首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gas diffusivity and permeability, and air-filled porosity, were measured in undisturbed soil cores at six water potentials between -2 kPa and oven dryness. All increased as water potential fell. In silt loam at 30 to 80 mm depth, relative diffusivity and air permeability at -2 kPa were 0.0013 and 5 × 10?8cm2 after direct drilling, and were 6 and 15 times greater respectively after ploughing, presumably because of the larger volume of air-filled large pores in the ploughed soil. These pores may also have been more continuous or less tortuous than in the direct drilled soil. However, at equal air-filled porosities up to 0.18 v/v, the pores were apparently more continuous and less tortuous in the direct drilled than in the ploughed soil. In the direct drilled silt loam at any given matric potential, air-filled porosity, gas diffusivity and permeability within and below the previously ploughed layer were isotropic. In clay loam at 30 to 80 mm depth gas diffusivity and permeability at -2 kPa were greater than in the silt loam irrespective of tillage but increased less on oven drying.  相似文献   

2.
Surface horizons of two Australian alfisols which had been cropped for 3 years to wheat by zero, minimum and ploughed tillage were compared for differences in structure. Total porosities and pore size distributions differed between treatments, but values for water and air permeability, sorptivity, diffusivity and evaporation rate were not necessarily ranked in the same order. The stability of soil structure was usefully described by the ratio of water to air permeability (kw/ka), which indicated the relatively fragile nature of the ploughed structures, despite their initially greater proportion of coarse porosity. Time of sampling after seeding also influenced hydraulic properties which were found to vary significantly over a 10-week period. Variations in vertical distribution of organic matter between tillage treatments is postulated as influencing the differences in structural stability.  相似文献   

3.
Two models are presented describing the air-filled continuous pores in soil and how they change with soil water potential. In the first model (A), the pores are represented by tortuous tubes of uniform radius. The radius, length and number are calculated from air permeability, relative diffusivity and air-filled porosity measured at each soil water potential. In the second model (B), the pores are represented by tortuous tubes of three radii joined at random in series. The radii and total lengths of the tube sections are estimated by comparison of air permeability, diffusion coefficient and air-filled porosity at each water potential with values calculated for a large number of theoretical systems. The models were applied to the results from undisturbed cores of a silt loam taken from 30 to 80 mm depth. For both models, the sequences of continuous pores were estimated to be 2 to 7 times as long as the sample but shortened as the sample dried. From the second model the average pore radius in direct drilled soil, 0.3 mm, was half that in ploughed soil and the minimum radius, 0.1 mm, was one-quarter that in ploughed soil.  相似文献   

4.
Evidence of anisotropy is reported for advective air and water permeabilities in soils. Thus, anisotropy is likely to exist also for diffusive gas fluxes. Information about direction‐dependent soil gas diffusivity is scarce and most modeling approaches assume isotropy. At hundreds of closely lying positions in a compacted and adjacent undisturbed forest soil, gas diffusivity (Ds/D0) was measured either in vertical or horizontal direction. The volume‐independent diffusion efficiency (i.e., diffusivity divided by air‐filled porosity) was fitted by a generalized additive model (GAM). Significant regressors were air‐filled porosity (?), soil depth, and the discrete diffusion direction. The model yields in all cases higher vertical diffusion efficiencies. The compaction factor did not yield a significant regressor of its own, i.e., the reduction of diffusivity in the compacted soil was the same as in low‐porosity samples of the undisturbed profile. To elucidate the role of sharing vertically and horizontally orientated pore space and a potential competition between diffusivity in different spatial directions, simple geometric models consisting of 3‐dimensionally crossed pores have been parameterized. These models provided a good explanation of the typical nonlinear Ds/D0(?) relationship. By simple one‐parameter correction (linear or power function), this mechanistic model could be fitted to the data. The one‐parameter correction of the geometric model could be a straightforward approach to consider direction dependence of measured diffusivities. However, by applying this approach to the observations the anisotropy effect was not clearly evident, which could be attributed to a changing Ds/D0(?) relationship with depth. As a reason for the preference of the vertical gas diffusion the dominance of vertical stresses and the activity of anecic earthworms are discussed. Direction dependency of gas diffusivity seems to be a basic feature of natural pore systems and has to be considered for modeling gas fluxes in soils. Generally, a preferential vertical diffusion direction reduces horizontal balancing and increases the heterogeneity of gas concentrations in the soil air.  相似文献   

5.
Accurate quantification of soil gas diffusion is essential to understand the gas transport mechanism in soils, especially for soil greenhouse gas emissions. To date, the performance of soil gas diffusivity (Dp/D0, where Dp is the soil gas diffusion coefficient and D0 is the diffusion coefficient in free air) models has seldom been evaluated for no-tilled and tilled volcanic ash soils. In the present study, six commonly used models were evaluated for volcanic ash soils under two treatments by comparing the predicted and measured soil gas diffusivities at water potentials of pF 1.3–3. The Buckingham-Burdine-Campbell (BBC), soil-water-characteristic-dependent (SWC-dependent), and two-region extended Archie’s Law (2EAL) models showed better performance for both no-tilled and tilled volcanic ash soils, which is likely because porosity and pore size parameters of bimodal soils were taken into consideration in these models. Since the BBC model showed better accuracy than the SWC-dependent and 2EAL models and required fewer, more easily measurable parameters, this study recommends the BBC model for predicting soil gas diffusivity of volcanic ash soil under different tillage managements. In future studies, the BBC model should be further tested at water potentials of pF > 3, and may be improved by including the parameters of pore continuity and saturation.  相似文献   

6.
Porosity and gas diffusion have been measured within dry crumbs sieved from the horizons of one soil from each of the Hanslope, Ragdale, Evesham, Denchworth, Flint and Salop series. Crumb porosities, ?c, ranged from 0.19 to 0.33, dimensionless gas diffusivities, Dc/D0, from 0.015 to 0.098, and the effectiveness of unit pore space for diffusion, given by αc= (Dc/D0)/?c, from 0.06 to 0.29. Values of ?c and Dc/D0 were used to calculate complexity factors kc for the crumb pores. The results are discussed in terms of soil texture, pore size, ease of soil management, and the frequency and intensity of wetting and drying of the soil in each horizon. None of the results suggests why the soils of the Ragdale, Denchworth and Salop series should be more difficult to manage than the others.  相似文献   

7.
Diffusion coefficients (D) of CO2 at 0–10 cm layers in undisturbed and tilled soil conditions were estimated using the Penman (Penman HL. 1940. Gas and vapor movement in soil, 1. The diffusion of vapours through porous solids. J Agric Sci. 30:437–463), Millington–Quirk (Millington RJ, Quirk JP. 1960. Transport in porous media. In: Van Baren FA, editor. Transactions of the 7th International Congress of Soil Science. Vol. 1. Amsterdam: Elsevier. p. 97–106), Ridgwell et al. (Ridgwell AJ, Marshall SJ, Gregson K. 1999. Consumption of atmospheric methane by soils: A process-based model. Global Biogeochem Cy. 13:59–70), Troeh et al. (Troeh FR, Jabro JD, Kirkham D. 1982. Gaseous diffusion equations for porous materials. Geoderma. 27:239–258) and Moldrup et al. (Moldrup P, Kruse CW, Rolston DE, Yamaguchi T. 1996. Modeling diffusion and reaction in soils: III. Predicting gas diffusivity from the Campbell soil–water retention model. Soil Sci. 161:366–375) models. Soil bulk density and volumetric soil water content (θv) at 0–10 cm were measured on 14 April, 2 June and 12 July 2005 at 0–10 cm depth in no-till (NT) and conventional till (CT) malt barley and undisturbed soil grass–alfalfa (UGA) systems. Air-filled porosity (ε) was calculated from total soil porosity and θv measurements. Both soil air porosity and estimated CO2 diffusivity at the 0–10 cm depth were significantly affected by tillage. Results of CO2 diffusion coefficients in the soil followed trends similar to those for soil ε data. The CT tended to have significantly greater estimated soil CO2 diffusion coefficients than the NT and UGA treatments. The relationship between D/D 0, and air-filled porosity was well described by a power (R 2 = 0.985) function. The model is useful for predicting CO2 gas-diffusion coefficients in undisturbed and tilled soils at various ranges of ε where actual gas D measurements are time-consuming, costly and infeasible.  相似文献   

8.
Agricultural soils are a major source of the potent greenhouse gas and ozone depleting substance, N2O. To implement management practices that minimize microbial N2O production and maximize its consumption (i.e., complete denitrification), we must understand the interplay between simultaneously occurring biological and physical processes, especially how this changes with soil depth. Meaningfully disentangling of these processes is challenging and typical N2O flux measurement techniques provide little insight into subsurface mechanisms. In addition, denitrification studies are often conducted on sieved soil in altered O2 environments which relate poorly to in situ field conditions. Here, we developed a novel incubation system with headspaces both above and below the soil cores and field-relevant O2 concentrations to better represent in situ conditions. We incubated intact sandy clay loam textured agricultural topsoil (0–10 cm) and subsoil (50–60 cm) cores for 3–4 days at 50% and 70% water-filled pore space, respectively. 15N-N2O pool dilution and an SF6 tracer were injected below the cores to determine the relative diffusivity and the net N2O emission and gross N2O emission and consumption fluxes. The relationship between calculated fluxes from the below and above soil core headspaces confirmed that the system performed well. Relative diffusivity did not vary with depth, likely due to the preservation of preferential flow pathways in the intact cores. Gross N2O emission and uptake also did not differ with depth but were higher in the drier cores, contrary to expectation. We speculate this was due to aerobic denitrification being the primary N2O consuming process and simultaneously occurring denitrification and nitrification both producing N2O in the drier cores. We provide further evidence of substantial N2O consumption in drier soil but without net negative N2O emissions. The results from this study are important for the future application of the 15N-N2O pool dilution method and N budgeting and modelling, as required for improving management to minimize N2O losses.  相似文献   

9.
Relative gas diffusivity, air permeability and hydraulic conductivity were measured in undisturbed soil cores from tillage and traffic experiments. Continuity indices were taken as the quotient of relative diffusivity and air-filled porosity, and of air permeability and air-filled porosity (and the square of air-filled porosity). These were applied to individual measurements or to treatment means. More general continuity indices were derived from the changes in flow or diffusion with porosity, where the variations in porosity were due to both field variability and applied changes of water potential. These indices were the exponent in the relationship between relative diffusivity and air-filled porosity and the slope of log–log plots of air permeability and air-filled porosity or hydraulic conductivity and degree of saturation. Some physical significance was attached to the exponents by comparison with models of soil porosity. Positive intercepts of the relative diffusivity or air permeability plots on the air-filled porosity axes were taken as porosities blocked to gas movement.
Continuity indices and flow measurements showed differences between tillage and traffic treatments which did not necessarily reflect differences in bulk density. Intrinsic permeability was better estimated from air permeability than from unsaturated hydraulic conductivity.  相似文献   

10.
The decomposition of buried human remains on cemeteries can be delayed in poorly aerated graves due to high water levels and a low permeable pore system for oxygen and water transport. With aim to improve the soil aeration properties in the burial environment, the addition of quicklime (CaO) to the grave backfill was tested. Quicklime is expected to promote a stronger aggregation and stabilization of the backfilled soil mainly by forcing an immediate dehydration and particle cementation processes. Two different grave simulations (without buried corpses) were prepared: (1) mixing the grave backfill with 20 kg m−3 quicklime (“CaO”) and (2) backfill without CaO (“NIL”) on a cemetery in Northern Germany. The soil type was a Terric Anthrosol (Stagnic) with a loamy sand texture. Undisturbed soil cores were taken from two depths before and after excavation and backfill at regular intervals of 3 months in order to analyze changes in (1) gaseous transport functions expressed by air‐filled porosity, air permeability (air permeameter), gas diffusivity (double chamber method) and related pore continuity indices as well as in (2) soil respiration (alkali trap method) representing microbial activity. Results clearly demonstrated a more conductive pore system in the CaO variant reflected by higher gas diffusivity and air permeability over 1 year compared to the NIL variant. Pore continuity indices also indicated a more connective pore system for the CaO variant. Effects of CaO application on soil respiration rate differed between the quarterly sampling times. Results indicated that microorganism were still active under alkaline soil conditions induced by CaO application, but the quantitative determination of biologically produced CO2 is influenced by chemical reactions when hydrated quicklime [Ca(OH)2] was reformed to limestone under consumption of CO2. The experiments indicate that the application of quicklime is a promising approach to improve aeration properties of grave soils and is therefore proposed as an adequate method to improve the aeration of burials on cemeteries.  相似文献   

11.
Combining digital imaging, physical models and laboratory measurements is a step further towards a better understanding of the complex relationships between the soil pore system and soil functions. Eight natural 100-cm3 soil cores were sampled in a cultivated Stagnic Luvisol from the topsoil and subsoil, which we assumed had contrasting pore systems. Artificial 100-cm3 cores were produced from plastic or from autoclaved aerated concrete (AAC). Eight vertical holes of each diameter (1.5 and 3 mm) were drilled for the plastic cylinder and for one of the two AAC cylinders. All natural and artificial cores were scanned in an X-ray CT scanner and printed in 3D. Effective air-filled porosity, true Darcian air permeability, apparent air permeability at a pressure gradient of 5 hPa and oxygen diffusion were measured on all cores. The active pore system characteristics differed between topsoil (sponge-like, network of macropores of similar size) and subsoil (dominated by large vertical macropores). Active soil pore characteristics measured on a simplified pore network, that is, from artificial and printed soil cores, supported the fundamental differences in air transport by convection and diffusion observed between top- and subsoil. The results confirm the suitability of using the conceptual model that partitions the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport. This study showed the high potential of using 3D-printed soil cores to reconstruct the soil macropore network for a better understanding of soil pore functions.  相似文献   

12.
Reducing greenhouse gas emissions from arable soil while maintaining productivity is a major challenge for agriculture. Biochar is known to reduce N2O emissions from soil, but the underlying mechanisms are unclear. This study examined the impact of green waste biochar (20 Mg ha?1) and lime (CaCO3; 2 Mg ha?1) application on soil gas transport properties and related changes in these to soil N2O and CO2 emissions measured using automated chambers in a field experiment cropped with maize. In situ soil water content monitoring was combined with laboratory measurements of relative soil gas diffusion coefficient (Dp/D0) at different matric potentials, to determine changes in Dp/D0 over time. Cumulative N2O emissions were similar in the control and lime treatment, but much lower in the biochar treatment. Cumulative CO2 emissions decreased in the order: lime treatment > biochar treatment > control soil. When N2O emissions were not driven by excess N supply shortly after fertilisation, they were associated with Dp/D0 changes, whereby decreases in Dp/D0 corresponded to N2O emissions peaks. No distinct pattern was observed between CO2 emissions and Dp/D0. Cumulative N2O emissions were positively related to number of days with Dp/D0 < 0.02, a critical limit for soil aeration. These results indicate that improved soil gas diffusivity, and hence improved soil aeration, may explain the effect of biochar in reducing N2O emissions. They also suggest that knowledge of Dp/D0 changes may be key to explaining N2O emissions.  相似文献   

13.
The variability of gas diffusion in soil is not well known, but is important for assessing greenhouse gas emissions, soil decontamination, oxidation in soil and plant and root respiration. The goal of this study was to assess small‐scale variability of the relative soil‐gas diffusivity (Ds / Do, msoil air) using large intact soil monoliths and to compare Ds / Do calculation methods. Neon (Ne) was maintained constant at the lower boundary of three monoliths of two soils (a sand and an organic soil). Ne concentration was measured at large spatial and temporal frequencies. Calculation methods included the use of average concentration, and average Ds / Do per horizon, per section, or for the entire soil profile. Considering all sections of the monoliths, Ds / Do varied from 3.5 × 10−3 to 1.2 × 10−1 for the Ap horizon and from 4.8 × 10−3 to 8.3 × 10−1 for the Bf horizon in the sand and from 1.0 × 10−3 to 7.9 × 10−3 for the Ohp horizon and from 2.4 × 10−4 to 7.7 × 10−2 for the Of horizon in the organic soil. For the entire soil profile, variations in Ds / Do between monoliths reached 125% in the sand and 56% in the organic soil. The Ds / Do calculation method influenced the apparent variability (CV) of Ds / Do and, to a lesser extent, Ds / Do values of the overall soil profile. Differences in Ds / Do between monoliths could not be explained solely by the variability of total soil porosity and air‐filled porosity. Soil macroporosity (cracks and earthworm burrows) and layering greatly influenced variability of gas movement. Thus, the choice of sampling procedure, calculation method and modelling must be governed by the scale of the processes of interest and soil variability attributes.  相似文献   

14.
Assessment of gas diffusivity in situ gives a direct measure of the ability of soils to exchange gas with minimal soil disturbance. A versatile, readily portable probe for measuring the diffusion of a tracer gas through soil in situ is described. The radioactive tracer 85Kr is injected into a cell located at the end of the probe. The change in activity within the cell as the gas diffuses out is measured by a Geiger-Muller tube in the cell. The probe can be used by insertion either directly into an auger hole (buried-probe mode) or into a chamber pushed into the soil surface. A method to simulate diffusion numerically using Fick's equation for both methods of insertion is presented. In the tests reported, diffusivity was estimated by expanding or contracting the time axis of the simulation until it matched the observed count rates. A goodness-of-fit was attached to each diffusivity estimate. The probe was generally effective, giving diffusivities comparable to those measured in the laboratory on cores taken near the cell (buried-probe mode) or linked to the surface chamber. Poor fits were found for some diffusivities measured in the buried-probe mode on coarsely structured soils. These were attributed to non-uniform distribution of porosity and possible upward leakage of tracer when used at shallow depths in the buried-probe mode. However, thein situ diffusivities may be more representative than those measured in cores in the laboratory because of the greater sample volume. We show how the probe can be used to detect soil layers that restrict gas diffusivity and differences in aeration status between tillage treatments.  相似文献   

15.
The long-term (9 years) effect of pig slurry applications vs mineral fertilization on denitrifying activity, N2O production and soil organic carbon (C) (extractable C, microbial biomass C and total organic C) was compared at three soil depths of adjacent plots. The denitrifying activities were measured on undisturbed soil cores and on sieved soil samples with acetylene method to estimate denitrification rates under field or potential conditions. Pig slurry applications had a moderate impact on the C pools. Total organic C was increased by +6.5% and microbial biomass C by ≥25%. The potential denitrifying activity on soil suspension was stimulated (×1.8, P<0.05) 12 days after the last slurry application. This stimulation was still apparent, but not significant, 10 months later and, according to both methods of denitrifying activity measurement (r 2=0.916, P<0.01 on sieved soil; r 2=0.845, P<0.001 on soil cores), was associated with an increase in microbial biomass C above a threshold of about 105 mg kg−1. The effect of pig slurry on denitrification and N2O reduction rates was detected on the surface layer (0–20 cm) only. However, no pig slurry effect could be detected on soil cores at field conditions or after NO3 enrichments at 20°C. Although the potential denitrifying activity in sieved soil samples was stimulated, the N2O production was lower (P<0.03) in the plot fertilized with pig slurry, indicating a lower N2O/(N2O + N2) ratio of the released gases. The pig-slurry-fertilized plot also showed a higher N2O reduction activity, which is coherent with the lower N2O production in anaerobiosis.  相似文献   

16.
Root growth conditions in the topsoil as affected by tillage intensity   总被引:1,自引:0,他引:1  
Many studies have reported impeded root growth in topsoil under reduced tillage or direct drilling, but few have quantified the effects on the least limiting water range for root growth. This study explored the effects of tillage intensity on critical soil physical conditions for root growth in the topsoil. Samples were taken from a 7-year tillage experiment on a Danish sandy loam at Foulum, Denmark (56°30′ N, 9°35′ E) in 2008. The main crop was spring barley followed by either dyer's woad (Isatis tinctoria L.) or fodder radish (Raphanus sativus L.) cover crops as subtreatment. The tillage treatments were direct drilling (D), harrowing 8-10 cm (H), and ploughing (P) to 20 cm depth. A chisel coulter drill was used in the H and D treatments and a traditional seed drill in the P treatment. Undisturbed soil cores were collected in November 2008 at soil field moisture capacity from the 4-8 and 12-16 cm depths.We estimated the critical aeration limit from either 10% air-filled porosity (εa) or relative gas diffusivity (D/D0) of 0.005 or 0.02 and found a difference between the two methods. The critical limit of soil aeration was best assessed by measuring gas diffusivity directly. Root growth was limited by a high penetration resistance in the D and H soils (below tillage depth). Poor soil aeration did not appear to be a significant limiting factor for root growth for this sandy loam soil, irrespective of tillage treatment. The soil had a high macroporosity and D/D0 exceeded 0.02 at field capacity. Fodder radish resulted in more macropores, higher gas diffusivity and lower pore tortuosity compared to dyer's woad. This was especially important for the H treatment where compaction was a significant problem at the lower depths of the arable layer (10-20 cm depth). Our results suggest that fodder radish could be a promising tool in the amelioration of soil compaction.  相似文献   

17.
In a long-term cultivation experiment on a sandy clay loam overlying magnesian limestone and cropped with spring barley (Hordeum sativum) each year, mouldboard ploughing, shallow tine cultivation and direct drilling were compared. Compaction had become evident on the direct drilled treatment and to alleviate this the ‘Paraplow’, a slant-legged soil loosening implement, was used on all treatments to a depth of 35 cm in the autumn of 1980.A crop of spring barley (var. Athos) was grown in 1981, at a nitrogen fertiliser rate of 75 kg ha?1 N. Root growth, shoot dry matter, nitrogen uptake, grain yield and components of yield were recorded. Soil strength (by cone resistance) and dry bulk density of the soil were also measured. As a mean of all cultivation systems the ‘Paraplow’ increased grain yield by 12%. The response of the crop to cultivation by the ‘Paraplow’ was greatest on the mouldboard ploughed and long-term direct-drilled systems. The latter out-yielded the former, with shallow tine cultivation intermediate.The decrease in soil strength caused by the ‘Paraplow’ resulted in more rapid penetration of root axes and greater proliferation of roots in each horizon of the profile. There was no significant effect on shoot dry matter up to anthesis but, at harvest, barley on land treated with the ‘Paraplow’ had more ears with more grains per ear. Thousand-grain weight was not affected.The poorer growth of barley on ploughed than direct drilled land in 1981 was explained by temporary waterlogging of the soil in May.  相似文献   

18.
19.
To investigate the effect of soil physical conditions and land use on emissions of nitrous oxide (N2O) to the atmosphere, soil cores of an imperfectly drained gleysol were taken from adjacent fields under perennial ryegrass and winter wheat. The cores were fertilized with ammonium nitrate and incubated at three different temperatures and water‐filled pore space (WFPS) values, and N2O emissions were measured by gas chromatography. Emissions showed a very large response to temperature. Apparent values of Q10 (emission rate at (T + 10)°C/emission rate at T°C) for the arable soil were about 50 for the 5–12°C interval and 8.9 for 12–18°C; the corresponding Q10s for the grassland soil were 3.7 and 2.3. Emissions from the grassland soil were always greater than those from the arable soil, although the ratio narrowed with increasing temperature. Changes in soil WFPS also had a profound effect on emissions. Those from the arable soil increased about 30‐fold as the WFPS increased from 60 to 80%, while that from the grassland soil increased 12‐fold. This latter response was similar to earlier field measurements. The N2O emissions were considered to be produced primarily by denitrification. We concluded that the impacts of temperature and WFPS on emissions could both be explained on the basis of existing models relating increasing respiration or decreased oxygen diffusivity, or both, to the development of anaerobic zones within the soil.  相似文献   

20.
The high input of mechanical energy in common agricultural practice can negatively affect soil structure. The impact of compaction (P) and rotovation (R) on soil pore characteristics was compared with those in soil from untreated reference (U) plots of a loamy sand soil receiving for 14 yr, either only mineral fertilizer (MF) or, in addition, animal manure (OF). Undisturbed soil cores were taken from two separate fields in consecutive years at an identical stage in the crop rotation. We measured soil organic carbon (OC), soil microbial biomass carbon (BC), and hot‐water extractable carbon (Chot). Water retention, air permeability and gas diffusivity were determined at ?100 hPa in both years and for a range of water potentials in one of the years. The continued addition of animal manure had increased OC, BC, and Chot compared with the soil receiving only mineral fertilizer. Soil under treatment OF had larger porosity than that from treatment MF. Treatment P eliminated this difference and significantly reduced the volume of macropores. This interaction between soil organic matter content and mechanical impact was also reflected in the gas diffusion data. Specific air permeability was mainly influenced by mechanical treatment. Modelling the diffusion data normalized to the inter‐aggregate pore space showed no significant treatment effects on pore‐connectivity, although there was a tendency of more water blockage in soil under treatment MF. More studies are needed to confirm this interpretation. Our studies indicate that organic manure increases soil porosity, but compaction reduces the related gas exchange effects to the level of compacted soils receiving mineral fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号