首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sow longevity is a key component for efficient and profitable pig farming; however, approximately 50% of sows are removed annually from a breeding herd. There is no consensus in the scientific literature regarding a definition for sow longevity; however, it has been suggested that it can be measured using several methods such as stayability and economic indicators such as lifetime piglets produced. Sow longevity can be improved by genetic selection; however, it is rarely included in genetic evaluations. One reason is elongated time intervals required to collect complete lifetime data. The effect of genetic parameter estimation software in handling incomplete data (censoring) and possible early indicator traits were evaluated analysing a 30% censored data set (12 725 pedigreed Landrace × Large White sows that included approximately 30% censored data) with DMU6, THRGIBBS1F90 and GIBBS2CEN. Heritability estimates were low for all the traits evaluated. The results show that the binary stayability traits benefited from being analysed with a threshold model compared to analysing with a linear model. Sires were ranked very similarly regardless if the program handled censoring when all available data were included. Accumulated born alive and stayability were good indicators for lifetime born alive traits. Number of piglets born alive within each parity could be used as an early indicator trait for sow longevity.  相似文献   

2.
Longevity is important in pig production with respect to both economic and ethical aspects. Direct selection for longevity might be ineffective because ‘true’ longevity can only be recorded when a sow has been culled or died. Thus, indirect selection for longevity using information from other traits that can be recorded early in life and are genetically correlated with longevity might be an alternative. Leg conformation has been included in many breeding schemes for a number of years. However, proving that leg conformation traits are good early indicators for longevity still remains. Our aim was to study genetic associations between leg conformation traits of young (5 months; 100 kg) Swedish Yorkshire pigs in nucleus herds and longevity traits of sows in nucleus and multiplier herds. Data included 97 533 animals with information on conformation (Movement and Overall score) recorded at performance testing and 26 962 sows with information on longevity. The longevity traits were as follows: stayability from 1st to 2nd parity, lifetime number of litters and lifetime number of born alive piglets. Genetic analyses were performed with both linear models using REML and linear‐threshold models using Bayesian methods. Heritabilities estimated using the Bayesian method were higher than those estimated using REML, ranging from 0.10 to 0.24 and 0.07 to 0.20, respectively. All estimated genetic correlations between conformation and longevity traits were significant and favourable. Heritabilities and genetic correlations between conformation and longevity indicate that selection on leg conformation should improve sow longevity.  相似文献   

3.
The objective of this study was to obtain heritability estimates for longevity (length of life, length of productive life, number of litters) and lifetime productivity traits (lifetime pig production, lifetime pig efficiency, lifetime litter efficiency) and genetic correlation between them and litter size at first farrowing, growth (ADG), backfat thickness (BF), loin depth, lean meat percentage (LMP), phenotypic selection index (PSI), and exterior in 19423 Polish Landrace (L) and 16049 Polish Large White (LW) sows. Heritabilities for longevity and lifetime productivity traits were 0.10–0.13 for L sows and 0.09–0.11 for LW sows depending on the trait definition. The genetic correlations among these traits were all high and positive, ranging from 0.76 to 0.99. Antagonistic genetic correlations (?0.21 to ?0.26) were found between longevity traits and PSI and LMP in LW sows, while in L sows the respective parameters were lower and not significant for length of productive life. The number of live‐born piglets in the first litter was positively correlated with lifetime pig production and lifetime pig efficiency in both breeds. The genetic correlations of longevity and lifetime pig production with ADG, BF, loin depth and exterior were small, and in most cases, not significant.  相似文献   

4.
Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single‐nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic‐based [genomic best linear unbiased prediction (GBLUP)‐REML and BayesC] and pedigree‐based (PBLUP‐REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP‐REML across traits, from 0 to 0.03 with GBLUP‐REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic‐based methods were small (0.01–0.05), with GBLUP‐REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP‐REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population.  相似文献   

5.
The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross‐bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on “average information restricted maximum likelihood” using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10‐fold cross‐validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross‐bred population. In the combined cross‐bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross‐bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross‐bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross‐bred population could be overestimated if heterosis is not fitted in the model.  相似文献   

6.
Longevity is an economically important trait of dairy cattle for increasing the profitability of dairy management. The reasons for culling can be either voluntary (primarily productivity) or involuntary (primarily health and fertility). Longevity characteristics include: (i) true longevity (all culling reasons, including productivity); and (ii) functional longevity (all culling reasons, except productivity). Improvements to longevity are made to decrease the rate of involuntary culling rather than extend the herd life (HL). The proportional hazard model is useful for evaluating genetic ability for HL. However, the differences between estimates made using the proportional hazard model and those made using linear single or multiple‐trait animal models are not clear. The model commonly used for evaluation differs among countries. Productive traits, udder traits, and feet and legs traits are genetically correlated with longevity, and consequently these traits are used to indirectly evaluate longevity. The reliability of estimates of genetic ability for longevity is increased by combining direct and indirect estimates. In Japan, HL is evaluated using the multiple‐traits model. The genetic correlations between HL and other traits vary with the birth year. Therefore, these genetic correlations need to be reviewed regularly.  相似文献   

7.
根据GenBank中登录的猪红细胞生成素受体(erythropoictin receptor,EPOR)基因mRNA序列(登录号:AF274305)和其基因组序列(登录号:EU407778)设计8对引物,以10头北京黑猪和10头大白猪DNA混合池为模板,采用测序的方法研究猪EPOR全基因序列的遗传变异。研究结果发现,EPOR基因长约5.2 kb,含有1个5′UTR、8个外显子、7个内含子及1个3′UTR。经混合DNA池测序,共在内含子区发现9个SNP位点:g.705G>T位于内含子1;g.1450C>T 位于内含子2;g.2373C>T 位于内含子4;g.2882C>T、g.3035A>G、g.3132A>T、g.3295C>T、g.3942C>T、g.4106G>A位于内含子6,为进一步研究EPOR基因与产仔性状的关联奠定了基础。  相似文献   

8.
9.
云南高黎贡山猪微卫星DNA多态性分析   总被引:1,自引:0,他引:1  
高黎贡山猪是云南省独特的小型猪种,其肌内脂肪的非饱和脂肪酸和营养必需脂肪酸的含量远高于其他猪种,具有发展优质保健猪肉的良好潜质。本研究选用世界粮农组织(FAO)和国际动物遗传学会(ISAG)联合推荐的20个微卫星位点对高黎贡山猪和杂种群体进行遗传学检测和分析。结果表明:20个微卫星座位在群体中均表现为多态,每位点等位基因数2—5个。群体平均多态信息含量高黎贡山猪为0.6829,杂种群体为0.5924,平均杂合度分别为0.7302和0.6465。  相似文献   

10.
藏猪是中国特有的高原型地方猪种,本研究采用非求导约束最大似然(MTDFREML)方法对藏猪繁殖性状进行遗传分析。结果估算出藏猪乳头数、总产仔数、产活仔数、初生窝重、断奶仔数、断奶窝重的遗传力分别为0.36、0.12、0.10、0.13、0.09和0.12,乳头数与断奶窝重、初生窝重和断奶仔数存在明显的遗传力相关。  相似文献   

11.
为了准确掌握西关杂交公牛的育肥效益,经过60 d对10头1.5岁左右西关杂交公牛舍饲育肥试验,并按市场成本、价格分析得出,每头每天精饲料和粗饲料成本8.00元左右,日均增重1.055 kg,按屠宰率50%估测计算,每头日均净增重0.53 kg,产值为21.00元左右,可实现经济效益13.00元左右(不计水电、劳务等其它费用)。  相似文献   

12.
  • 1.?A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared.

  • 2.?Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits.

  • 3.?Estimates of heritability (h2) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28–32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d2) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m2) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c2) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30.

  • 4.?Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and environmental) and, to a lesser extent, direct dominance genetic effect would improve the accuracy of genetic evaluation for early age body weights in dual-purpose chickens.

  相似文献   

13.
In closed rabbit lines selected for prolificacy at the Polytechnic University of Valencia, genetic responses are predicted using BLUP. With a standard additive BLUP model and year‐season (YS) effects fitted as fixed, genetic trends were overestimated compared to responses estimated using control populations obtained from frozen embryos. In these lines, there is a confounding between genetic trend, YS effects and inbreeding, and the role of dominance is uncertain. This is a common situation in data from reproductively closed selection lines. This paper fits different genetic evaluation models to data of these lines, aiming to identify the source of these biases: dominance, inbreeding depression and/or an ill‐conditioned model due to the strong collinearity between YS, inbreeding and genetic trend. The study involved three maternal lines (A, V and H) and analysed two traits, total born (TB) and the number of kits at weaning (NW). Models fitting YS effect as fixed or random were implemented, in addition to additive genetic, permanent environment effects and non‐inbred dominance deviations effects. When YS was fitted as a fixed effect, the genetic trends were overestimated compared to control populations, inbreeding had an apparent positive effect on litter size and the environmental trends were negative. When YS was fitted as random, the genetic trends were compatible with control populations results, inbreeding had a negative effect (lower prolificacy) and environmental trends were flat. The model fitting random YS, inbreeding and non‐inbred dominance deviations yielded the following ratios of additive and dominance variances to total variance for NW: 0.06 and 0.01 for line A, 0.06 and 0.00 for line V and 0.01 and 0.08 for line H. Except for line H, dominance deviations seem to be of low relevance. When it is confounded with inbreeding as in these lines, fitting YS effect as random allows correct estimation of genetic trends.  相似文献   

14.
Covariance components were estimated for growth traits (BW, birth weight; WW, weaning weight; YW, yearling weight), visual scores (BQ, breed quality; CS, conformation; MS, muscling; NS, navel; PS, finishing precocity), hip height (HH), and carcass traits (BF, backfat thickness; LMA, longissimus muscle area) measured at yearling. Genetic gains were obtained and validation models on direct and maternal effects for BW and WW were fitted. Genetic correlations of growth traits with CS, PS, MS, and HH ranged from 0.20 ± 0.01 to 0.94 ± 0.01 and were positive and low with NS (0.11 ± 0.01 to 0.20 ± 0.01) and favorable with BQ (0.14 ± 0.02 to 0.37 ± 0.02). Null to moderate genetic correlations were obtained between growth and carcass traits. Genetic gains were positive and significant, except for BW. An increase of 0.76 and 0.72 kg is expected for BW and WW, respectively, per unit increase in estimated breeding value (EBV) for direct effect and an additional 0.74 and 1.43, respectively, kg per unit increase in EBV for the maternal effect. Monitoring genetic gains for HH and NS is relevant to maintain an adequate body size and a navel morphological correction, if necessary. Simultaneous selection for growth, morphological, and carcass traits in line with improve maternal performance is a feasible strategy to increase herd productivity.  相似文献   

15.
Data of 127,800 Iberian piglets were used to study genetic parameters of mortality at birth at the piglet level. These records proceed from three data sets: 4,987 litter of 2,156 sows of a dam line, 2,768 litter of 817 sows of a complete diallel cross between four Iberian strains and 7,153 litter of 2,113 sows of the Torbiscal composite line. Perinatal mortality was considered as a binary trait, and Bayesian threshold animal models were fitted to separately analyse the three data sets. The posterior means of direct heritability were 0.010, 0.004 and 0.003, and those of maternal heritability were 0.034, 0.011 and 0.014 for dam line, diallel cross and Torbiscal line, respectively. Important effects of litter size and parity order were inferred in the three data sets, of within‐breed cross‐breeding parameters in the diallel cross and of sex and sow handling in the Torbiscal line Therefore, the inclusion of perinatal mortality in the objective of selection is questionable in this breed and strategies for reducing piglet mortality successful in other breeds should be considered.  相似文献   

16.
本文对高原瘦肉型猪选育群各世代的乳头数的遗传规律进行了分析研究,发现在选育过程中乳头数均值有增加的趋势;其对称性约为0.5∶1,乳头数出现的最高频率由互助猪的12枚上升到三、四世代的14枚,其遗传力为0.415,属中等遗传力。从乳头数均值与繁殖性状的相关关系来看,注重乳头数的选择,有利于乳头数均值的提高,从而促进繁殖性状的提高。  相似文献   

17.
Abstract

We reasoned that if we assessed pigs for litter size and growth rate during the grow-out stage of production (25–100 kg body weight) we would find: 1) an unfavourable genetic correlation between litter size and growth rate; and 2) that the amount of additive genetic variation expressed for growth rate varies with litter size. We tested these premises by assessing 2212 litters from the Yorkshire breed for litter size, while 3038 growing pigs from 550 of these litters were assessed for growth rate during the grow-out stage of production. Genetic correlations were estimated using the additive genetic (co)variances obtained from a bivariate linear animal model fitted to litter size and growth rate. The amount of additive genetic variation expressed for growth rate as a function of litter size was estimated by fitting a univariate linear animal model with random regression on litter size. Our findings did not support the first of our premises as we found that the genetic correlation between litter size and growth rate was favourable (0.28±0.27), albeit not significantly different from zero. However, we were able to support our second premise as we found that the relationship between amount of additive genetic variation for growth rate and litter size was quadratic; the amount of additive genetic variation was highest in small and large litters (h2=0.60 and 0.65), and lowest in intermediate litter sizes (h2=0.29). These findings indicate that: 1) breeding for litter size would not reduce the growth rate of growing pigs; and 2) the amount of genetic variation for growth rate changes with litter size.  相似文献   

18.
11个猪种SLC6A14基因3个SNPs的群体遗传变异研究   总被引:2,自引:0,他引:2  
本研究旨在了解猪种的遗传变异、种群间的亲缘关系和遗传分化。以白色杜洛克×二花脸资源家系F0代的17头二花脸母猪和2头白色杜洛克公猪的DNA池为模板,通过直接测序在猪SLC6A14基因内识别4个SNPs,以3个突变位点(g.7944AT、c.1438GA、g.21063GT)为基础,通过PCR-RFLP技术,对11个中外猪种进行多态性检测。结果表明:在SLC6A14g.7944AT和g.21063GT2个突变位点上,所有检测猪种都出现变异,其中槐猪、二花脸猪在g.7944AT位点上变异显著(0.01P0.05);而里岔黑猪、槐猪、玉山黑猪、合作藏猪、八眉猪在g.21063GT内变异极显著(P0.01),以GT基因型为主,且二花脸猪中出现TT基因型;在SLC6A14c.1438GA突变位点上,3个欧洲猪种(长白、大白、杜洛克)没有出现变异,均为GG纯合型,而其他猪种在此位点上均存在变异;再根据11个猪种3个位点的多态性信息计算Nei氏遗传距离,由UPGMA法构建聚类图,说明中国地方猪种与外引猪种存在明显的遗传分化;由此得出中国地方猪种比外引猪种有高的遗传多样性和变异,且存在明显的遗传分化,品种间多数猪种符合品种地域分布和品种特性。  相似文献   

19.
An attempt was made for the first time in India to develop the performance indices for quantifying the relative emphasis to be given to production, reproduction, health and longevity traits for selection and genetic improvement of Sahiwal cattle in a sustainable manner. The study was conducted using information related to various production, reproduction, health and longevity traits spread over a period of 29 years in Sahiwal cattle. Using income and expenditure method, the relative economic values for 305 days milk yield (305DMY), average daily milk yield (ADMY), calving to first insemination interval (CFI), days open (DO) and longevity (LNG) were estimated as 1, 1, −6.62, −6.62 and 5.96 in Sahiwal cattle. A total of three performance indices were constructed using three-trait combination, that is production, reproduction and longevity before and after excluding the days suffered by the animals. Correlation between the aggregate genotype and index (RIH) was computed to determine the accuracy of each performance index, and based on highest RIH value, best performance index was identified for selection of Sahiwal cattle. Developed indices were further assessed for robustness by increasing the relative economic values of the traits by 25% and 50%. The performance index (305DMY, DO and LNG) was found to be the best index before as well as after excluding days suffered by the animals, but in later case emphasis to be given to different traits was found to be more balanced. The best index indicated that about 47, 42 and 11% relative emphasis to be assigned to 305 days milk yield, days open and longevity for selection of Sahiwal animals for sustainable genetic improvement.  相似文献   

20.
The effects of calcium (Ca), phosphorus (P) and zinc (Zn) supplementation on reproductive performance of grazing dairy cows was studied. Forty-eight cows in their first to third parity were allocated to eight groups of 6 animals each, based on stage of lactation and milk yield. Groups 1 (control), 2 (Ca), 3 (P) and 4 (Zn) received, respectively, no mineral supplement, 10 g Ca, 8 g P and 400 mg Zn. The rest of the groups received a combination of Ca/P, Ca/Zn, P/Zn or Ca/P/Zn. Animals were drenched daily. Ovarian activity was determined by progesterone concentrations in milk. Prepartum body condition score (BCS) measured using scale 1–5 was 2.5–3.5. Reproductive problems were observed in all groups except that supplemented with Ca. Cows supplemented with Ca, P, Ca/P, Ca/Zn and Ca/P/Zn had significantly (p < 0.05) shorter interval (30 days) from calving to resumption of oestrus as compared to control (69 days). Intervals from calving to conception and between calvings did not differ significantly between groups (p > 0.05), but were shorter in Ca-supplemented cows. Furthermore, cows in groups 2 and 3 needed an average of 2 services per conception against 3 for cows in other groups. Hence, supplementation with Ca, P and Zn of deficient dairy cows appears to improve reproductive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号