首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This literature review presents information about the role of tree root systems for the functioning of agroforestry associations and rotations and attempts to identify root-related criteria for the selection of agroforestry tree species and the design of agroforestry systems. Tree roots are expected to enrich soil with organic matter, feed soil biomass, reduce nutrient leaching, recycle nutrients from the subsoil below the crop rooting zone and improve soil physical properties, among other functions. On the other hand, they can depress crop yields in tree-crop associations through root competition. After a brief review of favourable tree root effects in agroforestry, four strategies are discussed as potential solutions to the dilemma of the simultaneous occurrence of desirable and undesirable tree root functions: 1) the selection of tree species with low root competitiveness, eventually supplemented by shoot pruning; 2) the identification of trees with a root distribution complementary to that of the crops; 3) the reduction of tree root length density by trenching or tillage; and 4) the use of agroforestry rotations instead of tree-crop associations. The potential and limitations of these strategies are discussed, and deficits in current understanding of tree root ecology in agroforestry are identified. In addition to the selection of tree species and provenances according to root-related criteria, the development of management techniques that allow the manipulation of tree root systems to maximize benefit and minimize competition are proposed as important tasks for future agroforestry research.  相似文献   

2.
Biophysical interactions in tropical agroforestry systems   总被引:2,自引:0,他引:2  
The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interactions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offset the large competitive effect of hedgerows with crops for water and/or nutrients. Whereas improved soil fertility and microclimate positively influence crop yields underneath the canopies of scattered trees in semiarid climates, intense shading caused by large, evergreen trees negatively affects the yields. Trees in boundary plantings compete with crops for above- and belowground resources, with belowground competition of trees often extending beyond their crown areas. The major biophysical interactions in improved planted fallows are improvement of soil nitrogen status and reduction of weeds in the fallow phase, and increased crop yields in the subsequent cropping phase. In such systems, the negative effects of competition and micro-climate modification are avoided in the absence of direct tree–crop interactions. Future research on biophysical interactions should concentrate on (1) exploiting the diversity that exists within and between species of trees, (2) determining interactions between systems at different spatial (farm and landscape) and temporal scales, (3) improving understanding of belowground interactions, (4) assessing the environmental implications of agroforestry, particularly in the humid tropics, and (5) devising management schedules for agroforestry components in order to maximize benefits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
This review summarises current knowledge on root interactions in agroforestry systems, discussing cases from temperate and tropical ecosystems and drawing on experiences from natural plant communities where data from agroforestry systems are lacking. There is an inherent conflict in agroforestry between expected favourable effects of tree root systems, e.g. on soil fertility and nutrient cycling, and competition between tree and crop roots. Root management attempts to optimise root functions and to stimulate facilitative and complementary interactions. It makes use of the plasticity of root systems to respond to environmental factors, including other root systems, with altered growth and physiology. Root management tools include species selection, spacing, nutrient distribution, and shoot pruning, among others. Root distribution determines potential zones of root interactions in the soil, but are also a result of such interactions. Plants tend to avoid excessive root competition both at the root system level and at the single-root level by spatial segregation. As a consequence, associated plant species develop vertically stratified root systems under certain conditions, leading to complementarity in the use of soil resources. Parameters of root competitiveness, such as root length density, mycorrhization and flexibility in response to water and nutrient patches in the soil, have to be considered for predicting the outcome of interspecific root interactions. The patterns of root activity around individual plants differ between species; knowing these may help to avoid excessive competition and unproductive nutrient losses in agroforestry systems through suitable spacing and fertiliser placement. The possibility of alleviating root competition by supplying limiting growth factors is critically assessed. A wide range of physical, chemical and biological interactions occurs not only in spatial agroforestry, but also in rotational systems. In a final part, the reviewed information is applied to different types of agroforestry systems: associations of trees with annual crops; associations of trees with grasses or perennial fodder and cover crops; associations of different tree and shrub species; and improved fallows. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
This review presents information about root systems of crops and trees and describes approaches that have been used to model uptake of water and nutrients in crops that may have application to agroforestry systems. Only a few measurements of the distribution of tree roots in agroforestry systems have been published and these are predominantly in alley cropping systems with young trees. Therefore, a major limitation to developing water and nutrient uptake models for trees is the lack of adequate measurements and conceptual models for describing the distribution of roots spatially and temporally. Most process-based modelling approaches to water and nutrient uptake integrate the activities of a single root over the whole root system. Several difficulties can be foreseen with applying these approaches to roots of older trees including the presence of mycorrhizal associations so that the root surface is not the site of uptake, the uncertainty as to whether all tree roots are active in taking up water and nutrients, and the fact that, unlike annual crops, trees have substantial reserves of nutrients that can be mobilised to support growth so that the notion of a plant demand regulating uptake may prove difficult to define. The review concludes that a programme of experimental measurements is required together with modelling using approaches both in which roots are implicit, and in which process-based models with roots allow competitive ability to be assessed.  相似文献   

5.
Dehesas are extant multi-purpose agroforestry systems that consist of a mosaic of widely-spaced scattered oaks (Quercus ilex L.) combined with crops, pasture or shrubs. We aimed to clarify the role of trees in dehesas of CW Spain focussed on the analysis of tree-understorey interactions. Spatial variability of resources (light, soil moisture and fertility), microclimate, fine roots of both herbaceous plants and trees and forage yield was measured. Additionally, we compared the nutritional and physiological status, growth and acorn production of oaks in cropped (fodder crop), grazed (native grasses) and encroached (woody understorey) dehesa plots. Significant light interception by trees was limited to the close vicinity of the trees, with very low reduction away from them. Both microclimate and soil fertility improved significantly in the trees vicinity, irrespective of soil management. Soil moisture varied very few with distance from the trees, as a result of the extended root system of oaks. Root systems of trees and herbs did not overlap to a great extent. Crop production was higher beneath trees than beyond the trees in unfertilised plots and foliar nutrient content of oaks did not increase significantly with crop fertilisation, indicating that trees and crops hardly compete for nutrients. Moreover, trees benefited from the crop or pasture management: trees featured a significantly improved nutritional and physiological status, a faster growth and a higher fruit productivity than trees growing in encroached or forest plots.  相似文献   

6.
A major tenet of agroforestry, that trees maintain soil fertility, is based primarily on observations of higher crop yields near trees or where trees were previously grown. Recently objective analyses and controlled experiments have addressed this topic. This paper examines the issues of tree prunings containing sufficient nutrients to meet crop demands, the timing of nutrient transfer from decomposition to intercrops, the percent of nutrients released that are taken up by the crop, and the fate of nutrients not taken up by the crop.The amount of nutrients provided by prunings are determined by the production rate and nutrient concentrations, both depending on climate, soil type, tree species, plant part, tree density and tree pruning regime. A large number of screening and alley cropping trials in different climate-soil environments indicate that prunings of several tree species contain sufficient nutrients to meet crop demand, with the notable exception of phosphorus. Specific recommendations for the appropriate trees in a given environment await synthesis of existing data, currently only general guidelines can be provided.Tree biomass containing sufficient nutrients to meet crop demand is not enough, the nutrients must be supplied in synchrony to crop needs. Nutrient release patterns from organic materials are, in part, determined by their chemical composition, or quality. Leguminous materials release nitrogen immediately, unless they contain high levels of lignin or polyphenols. Nonlegumes and litter of both legumes and nonlegumes generally immobilize N initially. There is little data on release patterns of other nutrients. Indices that predict nutrient release patterns will assist in the selection of species for synchronizing with crop demand and improve nutrient use-efficiency.Field trials with agroforestry species ranging in quality show that as much as 80% of the nutrients are released during the course of annual crop growth but less than 20% is captured by the crop, a low nutrient-use efficiency. There are insufficient data to determine how much of the N not captured by the crop is captured by the trees or is in the soil organic matter, the availability of that N to subsequent crops, or how much of that N is lost through leaching, volatilization or denitrification. Longer term trials are needed.  相似文献   

7.
Indices of shallow rootedness and fractal methods of root system study were combined with sapflow monitoring to determine whether these ‘short-cut’ methods could be used to predict tree competition with crops and complementarity of below ground resource use in an agroforestry trial in semi-arid Kenya. These methods were applied to Grevillea robusta Cunn., Gliricidia sepium (Jacq.) Walp., Melia volkensii Gürke and Senna spectabilis syn. Cassia spectabilis aged two and four years which were grown in simultaneous linear agroforestry plots with maize as the crop species. Indices of competition (shallow rootedness) differed substantially according to tree age and did not accurately predict tree:crop competition in plots containing trees aged four years. Predicted competition by trees on crops was improved by multiplying the sum of proximal diameters squared for shallow roots by diameter at breast height2, thus taking tree size into account. Fractal methods for the quantification of total length of tree root systems worked well with the permanent structural root system of trees but seriously underestimated the length of fine roots (less than 2 mm diameter). Sap flow measurements of individual roots showed that as expected, deep tap roots provided most of the water used by the trees during the dry season. Following rainfall, substantial water uptake by shallow lateral roots occurred more or less immediately, suggesting that existing roots were functioning in the recently wetted soil and that there was no need for new fine roots to be produced to enable water uptake following rainfall. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Biologically mediated soil processes rely on soil biota to provide vital ecosystem services in natural and managed ecosystems. However, land use changes continue to impact on assemblages of soil biota and the ecosystem services they provide. The objective of the present study was to assess the effect of land use intensification on the distribution and abundance of soil invertebrate communities in the Nilgiri, a human-dominated biosphere reserve of international importance. Soil invertebrates were sampled in 15 land use practices ranging from simple and intensively managed annual crop fields and monoculture tree plantations through less intensively managed agroforestry and pristine forest ecosystems. The lowest taxonomic richness was found in annual crops and coconut monoculture plantations, while the highest was in moist-deciduous and semi-evergreen forests. With 21 ant species, agroforestry systems had the highest diversity of ants followed by forest ecosystems (12 species). Earthworms and millipedes were significantly more abundant in agroforestry systems, plantations and forest ecosystems than in annual crop fields. Ants, termites, beetles, centipedes, crickets and spiders were more abundant in forest ecosystems than in other ecosystems. It is concluded that annual cropping systems have lower diversity and abundance of soil invertebrates than agroforestry and natural forest ecosystems. These results and the literature from other regions highlight the potential role that agroforestry practices can play in biodiversity conservation in an era of ever-increasing land use intensification and habitat loss.  相似文献   

9.
The first ecosystem mimic hypothesis suggests clear advantages if man-made land use systems do not deviate greatly in their resource use patterns from natural ecosystems typical of a given climatic zone. The second hypothesis claims that additional advantages will accrue if agroecosystems also maintain a substantial part of the diversity of natural systems. We test these hypotheses for the savannah zone of sub-Saharan Africa, with its low soil fertility and variable rainfall. Where annual food crops replace the natural grass understorey of savannah systems, water use will decrease and stream and groundwater flow change, unless tree density increases relative to the natural situation. Increasing tree density, however, will decrease crop yields, unless the trees meet specific criteria. Food crop production in the parkland systems may benefit from lower temperatures under tree canopies, but water use by trees providing this shade will prevent crops from benefiting. In old parkland trees that farmers have traditionally retained when opening fields for crops, water use per unit shade is less than in most fast growing trees introduced for agroforestry trials. Strong competition between plants adapted to years with different rainfall patterns may stabilise total system productivity -- but this will be appreciated by a farmer only if the components are of comparable value. The best precondition for farmers to maintain diversity in their agroecosystem hinges on the availability of a broad basket of choices, without clear winners or 'best bets'. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Desirable root architecture for trees differs between sequential and simultaneous agroforestry systems. In sequential systems extensive tree root development may enhance nutrient capture and transfer to subsequent crops via organic pools. In simultaneous systems tree root development in the crop root zone leads to competition for resources.Fractal branching models provide relationships between proximal root diameter, close to the tree stem, and total root length or surface area. The main assumption is that a root branching proportionality factor is independent of root diameter. This was tested in a survey of 18 multipurpose trees growing on an acid soil in Lampung (Indonesia). The assumption appeared valid for all trees tested, for stems as well as roots. The proportionality factor showed a larger variability in roots than in stems and the effects of this variabilily should be further investigated. A simple index of tree root shallowness is proposed as indicator of tree root competitiveness, based on superficial roots and stem diameter.Pruning trees is a major way to benefit from tree products and at the same time reduce above-ground competition between trees and crops. It may have negative effects, however, on root distribution and enhance below-ground competition. In an experiment with five tree species, a lower height of stem pruning led to a larger number of superficial roots of smaller diameter, but had no effect on shoot:root ratios or the relative importance of the tap root.  相似文献   

11.
In global terms, European farms produce high yields of safe and high quality food but this depends on the use of many off-farm inputs and the associated greenhouse gas emissions, loss of soil nutrients and other negative environmental impacts incur substantial societal costs. Farmers in the European Union receive support through a Common Agricultural Policy (CAP) that comprises direct payments to farmers (Pillar I) and payments related to rural development measures (Pillar II). This paper examines the ways in which agroforestry can support European agriculture and rural development drawing on the conclusions of 23 papers presented in this Special Issue of Agroforestry Systems which have been produced during a 4-year research project called AGFORWARD. The project had the goal of promoting agroforestry in Europe and focused on four types of agroforestry: (1) existing systems of high nature and cultural value, and agroforestry for (2) high value tree, (3) arable, and (4) livestock systems. The project has advanced our understanding of the extent of agroforestry in Europe and of farmers’ perceptions of agroforestry, including the reasons for adoption or non-adoption. A participatory approach was used with over 40 stakeholder groups across Europe to test selected agroforestry innovations through field trials and experiments. Innovations included improved grazing management in agroforestry systems of high nature and cultural value and the introduction of nitrogen fixing plants in high value timber plantations and olive groves. Other innovations included shelter benefits for arable crops, and disease-control, nutrient-retention, and food diversification benefits from integrating trees in livestock enterprises. Biophysical and economic models have also been developed to predict the effect of different agroforestry designs on crop and tree production, and on carbon sequestration, nutrient loss and ecosystems services in general. These models help us to quantify the potential environmental benefits of agroforestry, relative to agriculture without trees. In view of the substantial area of European agroforestry and its wider societal and environmental benefits, the final policy papers in this Special Issue argue that agroforestry should play a more significant role in future versions of the CAP than it does at present.  相似文献   

12.
Diversity of trees and shrubs in agricultural systems contributes to provision of wood and non-wood products, and protects the environment, thereby, enhancing socioeconomic and ecological sustainability of the systems. This study characterizes the diversity, density and composition of trees in the agroforestry homegardens of Sidama Zone, Southern Ethiopia, and analyses physical and socioeconomic factors influencing diversity and composition of trees in the systems. A total of 144 homegardens were surveyed from 12 sites. In total, 120 species of trees and shrubs were recorded of which, 74.2 % were native to the area. The mean number of tree species per farm was 21. Density of trees varied between sites with mean values ranging from 86 to 1,082, and the overall average was 475 trees ha?1. Four different crop-based enset (Enset ventricosum (Welw.) Cheesman)-coffee homegarden types were recognized and they differed not only in the composition of major crops but also in the diversity, density and composition of trees. The composition, diversity and density of trees is influenced by physical and socioeconomic factors. The major physical factors were geographical distance between sites and differences in altitude of farms. The most important socioeconomic factors were farm size and access to roads. Tree species richness and density increased with farm size. Increased road access facilitated marketing opportunities to agricultural products including trees, and lead to a decline in the basic components of the system, enset, coffee and trees. In the road-access sites, the native trees have also been largely replaced with fast growing exotic species, mainly eucalypts. The decrease in diversity of trees and perennial components of the system, and its gradual replacement with new cash and annual food crops could jeopardize the integrity and complexity of the system, which has been responsible for its sustenance.  相似文献   

13.
Indigenous Agroforestry Systems in Amazonia: From Prehistory to Today   总被引:1,自引:0,他引:1  
Understanding the historical development of indigenous systems will provide valuable information for the design of ecologically desirable agroforestry production systems. Such studies have been relatively few, especially in Amazonia. The agroforestry systems in Amazonia follow a trail that begins with the arrival of the first hunter-gatherers in prehistoric times, followed by the domestication of plants for agriculture, the development of complex societies rich in material culture, the decimation of these societies by European diseases, warfare, and slavery, the introduction of exotic species, and finally, the present-day scenario of widespread deforestation, in which agroforestry is ascribed a potential role as an alternative land use. Despite the upheavals which occurred in colonial times, greatly reducing the population of native tribes, a review of anthropological and ethnobiological literature from recent decades indicates that a great variety of indigenous agroforestry practices still exist, ranging from deliberate planting of trees in homegardens and fields to the management of volunteer seedlings of both cultivated and wild species. These practices result in various configurations of agroforestry systems, such as homegardens, tree/crop combinations in fields, orchards of mixed fruit trees, and enriched fallows. Together they constitute a stock of knowledge developed over millenia, and represent technologies that evolved along with the domestication of native forest species and their incorporation into food production systems. This knowledge is the basis for the principal agroforestry practice employed by farmers in Amazonia today, the homegarden, and has potential to contribute to the development of other agroforestry systems.  相似文献   

14.
The traditional Acacia senegal bush-fallow in North Kordofan, Sudan, was disrupted and the traditional rotational fallow cultivation cycle has been shortened or completely abandoned, causing decline in soil fertility and crop and gum yields. An agroforestry system may give reasonable crop and gum yields, and be more appealing to farmers. We studied the effect of tree density (266 or 433 trees ha−1) on two traditional crops; sorghum (Sorghum bicolor) early maturing variety and karkadeh (Hibiscus sabdariffa), with regard to physiological interactions, yields and soil water depletion. There was little evidence of complementarity of resource sharing between trees and crops, since both trees and field crops competed for soil water from the same depth. Intercropping significantly affected the soil water status, photosynthesis and stomatal conductance in trees and crops. Gum production per unit area increased when sorghum was intercropped with trees in low or high density. However, karkadeh reduced the gum yield significantly at high tree density. Yields of sorghum and karkadeh planted within trees of high density diminished by 44 and 55% compared to sole crops, respectively. Intercropping increased the rain use efficiency significantly compared to trees and field crops grown solely. Karkadeh appears to be more appropriate for intercropping with A. senegal than sorghum and particularly recommendable in combination with low tree density. Modification of tree density can be used as a management tool to mitigate competitive interaction in the intercropping system.  相似文献   

15.
Pessimistic forecasts often suggest that widely spaced trees enjoying free growth (no competition with other trees) will fail to provide high quality timber. This challenges the temperate agroforestry practice of planting widely spaced trees to produce high quality timber. We analyse tree growth data from recent temperate agroforestry plantations aged three to eight years, featuring low tree plantation densities (50 to 400 stems ha−1), the association of trees with intercrops (silvoarable systems) or animals (silvopastoral systems), and the use of plastic shelter tubes to protect trees (1.2 to 2.5 m high) and avoid damage by cattle or sheep in pastures or facilitate maintenance in silvoarable systems. The plantations are located in climates ranging from Mediterranean, dry central temperate plains, cold and wet central uplands to mild oceanic areas. Some plantations included a forestry control (high density of plantation, no tree shelter, no intercropping nor grazing). Trees were evaluated for height and diameter growth and stem form (straightness and absence of knots). Trees in most agroforestry plots grew satisfactorily, often faster than in forestry control plots. In some experimental plots, average annual height increments as high as 1 m and diameter increments as high as 1.5 cm were observed. Few agroforestry plantations were unsuccessful, and the reasons for the failures are discussed: animal damage in silvopastoral plots, but also a wrong choice of tree species unsuitable for local soil and climate characteristics. From these early results we can formulate some guidelines for designing future agroforestry plantations in temperate climates, concerning tree density, use of tree shelters and care required for widely spaced trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Trees can influence both the supply and availability of nutrients in the soil. Trees increase the supply of nutrients within the rooting zone of crops through (1) input of N by biological N2 fixation, (2) retrieval of nutrients from below the rooting zone of crops and (3) reduction in nutrient losses from processes such as leaching and erosion. Trees can increase the availability of nutrients through increased release of nutrients from soil organic matter (SOM) and recycled organic residues. Roots of trees frequently extend beyond the rooting depth of crops. Research on a Kandiudalfic Eutrudox in western Kenya showed that fast-growing trees with high N demand (Calliandra calothyrsus, Sesbania sesban and Eucalyptus grandis) took up subsoil nitrate that had accumulated below the rooting depth of annual crops. Sesbania sesban was also more effective than a natural grass fallow in extracting subsoil water, suggesting less leaching loss of nutrients under S. sesban than under natural uncultivated fallows. Nutrient release from SOM is normally more dependent on the portion of the SOM in biologically active fractions than on total quantity of SOM. Trees can increase inorganic soil N, N mineralization and amount of N in light fraction SOM. Among six tree fallows of 2- and 3-year duration on an Ustic Rhodustalf in Zambia, inorganic N and N mineralization were higher for the two tree species with lowest (lignin + polyphenol)-to-N ratio (mean = 11) in leaf litter than for the two tree species with highest ratio (mean = 20) in leaf litter. Trees can also restore soil fauna, which are important for SOM and plant residue decomposition. Some agroforestry trees have potential to provide N in quantities sufficient to support moderate crop yields through (i) N inputs from biological N2 fixation and retrieval of nitrate from deep soil layers and (ii) cycling of N from plant residues and manures. The cycling of P from organic materials is normally insufficient to meet the P requirements of crops. Sustained crop production with agroforestry on P-deficient soils will typically require external P inputs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Cocoa cultivation is generally considered to foster deforestation. Contrary to this view, in the forest–savannah interface area in Cameroon, farmers have planted cocoa agroforestry systems on Imperata cylindrica grasslands, a soil-climate zone generally considered unsuitable for cocoa cultivation. We undertook a survey to understand the agricultural and ecological bases of this innovation. Age, cropping history and marketable cocoa yield were assessed in a sample of 157 cocoa plantations established on grasslands and 182 cocoa plantations established in gallery forests. In a sub-sample of 47 grassland cocoa plantations, we inventoried tree species associated with cocoa trees and measured soil organic matter levels. Marketable cocoa yields were similar for the two types of cocoa plantations, regardless of their age: 321?kg?ha?1 in cocoa plantations on grasslands and 354?kg?ha?1 in cocoa plantations in gallery forests. Two strategies were used by farmers to eliminate I. cylindrica prior to the establishment of cocoa plantations, i.e., cropping oil palms in dense stands and planting annual crops. Farmers then planted cocoa trees and fruit tree species, while preserving specific forest trees. The fruit tree and forest tree densities respectively averaged 223 and 68 trees?ha?1 in plantations under 10?years old, and 44 and 27 trees?ha?1 in plantations over 40?years old, whereas the cocoa tree density remained stable at 1,315 trees?ha?1. The Shannon–Weaver index increased from 1.97 to 2.26 over the same period although the difference was not statistically significant. The soil organic matter level was 3.13?% in old cocoa plantations, as compared to 1.7?% in grasslands. In conclusion, our results show that the occupation of grasslands by cocoa agroforestry systems is both an important example of ecological intensification and a significant farmer innovation in the history of cocoa growing.  相似文献   

18.
Among several agroforestry practices in the Central Rift Valley (CRV) of Ethiopia, Acacia tortilis-dominated Parkland agroforestry systems are common. Utilizable information regarding the effects of the tree species on soil conditions in Ethiopia is very scarce to be of use for improved agricultural productivity. This study was conducted in three land use types in CRV areas in Oromia National Regional State in Ethiopia. The aim of the study was to determine the effects of A. tortilis on soil fertility variations along a gradient from the tree base to open area in different land use types. Soil samples from surface layers (0–15 cm) were taken at four concentric transects distances from tree base (0.5, 2 and 4 m), compared with soil samples from the adjacent open areas (15 m distance from the tree canopy cover), and then analyzed following the standard procedures. The results of the study indicated that except for Na the amount of soil nutrients under A. tortilis were significantly varied (P < 0.05) in the land use types. Generally, comparisons between under the canopy and outside the canopy of the tree species indicated a highly significant difference on major soil fertility parameters. The effect of the tree species on soil fertility parameters was significantly higher with the distance from the tree base to outside of the canopy. But soil texture was not affected, indicating that it is more related to parent material and land use practices than the tree influence. The study revealed that the indigenous Parkland agroforestry practices of A. tortilis tree improve soil fertility. Hence, the soil patches observed under A. tortilis trees can be important local nutrient reserves, leading to soil heterogeneity in an otherwise uniform agricultural landscape. This may be important for the agricultural landscape health and on farm biodiversity conservation in agricultural landscapes of similar agroecological conditions.  相似文献   

19.
Homegardens in Kerala have long been important multi-purpose agroforestry systems that combine ecological and socioeconomical sustainability. However, traditional homegardens are subject to different conversion processes linked to socioeconomic changes. These dynamics were studied in a survey of 30 homegardens. On the basis of a cluster analysis of tree/shrub species density and subsequent further grouping using homegarden size as additional characteristic, six homegarden types were differentiated. These were assessed regarding structural, functional, management and dynamics characteristics. Four development stages of homegardens were found along a gradient from traditional to modern homegardens. Fifty percent of the homegardens still displayed traditional features, whereas 33% incorporated modern practices. The process of modernisation includes a decrease of the tree/shrub diversity, a gradual concentration on a limited number of cash-crop species, an increase of ornamental plants, a gradual homogenization of homegarden structure and an increased use of external inputs. One homegarden was characterised as an adapted traditional homegarden combining multispecies composition and intensive management practices using internal inputs with commercial production. In comparison to modern homegardens, this homegarden type offers an example of an alternative development path in adapting homegardens to changing socioeconomic conditions. The study of structural and functional dynamics of homegardens offers the opportunity to understand the trends in socio-economic sustainability and how these relate to ecological sustainability.  相似文献   

20.
Agroforestry experimentation: Separating the wood from the trees?   总被引:1,自引:1,他引:0  
ICRAF has evolved and evaluated experimental approaches to agroforestry problems which will help resercchers reach practical conclusions most cost-effectively in the shortest possible time, and with only limited resources. This has meant looking into the experimental phases needed, developing the conceptual background to research problems which involve the complex spatial/temporal features of agroforestry systems, suggesting and initiating simplified field experimental designs and/or assessment methodologies, and establishing source and reference design materials about agroforestry research for distribution.These four sets of activities are outlined and briefly discussed in relation to some of the key research issues which have emerged.Suitable methods for many areas of experimental agroforestry are rapidly being defined, although some of the more complex issues (e.g. multistrata systems, on-farm research with multipurpose trees and tree/crop mixtures) still need a focused attempt to develop appropriate research methodologies.Head, Research Development Division, ICRAF  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号