采摘时老叶、嫩叶一起采,缺乏选择性,并有部分叶片遭破损,降低了原料品质.为此,需要研究具有选择性、低损伤率的自动采摘方法.本文采用基于颜色和形状特征的图像处理方法,实现茶叶嫩芽的计算机识别和检测.针对清明期陕西名茶午子仙豪茶叶,首先在RGB颜色空间中提取茶叶图像的G分量,并采用双阈值方法对图像进行分割;然后根据茶叶嫩芽的形状特征,检测茶叶嫩芽的边缘.实验结果表明:基于颜色和形状特征的识别方法能有效分辨出茶叶嫩芽,识别准确率为94%,为实现茶叶嫩芽的自动采摘提供了一种有效方法. 相似文献
9.
10.
基于YUV颜色模型的番茄收获机器人图像分割方法 总被引:2,自引:0,他引:2
在研究番茄收获机器人对目标图像分割识别时,经常由于采集的图像受光照影响以及分割识别算法的计算复杂性而影响到识别的准确性和实时性.通过比较RGB、HSI、YUV等颜色模型的特点,从理论上分析了YUV颜色模型应用于收获机器人视觉系统的可行性,提出了一种基于YUV颜色模型的成熟番茄分割方法.同时综合实验及经验确定了成熟的红色番茄在RGB、HSI、YUV颜色模型中阈值范围,采用直接确定色差阈值的双阈值分割算法识别成熟番茄,并对3种颜色模型在不同的光照条件下的分割识别效果进行实验对比.实验结果证实,将基于YUV颜色模型成熟番茄分割方法应用于番茄收获机器人视觉识别系统,能很好地解决其鲁棒性和实时性问题. 相似文献
11.
12.
13.
针对背景和杂草干扰下的果树图像冠层提取问题,提出了一种基于M-SP特征加权聚类的冠层分割算法。首先,将采集的原始图像由RGB颜色空间转换到HSI颜色空间,计算果树与背景区域在H、S分量上的马氏距离,构造马氏距离相似度矩阵〖WTHX〗M〖WTBX〗;其次,提取图像像素的垂直位置作为空间特征〖WTHX〗P〖WTBZ〗,在HSI空间内的I分量上,利用最大熵算法提取图像的阴影区域,并进行掩膜处理,将获取的阴影区域作为空间特征的加权区域L,从而构造阴影位置加权的空间特征〖WTHX〗L〖WTBX〗P;最后,对获取的M-LP特征矩阵进行归一化处理,分别进行上背景、下背景、果树冠层、杂草4个类别的K means聚类,最终完成图像分割。为验证算法的有效性,在采集的果树图像上进行了分割试验,结果表明,基于M-LP特征的聚类方法能有效解决重度杂草干扰条件下果树冠层被漏分的问题。采用精确率、召回率和F1值3个评价指标对分割结果进行定量评价,选取不同杂草干扰程度(轻微、中等、较强)和时间段(早晨、中午、傍晚)的果树图像,分别以传统K-means和GMM聚类算法作为对比进行试验,结果表明,相对于未经过特征提取的普通聚类分割方法,本文算法对于不同杂草干扰程度和不同拍摄时间段下的果树冠层分割表现出一定的鲁棒性,平均精确率为87.1%,平均召回率为87.7%,平均F1值为87.1%。分割和验证结果表明,在进行有效图像特征提取的基础上,结合少量标注作为先验知识的无监督分割方法可以准确分割出果树冠层区域。 相似文献
14.
15.
基于超像素特征的苹果采摘机器人果实分割方法 总被引:3,自引:0,他引:3
针对苹果采摘机器人在自然环境下对着色不均匀果实的识别分割问题,提出了基于超像素特征的苹果采摘机器人果实分割方法。首先,采用简单线性迭代聚类算法将图像分割成内部像素颜色较为一致的若干超像素单元;然后,提取每个超像素的纹理和颜色特征,并采用支持向量机将超像素分为果实和背景两个类别;最后,根据超像素之间的邻接关系对分类结果进行进一步修正。实验表明,该方法能够对大部分超像素单元进行正确分类,平均每幅图像被错误分类的超像素约为2.28个。与采用像素级特征的色差法和采用邻域像素特征的果实分割方法相比,采用超像素特征的果实分割方法具有更好的分割效果。在进行邻接关系修正前,该方法图像分割准确率达0.9214,召回率达0.8565,平均识别分割一幅图像耗时0.6087s,基本满足实时性需求。 相似文献