首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的女性妊娠期相关精神疾病的神经机制尚不清楚,本研究拟探究妊娠期应激诱发的相关精神疾病发病与海马突触可塑性的关系。方法对大鼠施行束缚应激后,采用在体麻醉电生理学方法检测大鼠海马CA1区的兴奋性突触后电位,比对经历应激和未应激妊娠期大鼠海马突触可塑性的变化。结果与未妊娠空白对照组相比,低频刺激诱导后未应激的妊娠期大鼠可形成长时程增强(long-term potentiation,LTP)。此外,施行束缚应激的妊娠期大鼠,则表现为长时程抑制(long-term depression, LTD)不能形成。结论妊娠期内应激使海马突触可塑发生异常,为妊娠期相关精神疾病发病机制的进一步研究提供了突触可塑性异常的重要线索。  相似文献   

2.
Ge WP  Yang XJ  Zhang Z  Wang HK  Shen W  Deng QD  Duan S 《Science (New York, N.Y.)》2006,312(5779):1533-1537
Interactions between neurons and glial cells in the brain may serve important functions in the development, maintenance, and plasticity of neural circuits. Fast neuron-glia synaptic transmission has been found between hippocampal neurons and NG2 cells, a distinct population of macroglia-like cells widely distributed in the brain. We report that these neuron-glia synapses undergo activity-dependent modifications analogous to long-term potentiation (LTP) at excitatory synapses, a hallmark of neuronal plasticity. However, unlike the induction of LTP at many neuron-neuron synapses, both induction and expression of LTP at neuron-NG2 synapses involve Ca2+-permeable AMPA receptors on NG2 cells.  相似文献   

3.
The hypothesis that learning occurs through long-term potentiation (LTP)- and long-term depression (LTD)-like mechanisms is widely held but unproven. This hypothesis makes three assumptions: Synapses are modifiable, they modify with learning, and they strengthen through an LTP-like mechanism. We previously established the ability for synaptic modification and a synaptic strengthening with motor skill learning in horizontal connections of the rat motor cortex (MI). Here we investigated whether learning strengthened these connections through LTP. We demonstrated that synapses in the trained MI were near the ceiling of their modification range, compared with the untrained MI, but the range of synaptic modification was not affected by learning. In the trained MI, LTP was markedly reduced and LTD was enhanced. These results are consistent with the use of LTP to strengthen synapses during learning.  相似文献   

4.
Muscarinic depression of long-term potentiation in CA3 hippocampal neurons   总被引:2,自引:0,他引:2  
Behavioral studies have suggested that muscarinic cholinergic systems have an important role in learning and memory. A muscarinic cholinergic agonist is now shown to affect synaptic plasticity in the CA3 region of the hippocampal slice. Long-term potentiation (LTP) of the mossy fiber-CA3 synapse was blocked by muscarine. Low concentrations of muscarine (1 micromolar) had little effect on low-frequency (0.2 hertz) synaptic stimulation but did significantly reduce the magnitude and probability of induction of LTP. Experiments under voltage clamp showed that muscarine blocked the increase in excitatory synaptic conductance normally associated with LTP at this synapse. These results suggest a possible role for cholinergic systems in synaptic plasticity.  相似文献   

5.
Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.  相似文献   

6.
Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).  相似文献   

7.
A pertussis toxin-sensitive G protein in hippocampal long-term potentiation   总被引:7,自引:0,他引:7  
High-frequency (tetanic) stimulation of presynaptic nerve tracts in the hippocampal region of the brain can lead to long-term synaptic potentiation (LTP). Pertussis toxin prevented the development of tetanus-induced LTP in the stratum radiatum-CA1 synaptic system of rat hippocampal slices, indicating that a guanosine triphosphate-binding protein (G protein) may be required for the initiation of LTP. This G protein may be located at a site distinct from the postsynaptic neuron (that is, in presynaptic terminals or glial cells) since maximal activation of CA1 neuronal G proteins by intracellular injection of guanosine-5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, did not occlude LTP.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) and other neurotrophins are critically involved in long-term potentiation (LTP). Previous reports point to a presynaptic site of neurotrophin action. By imaging dentate granule cells in mouse hippocampal slices, we identified BDNF-evoked Ca2+ transients in dendrites and spines, but not at presynaptic sites. Pairing a weak burst of synaptic stimulation with a brief dendritic BDNF application caused an immediate and robust induction of LTP. LTP induction required activation of postsynaptic Ca2+ channels and N-methyl-d-aspartate receptors and was prevented by the blockage of postsynaptic Ca2+ transients. Thus, our results suggest that BDNF-mediated LTP is induced postsynaptically. Our finding that dendritic spines are the exclusive synaptic sites for rapid BDNF-evoked Ca2+ signaling supports this conclusion.  相似文献   

9.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

10.
Manabe T 《Science (New York, N.Y.)》2002,295(5560):1651-1653
A type of synaptic plasticity in the brain called long-term potentiation (LTP) is thought to form the molecular basis of learning and memory. In a Perspective, Manabe discusses new findings (Kovalchuk et al.) showing brain-derived neurotropic factor modulates LTP by binding to TrkB receptors on the postsynaptic neuron.  相似文献   

11.
In invertebrate nervous systems, some long-lasting increases in synaptic efficacy result from changes in the presynaptic cell. In the vertebrate nervous system, the best understood long-lasting change in synaptic strength is long-term potentiation (LTP) in the CA1 region of the hippocampus. Here the process is initiated postsynaptically, but the site of the persistent change is unresolved. Single CA3 hippocampal pyramidal cells receive excitatory inputs from associational-commissural fibers and from the mossy fibers of dentate granule cells and both pathways exhibit LTP. Although the induction of associational-commissural LTP requires in the postsynaptic cell N-methyl-D-aspartate (NMDA) receptor activation, membrane depolarization, and a rise in calcium, mossy fiber LTP does not. Paired-pulse facilitation, which is an index of increased transmitter release, is unaltered during associational-commissural LTP but is reduced during mossy fiber LTP. Thus, both the induction and the persistent change may be presynaptic in mossy fiber LTP but not in associational-commissural LTP.  相似文献   

12.
To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.  相似文献   

13.
Long-term potentiation (LTP) of synaptic transmission is a widely studied cellular example of synaptic plasticity. However, the identity, localization, and interplay among the biochemical signals underlying LTP remain unclear. Intracellular microelectrodes have been used to record synaptic potentials and deliver protein kinase inhibitors to postsynaptic CA1 pyramidal cells. Induction of LTP is blocked by intracellular delivery of H-7, a general protein kinase inhibitor, or PKC(19-31), a selective protein kinase C (PKC) inhibitor, or CaMKII(273-302), a selective inhibitor of the multifunctional Ca2+-calmodulin-dependent protein kinase (CaMKII). After its establishment, LTP appears unresponsive to postsynaptic H-7, although it remains sensitive to externally applied H-7. Thus both postsynaptic PKC and CaMKII are required for the induction of LTP and a presynaptic protein kinase appears to be necessary for the expression of LTP.  相似文献   

14.
A group of rats was trained to escape low-intensity shock in a shuttle-box test, while another group of yoked controls could not escape but was exposed to the same amount and regime of shock. After 1 week of training, long-term potentiation (LTP) was measured in vitro in hippocampal slices. Exposure to uncontrollable shock massively impaired LTP relative to exposure to the same amount and regime of controllable shock. These results provide evidence that controllability modulates plasticity at the cellular-neuronal level.  相似文献   

15.
Protein kinase C activity in rat hippocampal membranes and cytosol was determined 1 minute and 1 hour after induction of the synaptic plasticity of long-term potentiation. At 1 hour after long-term potentiation, but not at 1 minute, protein kinase C activity was increased twofold in membranes and decreased proportionately in cytosol, suggesting translocation of the activity. This time-dependent redistribution of enzyme activity was directly related to the persistence of synaptic plasticity, suggesting a novel mechanism regulating the strength of synaptic transmission.  相似文献   

16.
Cerebellar long-term depression (LTD) is a model of synaptic memory that requires protein kinase C (PKC) activation and is expressed as a reduction in the number of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. LTD was absent in cultured cerebellar Purkinje cells from mutant mice lacking the AMPA receptor GluR2 subunit and could be rescued by transient transfection with the wild-type GluR2 subunit. Transfection with a point mutant that eliminated PKC phosphorylation of Ser880 in the carboxy-terminal PDZ ligand of GluR2 failed to restore LTD. In contrast, transfection with a point mutant that mimicked phosphorylation at Ser880 occluded subsequent LTD. Thus, PKC phosphorylation of GluR2 Ser880 is a critical event in the induction of cerebellar LTD.  相似文献   

17.
Drug-dependent neural plasticity related to drug addiction and schizophrenia can be modeled in animals as behavioral sensitization, which is induced by repeated noncontingent or self-administration of many drugs of abuse. Molecular mechanisms that are critical for behavioral sensitization have yet to be specified. Long-term depression (LTD) of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor (AMPAR)-mediated synaptic transmission in the brain has been proposed as a cellular substrate for learning and memory. The expression of LTD in the nucleus accumbens (NAc) required clathrin-dependent endocytosis of postsynaptic AMPARs. NAc LTD was blocked by a dynamin-derived peptide that inhibited clathrin-mediated endocytosis or by a GluR2-derived peptide that blocked regulated AMPAR endocytosis. Systemic or intra-NAc infusion of the membrane-permeable GluR2 peptide prevented the expression of amphetamine-induced behavioral sensitization in the rat.  相似文献   

18.
Experiments with vesicles containing N-methyl-D-aspartate (NMDA) receptor 2B (NR2B subunit) show that they are transported along microtubules by KIF17, a neuron-specific molecular motor in neuronal dendrites. Selective transport is accomplished by direct interaction of the KIF17 tail with a PDZ domain of mLin-10 (Mint1/X11), which is a constituent of a large protein complex including mLin-2 (CASK), mLin-7 (MALS/Velis), and the NR2B subunit. This interaction, specific for a neurotransmitter receptor critically important for plasticity in the postsynaptic terminal, may be a regulatory point for synaptic plasticity and neuronal morphogenesis.  相似文献   

19.
Storage of spatial information by the maintenance mechanism of LTP   总被引:2,自引:0,他引:2  
Analogous to learning and memory storage, long-term potentiation (LTP) is divided into induction and maintenance phases. Testing the hypothesis that the mechanism of LTP maintenance stores information requires reversing this mechanism in vivo and finding out whether long-term stored information is lost. This was not previously possible. Recently however, persistent phosphorylation by the atypical protein kinase C isoform, protein kinase Mzeta (PKMz), has been found to maintain late LTP in hippocampal slices. Here we show that a cell-permeable PKMz inhibitor, injected in the rat hippocampus, both reverses LTP maintenance in vivo and produces persistent loss of 1-day-old spatial information. Thus, the mechanism maintaining LTP sustains spatial memory.  相似文献   

20.
Long-term potentiation (LTP) of synaptic transmission after coincident pre- and postsynaptic activity is considered a cellular model of changes underlying learning and memory. In intact tissue, LTP has been observed only between populations of neurons, making analysis of mechanisms difficult. Transmission between individual pre- and postsynaptic hippocampal cells was studied, suggesting quantal amplitude distributions with little variability in quantal size. LTP between such pairs is manifested by large, persistent, and synapse-specific potentiation with a shift in amplitude distribution that suggests presynaptic changes. Oscillations in amplitude of transmission, apparently of presynaptic origin, are common and can be triggered by LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号