首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of xanthan concentration (0, 0.02, 0.1, 0.4, and 0.8% w/w) and bulk viscosity on the release of 20 aroma compounds of different chemical classes (5 aldehydes, 4 esters, 5 ketones, 3 alcohols, and 3 terpenes) was evaluated in xanthan-thickened food model systems having different viscosities. Interactions between flavor compounds and xanthan were assessed by measuring air-liquid partition coefficients, K, of aroma compounds in pure water and in the xanthan solutions by static headspace gas chromatography. Mass transfer of aroma compounds was estimated by dynamic headspace gas chromatography. Notably, limonene and some of the esters and aldehydes exhibited decreased K values in the presence of xanthan, indicating that the release of these volatile aroma compounds was reduced due to interaction with the xanthan matrix. The degree of interaction depended on the physicochemical characteristics of the aroma compounds. A similar tendency was observed at nonequilibrium with the decreases in release rates being most pronounced for limonene, followed by the esters and aldehydes, with no effect for ketones and an apparent "salting out" effect for alcohols. The reduction in flavor release by xanthan was thus dependent on the physicochemical properties of the aroma compounds and was apparently a result of the aroma-xanthan interactions and not influenced by the viscosity of the system itself.  相似文献   

2.
The effects of pectin and viscosity on the release of a systematic series of aldehydes (alkanals, methyl-alkanals, alkenals, and alkandienals) were studied in a food model system of low sucrose content (10% w/w). The viscosity was varied by adding different amounts of Ca(2+) (0, 13.5, and 27 mg/g pectin) to the model system of constant pectin concentration (0.4% w/w). Air-liquid partition coefficients, K (37 degrees C), of the aroma compounds were determined in aqueous and pectin-thickened solutions. Diffusivities of the aroma compounds in water and three pectin-thickened solutions were estimated from release rate constants that were obtained via timed collection of volatiles in the gas phase and quantifications by dynamic headspace-gas chromatography. The partition coefficients increased as the carbon chain increased within each homologous series. Overall, no significant difference was found between partition coefficients of aldehydes in water and in pectin solutions except for 2-methyl-propanal and butanal that showed higher K values when pectin was present. Furthermore, the diffusional properties of the model system with a constant pectin level (0.4% w/w) remained constant when the viscosity was increased from 0.001 to 150 Pa s. It was concluded that neither pectin nor alterations in macroscopic viscosity as such influenced the release of aldehydes from the pectin-thickened food model system.  相似文献   

3.
The influence of compositional and structural properties of oil-in-water emulsions on aroma release was examined under mouth conditions. The lipid (0.40 and 0.65) and emulsifier fractions (0.007, 0.010, and 0.014) were varied, as well as the mean particle diameter of the dispersed phase (0.60, 0.73, 0.85, and 1.10 microm). Aroma compounds were isolated in a model mouth system and quantified by gas chromatography-mass spectrometry. Studies were carried out to separate effects on the thermodynamic and the kinetic components of aroma release using equilibrium headspace analysis to distinguish the thermodynamic component. The lipid phase of the emulsions was composed of sunflower oil and the emulsifier phase was Tween 20. The release of 20 aroma compounds was evaluated; the compounds included alcohols (1-propanol, 1-butanol, 3-methyl-1-butanol, 2-pentanol, 1-hexanol, and 2-nonanol), ketones (diacetyl, 2-butanone, 2-heptanone, 2-octanone, and 2-decanone), esters (ethyl acetate, propyl acetate, butyl acetate, and ethyl butyrate), aldehydes (hexanal, heptanal, and octanal), a terpene (alpha-pinene), and a sulfur compound (dimethyl sulfide). Decrease in lipid fraction and emulsifier fraction, as well as increase in particle diameter, increased aroma release under mouth conditions. Differences between groups of compounds and between compounds of homologous series with varying chain lengths were found. Changes in particle diameter had a considerable effect on the thermodynamic component of aroma release, whereas hardly any influence of the lipid fraction and emulsifier fraction was observed. Lipid fraction, emulsifier fraction, and particle diameter affected the kinetic component of aroma release, which could partially be attributed to changes in viscosity.  相似文献   

4.
Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer carbon chains and for buffer solutions with higher pH values. For in vivo aldehyde release measurements, these effects were much less pronounced. The presence of saliva or the binding of aldehydes to the surface of the oral cavity was not responsible for this effect. This difference can be explained by the highly dynamic conditions of in vivo aroma release of liquid products, due to the relatively large flow of air during exhalation. After swallowing, a thin film of aldehyde solution remains in the pharynx; subsequent exhalation will release both the free aldehydes present in this film and those reversibly bound to the whey protein.  相似文献   

5.
The analysis of volatile emissions of coffee berries in different physiological states of ripeness was performed using dynamic headspace and gas chromatography/mass spectrometry analysis for Coffea arabica, var. Colombia. The composition of the volatiles emitted by coffee berries is dominated by very high levels of alcohols, mainly ethanol, in all stages of ripeness in comparison with other compounds. Overripe coffee berries have high volatile emissions and show a composition dominated mainly by esters followed by alcohols, ketones, and aldehydes. The lowest level compounds were monoterpenes. 2-Methyl furan was detected in various ripening stages; this compound has not been previously reported as a coffee berry volatile. The presence of ethanol and other alcohols in the volatile composition might explain the effectiveness of using traps with mixed alcohols for detection and capture of coffee berry borers.  相似文献   

6.
《Cereal Chemistry》2017,94(2):170-176
The volatile components from 13 commercially valuable foxtail millets from China were investigated by means of gas chromatography–mass spectrometry combined with simultaneous distillation extraction. A total of 52 volatile compounds were identified in all of the samples: 19 aldehydes, 5 alcohols, 10 ketones, 9 hydrocarbons, 6 benzene derivatives, and 3 others. Here, 23 common constituents were found in all samples. Aldehydes were the predominant volatile components in various cultivars. The importance of each volatile was assessed on the basis of odor thresholds and odor activity values (OAVs). Here, 35 volatile compounds were described using aroma character, and 24 volatile compounds were found to be odor‐active compounds. Another 11 common constituents were found in all samples. The components with the highest OAVs in most cultivars were (E )‐2‐nonenal and (E,E )‐2,4‐decadienal. Most of the other aldehydes also had high OAVs. Some of the ketones, alcohols, benzene derivatives, and other compounds were found to contain an odor‐active compound in several cultivars of foxtail millet. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the OAVs of aroma compounds enabled good differentiation of most cultivars.  相似文献   

7.
Interaction of flavor compounds with proteins is known to have an influence on the release of flavor from food. Hydrophobic interactions were found between beta-lactoglobulin and methyl ketones; the affinity constant increases by increasing the hydrophobic chain. Addition of beta-lactoglobulin (0.5 and 1%) to aroma solutions (12.5, 50, and 100 microL L(-)(1)) of three methyl ketones induces a significant decrease in odor intensity. The chosen methyl ketones were 2-heptanone (K(b) = 330), 2-octanone (K(b) = 950), and 2-nonanone (K(b) = 2440). The release of these flavor compounds (50 microL L(-)(1)) was studied by static headspace in water solution (50 mM NaCl, pH 3) with different concentrations of beta-lactoglobulin (0, 0.5, 1, 2, 3, and 4%). Increasing the concentration of protein increases the retention of volatiles, and this effect is greatest for 2-nonanone, the compound with the highest affinity constant, and lowest for 2-heptanone. A mathematical model previously developed to describe flavor release from aqueous solutions containing flavor-binding polymers (Harrison, M.; Hills, B. P. J. Agric. Food Chem. 1997, 45, 1883-1890) was used to interpret the data. The model assumes that the polymer-flavor interaction is reversible and the rate-limiting step for release is the transfer of volatiles across the macroscopic gas-liquid interface. This model was used to predict the equilibrium partitioning properties and the rate of release of the three methyl ketones. Increasing the affinity constant leads to decreased release rates and a lower final headspace aroma concentration.  相似文献   

8.
Among the few papers related to the gas chromatography (GC)-olfactometric determination of important odorants in cooked beef aroma, only one uses roasting conditions, but none of them investigates the appealing aroma during the cooking of the piece of meat. The present paper investigates this top note as perceived from the oven, by analyzing the oven headspace using GC-"SNIF", a GC-olfactometric technique. From the different functional classes of odorants participating in overall in-oven aroma, this first paper focuses only on the role of aldehydes and ketones, as they represent the majority of aroma compounds formed during cooking. To ascertain the identification of these odorants, a microderivatization technique was used, based on (2,3,4,5,6-pentafluorophenyl)hydrazine. The resulting hydrazones exhibit very specific mass spectrometric fragments, leading to a sensitive and specific detection. A total of 23 carbonyl compounds were shown to contribute to the roast beef top note.  相似文献   

9.
Equilibration time and temperature were the factors studied to choose the best conditions for analyzing volatiles in roasted ground Arabica coffee by a static headspace sampling extraction method. Three temperatures of equilibration were studied: 60, 80, and 90 degrees C. A larger quantity of volatile compounds was extracted at 90 degrees C than at 80 or 60 degrees C, although the same qualitative profile was found for each. The extraction of the volatile compounds was studied at seven different equilibration times: 30, 45, 60, 80, 100, 120, and 150 min. The best time of equilibration for headspace analysis of roasted ground Arabica coffee should be selected depending on the chemical class or compound studied. One hundred and twenty-two volatile compounds were identified, including 26 furans, 20 ketones, 20 pyrazines, 9 alcohols, 9 aldehydes, 8 esters, 6 pyrroles, 6 thiophenes, 4 sulfur compounds, 3 benzenic compounds, 2 phenolic compounds, 2 pyridines, 2 thiazoles, 1 oxazole, 1 lactone, 1 alkane, 1 alkene, and 1 acid.  相似文献   

10.
Relative retention, volatility, and temporal release of volatile compounds taken from aldehyde, ester, and alcohol chemical classes were studied at 70 degrees C in model systems using equilibrium static headspace analysis and real time dynamic headspace analysis. These systems were medium-chain triglycerides (MCT), sunflower oil, and two structured systems, i.e., water-in-oil emulsion and L2 phase (water-in-oil microemulsion). Hydrophilic domains of the emulsion type media retained specifically the hydrophilic compounds and alcohols. Four kinetic parameters characterizing the concentration- and time-dependent releases were extracted from the aroma release curves. Most of the kinetic parameter values were higher in structured systems than in oils particularly when using MCT. The oil nature was found to better control the dynamic release profiles than the system structures. The release parameters were well-related (i) to the volatile hydrophobicity as a function of the oil used and (ii) to the retention data in the specific case of the L2 phase due to a specific release behavior of alcohols.  相似文献   

11.
Identification of major volatile odor compounds in frankfurters   总被引:1,自引:0,他引:1  
More than 100 volatile compounds have been identified in the headspace of frankfurter sausages. Most abundant were the terpene hydrocarbons, monoterpene alcohols, phenyl propanoids, and phenols. Separate analyses of solutions of spices and smoke demonstrated that most of the terpenes were derived from the spices, whereas the phenols originated mostly from the smoke ingredients. Many of the compounds contributing to the overall odor of the frankfurters have been identified. Some odors, characteristic of the smokiness and spiciness of frankfurters, were caused by phenols and terpenes, whereas others were due to compounds derived from the meat fraction; these compounds included aldehydes, ketones, furanthiols, and alicyclic sulfur compounds.  相似文献   

12.
The influence of storage on the aroma release in headspace and rheological properties in strawberry-flavored fatfree stirred yogurts was determined. Three periods of storage at 10 degrees C were chosen for analysis: 7, 14, and 28 days. The headspace composition was assessed in a flask in static mode. The SPME fiber was carefully chosen, and results are presented in detail (choice and degradation). The flow properties of the final product were measured in order to follow n (flow behavior index) and K (consistency index), and the apparent viscosity was determined (eta in Pa.s). The quantity of flavors in the headspace of products at the 28 days of aging was significantly weaker for methyl 2-methyl butanoate, ethyl hexanoate, and hexyl acetate. The decrease was half of that in comparison with the seventh day. It was supposed that modification in rheological parameters can partly explain these results. Indeed, the apparent viscosity of the products significantly increased during the three times of storage. The composition of the flavored yogurt, proteins, exopolysaccharides, and fruit preparation, seemed to have a great impact on the release of aroma compounds. The aroma compound amount in the headspace decreased when the matrix changed from water to yogurt. With the fruit preparation, the headspace amounts for esters were significantly lower than in water alone, respectively, 23, 27, 29, and 17% less for methyl 2-methylbutanoate, ethyl hexanoate, hexyl acetate, and benzyl acetate. In flavored yogurt, the amount of aroma compounds in the headspace decreased again in comparison with the result obtained with the fruit preparation. Ethyl hexanoate and hexyl acetate presented the higher decreases of 48 and 53%, respectively.  相似文献   

13.
为了探究微藻在贝类净化中的作用,以及净化处理对贝类风味成分的影响,本研究以球等鞭金藻作为净化贝类的食物来源,通过多元统计及判别分析,对比添加球等鞭金藻净化前后贝肉挥发性成分的变化.结果表明,净化后贝类中绝大多数特征性风味成分含量增加,如醛、醇、酯、酮类化合物;其中含量增加最明显的风味成分是具有黄油、肉香的酮类;而部分具...  相似文献   

14.
The effect of fat content on the release of volatile aroma compounds from frankfurters has been investigated. Although the release of most n-alkanals, alcohols, ketones, and furans was little affected by changes in the fat content of frankfurters, that of monoterpene hydrocarbons, sesquiterpene hydrocarbons, terpenes containing oxygen, cyclopentenones, phenyl propanoids, and phenols was greatly increased when the fat content was decreased. Some odors were also detected more frequently in the low-fat than in the full-fat sausages. These included smoky odors, due to phenols, spicy, synthetic, and floral odors due to terpenes, and meaty, roasted odors caused by sulfur-containing heterocyclic compounds. The release of aroma compounds from frankfurters appears to be closely related to the solvation of these compounds in the lipid phase.  相似文献   

15.
16.
茶叶加工对茶叶香气的形成至关重要。为了研究黄大茶加工过程中香气成分的组成及变化规律,采用气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Spectrometry,GC-IMS)技术对黄大茶加工过程的挥发性成分进行分析。定性分析、鉴定茶叶挥发性成分,构建黄大茶加工过程挥发性成分的差异谱图,并以鉴定的挥发性成分对黄大茶加工过程进行主成分分析。共鉴定出挥发性成分40种,主要有醇类、酮类、醛类、酯类和杂环类化合物。杂环类和醛类化合物是黄大茶挥发性成分的主体部分,且杀青之后,杂环类化合物的含量随着加工过程的进行逐渐增加,醛类化合物的相对含量在初烘之后呈现显著性增加,而醇类及酮类挥发性成分的相对含量在初烘之后显著性降低(P0.05)。具花香的氧化芳樟醇只在初闷之前的样品中得到鉴定,在鲜叶中的含量最高,达21.98%,而1-辛烯-3-酮及苯乙酮只在初烘之后的样品中得到鉴定。通过GC-IMS的指纹图谱可知,苯甲醛、2,5-二甲基呋喃、糠醛及二甲基二硫等挥发性成分构成了经"拉老火"工序的黄大茶的特征峰区域。在一定程度上,主成分分析能够将黄大茶加工过程样品进行区分,表明气相色谱-离子迁移谱分析可为黄大茶加工过程的判别区分提供可能。相较于传统的茶叶挥发性成分检测分析技术,气相色谱-离子迁移谱具有快速、高效、绿色环保的特点。研究结果提供一种新的茶叶挥发性成分的检测分析方法,同时为茶叶加工过程监测及品质控制等提供了一定参考依据和理论基础。  相似文献   

17.
The perceived intensities of savory flavors in hydrocolloid-thickened solutions were investigated using sensory paired comparison tests between two distinct thickener concentrations (high and low viscosities). The perceived saltiness of 3.5 g/L NaCl was found to be significantly reduced (P < 0.01) at the higher thickener concentration of both hydroxypropylmethyl cellulose (HPMC) and lambda-carrageenan, relative to the lower concentration. Mushroom flavor (8 ppm of 1-octen-3-ol with 3 g/L NaCl) was perceived as significantly more intense (P < 0.05) in 1.7 g/L lambda-carrageenan as compared with the same concentration of flavoring in 10.2 g/L lambda-carrageenan. Garlic flavor (2.5 ppm of diallyl disulfide with 2 g/L NaCl) was perceived to be significantly more intense in 2 g/L HPMC (P < 0.01) than in 10 g/L HPMC. However, when the NaCl concentration in the more viscous sample was increased to 3 g/L, the garlic flavor intensities of the two systems were not significantly different, suggesting a perceptual interaction (enhancement) between salt taste and garlic flavor. In vivo aroma release measurements from the same samples, using API-MS, showed that hydrocolloid concentration did not significantly alter the amount of mushroom or garlic aromas released when solutions were consumed. It was concluded that changes in perceived saltiness were driving the reduction in savory flavor perception even though the aroma stimulus was unchanged (a taste-aroma interaction). These findings parallel previous results in sweet hydrocolloid-thickened solutions.  相似文献   

18.
Interactions between 10 aroma compounds from different chemical classes and 5 mixtures of milk proteins have been studied using static or dynamic headspace gas chromatography and solid-phase microextraction (SPME). Static headspace analysis allows the quantification of the release of only the most abundant compounds. Dynamic headspace analysis does not allow the discrimination of flavor release from the different protein mixtures, probably due to a displacement of headspace equilibrium. By SPME analysis and quantification by GC-MS (SIM mode) all of the volatiles were quantified. This method was optimized to better discriminate aroma release from the different milk protein mixtures and then from oil/water emulsions made with these proteins. The highest difference between the release in different proteins was observed for ethyl hexanoate, which has a great affinity for beta-lactoglobulin. Ethyl hexanoate is thus less released from models and emulsions containing this protein.  相似文献   

19.
An experimental design has been used to optimize the extraction of volatile compounds from summer truffle aroma (Tuber aestivum) by using headspace solid phase microextraction. The extracted compounds have been analyzed by gas chromatography with a flame ionization detector and by gas chromatography-mass spectrometry (GC-MS). In an attempt to develop an objective method to fully characterize truffle aroma, a fiber of medium polarity (for flavors) was used to avoid discrimination toward very nonpolar and polar volatile compounds. To optimize the extraction conditions, a response surface experimental design was applied considering three factors such as extraction temperature, equilibrium time, and extraction time. From the statistical analysis of the experimental design, it was possible to determine that the most important factor influencing the abundance of aroma compounds was the extraction temperature. Optimal extraction temperature was established at approximately 50 degrees C. By using GC-MS, it was possible to identify 37 compounds, most of them previously described as responsible for truffle aroma.  相似文献   

20.
Temporal release and retention of aroma compounds from structured emulsions (where unsaturated monoglycerides are added to the oil) and conventional oil-in-water emulsions were studied using in vitro dynamic headspace analysis by proton-transfer reaction mass spectrometry and static headspace analysis by gas chromatography-mass spectrometry. Under dynamic conditions, the structured emulsion exhibited delayed release compared to the oil-in-water emulsion containing the same lipid content of 5%. The time to maximum concentration T max of amphiphilic and lipophilic aroma compounds increased by a factor of 1.2 (for 3 E-hexenal) to 1.9 (for octanal). The aroma release profile of the 5% lipid structured emulsion was close to that obtained for the oil-in-water emulsion containing 10% lipid. Under static conditions, the 5% lipid structured emulsion retained more of the most lipophilic aroma compounds than its counterpart 5% oil-in-water nonstructured emulsion. The present study provides potential solutions for modulating aroma release profiles of reduced-fat foods by self-assembly structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号