首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
Abstract.— A 6‐wk feeding study was conducted to determine the effect of feeding frequency on growth rate of juvenile Norris and NWAC103 channel catfish, Ictalurus punctatus, reared under laboratory conditions. Four replicate groups of Norris and NWAC103 catfish (average weight of 4.0 ± 0.2 g/fish, SEM) were fed to visual satiety at different feeding frequencies (one, two, or three times daily). The percent of total daily food consumed for Norris catfish fed three times daily (0800, 1200, and 1600 h) was 44.4, 27.7, and 27.9%, respectively, while NWAC103 catfish consumed 42.9, 26.7, and 30.4%, respectively. Specific growth rate and feed intake were higher in fish fed three times daily compared to fish fed once and twice daily for both strains. Feed efficiency was reduced in NWAC103 fed three times daily compared to fish fed once or twice, while feed efficiency was similar among the Norris treatments. Gastrointestinal (GI) tract index ([weight of GI tract/weight of fish] × 100) decreased in NWAC103 catfish as feeding frequency increased, while a similar nonsignificant trend was also observed in Norris catfish. The results of this study demonstrate that aquarium‐reared Norris and NWAC103 catfish fed three times a day consume more feed and gain more weight than catfish fed once or twice a day. The observed decrease in the GI index as a result of feeding more frequently demonstrates that the size of the GI tract increases, relative to body weight, when catfish are fed only once a day. Under laboratory conditions, the number of times a day the fish are fed should be considered when trying to maximize growth of NWAC103 and Norris strains of catfish.  相似文献   

2.
Two experiments were conducted in earthen ponds to evaluate the effect of dietary protein concentration and feeding rate on weight gain, feed efficiency, and body composition of channel catfish. In Experiment 1, two dietary protein concentrations (28% or 32%) and four feeding rates (≤ 90. ≤ 112, ≤ 135 kg/ha per d, or satiation) were used in a factorial arrangement. Channel catfish Ictalurus punctatus fingerlings (average size: 27 g/fish) were stocked into 0.04-ha ponds at a rate of 24,700 fish/ha. Fish were fed once daily at the predetermined maximum feeding rates for 282 d (two growing seasons). In Experiment 2, three dietary protein concentrations (24, 28, or 32%) and two feeding rates (≤ 135 kg/ha per d or satiation) were used. Channel catfish (average size: 373 g/fish) were stocked into 0.04-ha ponds at a rate of 17,300 fish/ha. Fish were fed once daily for 155 d. In both experiments, five ponds were used for each dietary treatment. Results from Experiment 1 showed no differences in total feed fed, feed consumption per fish, weight gain, feed conversion ratio (FCR), or survival between fish fed diets containing 28% and 32% protein diets. As maximum feeding rate increased, total feed fed, feed consumption per fish, and weight gain increased. There were no differences in total feed fed, feed consumption per fish, or weight gain between fish fed at ≤ 135 kg/ha per d and those fed to satiation. Fish fed the 28% protein diet had a lower percentage carcass dressout and higher percentage visceral fat than fish fed the 32% protein diet. Dietary protein concentrations of 28% or 32% had no effect on fillet protein, fat, moisture, and ash. Feeding rate did not affect FCR, survival, percentage carcass dressout, or fillet composition, except fillet fat. As feeding rate increased, percentage visceral fat increased. Fish fed at ≤ 90 kg/ha per d had a lower percentage fillet fat than fish fed at higher feeding rates. In Experiment 2, dietary protein concentration or maximum feeding rate did not affect total feed fed, feed consumption per fish, weight gain, FCR, or survival of channel catfish. Feeding rate had no effect on percentage carcass dressout and visceral fat, or fillet composition. This was due to the similar feed consumption by the fish fed at the two feeding rates. Fish fed the 24% protein diet had lower carcass dressout, higher visceral fat and fillet fat than those fed the 28% or 32% protein diet. Results from the present study indicate that both 28% and 32% protein diets provide satisfactory fish production, dressed yield, and body composition characteristics for pond-raised channel catfish fed a maximum rate of 90 kg/ha per d or ahove.  相似文献   

3.
The effects of feed restriction on channel catfish production, processing yield (carcass and fillet), visceral composition and body shape traits were determined. Channel catfish (initial mean weight =0.77 kg) were stocked into six 0.04‐ha ponds at ~5775 kg ha?1. Two ponds were assigned to each of three feeding regimes for a 4‐week trial: fed daily to satiation, fed once weekly to satiation and not fed. Fish were measured for weight, processing yield and visceral components after 2 and 4 weeks, and for body shape after 4 weeks. Growth was fastest in fish fed daily, intermediate in fish fed weekly and slowest in unfed fish. There were no differences in survival among feeding regimes. After covariate adjustment for weight differences, fish fed daily had shorter, thicker bodies, and smaller heads than fish from feed‐restricted treatments. Carcass yield was higher for females than males and higher at week 2 than at week 4, but was not affected by feeding regime. Fillet yield was higher for females than males, higher at week 2 than at week 4, and higher for fish fed daily than for feed‐restricted fish (fed once weekly and not fed). Viscerosomatic index (VSI), visceral fat‐somatic index (VFI) and hepatosomatic index were higher at week 2 than at week 4, and highest for fish fed daily, intermediate for fish fed weekly and lowest for unfed fish. Hepatosomatic index and VSI were higher for females than males, but VFI was not different between genders. The female gonadosomatic index increased over time but was not affected by feeding regime. Short‐term feed restriction had negative impacts on growth and fillet yield. Processors could benefit by marketing severely feed‐restricted channel catfish as carcasses rather than fillets since fillet yield declined but carcass yield was unchanged by feed restriction.  相似文献   

4.
Channel catfish fingerlings were stocked into 16 0.04-ha ponds at a rate of 24,700 fish/ha on 5 May 1992. Four replicate ponds were used for each of the following treatments: 1) fed once daily at 0830h; 2) fed once daily at 1600h; 3) fed once daily at 2000h; and 4) fed on demand using demand feeders. Fish on the first three treatments were fed to satiation. All fish were harvested 145d after stocking. Results from this study showed that when channel catfish raised in ponds were fed once daily to satiation, time of feeding had no significant impact on water quality, feed consumption, feed conversion, weight gain, or body proximate composition. Fish fed on demand consumed more feed than fish fed once daily to satiation, but difference in weight gain was not significant. These data indicated that feeding time may not be critical for channel catfish production as long as fish are fed when dissolved oxygen is sufficient. Although feeding at night was not detrimental in this study, night feeding is not recommended on large ponds unless sufficient aeration is available to quickly provide oxygen in an emergency—and even then it would be problematic.  相似文献   

5.
Abstract

This study evaluated the effects of dietary protein concentration (26, 28, and 32%) and an all-plant protein diet (28% protein) on growth, feed efficiency, processing yield, and body composition of channel catfish, Ictalurus punctatus raised from advanced fingerlings to large marketable size (about 800 to 900 g/fish) for two growing seasons. Fingerling channel catfish (average weight = 56 g/fish) were stocked into twenty 0.04-ha ponds at a density of 18,525 fish/ha. Fish were fed once daily to satiation during the two growing seasons and fed according to recommended winter feeding schedules during the winter. There were no differences in diet consumption, weight gain, feed conversion ratio, survival, processing yields (carcass, shank fillet, and nugget), or fillet composition (moisture, protein, fat, and ash) among fish fed the various diets. These results indicate that a 26% protein diet containing plant and animal proteins or a 28% all-plant protein diet is adequate for channel catfish raised in ponds from advanced fingerlings to large marketable size without adversely affecting weight gain, feed efficiency, processing yield, or body composition. Large marketable-size channel catfish appear to use diets less efficiently but give higher processing yields compared to small marketable-size fish.  相似文献   

6.
A laboratory study was conducted to compare different animal protein sources in diets containing 32% protein for channel catfish Ictalurus punrtatus . The experimental diets were practical-type diets and formulated to meet or exceed all known nutrient requirements for channel catfish. Twenty juvenile channel catfish (initial weight: 6.4 g/fish) were stocked into each of 25 110-L flow-through aquaria (five aquaria/treatment). Fish were fed twice daily to approximate satiation for 9 wk. Fish in each aquarium were counted and weighed collectively every 3 wk. No significant differences were observed in feed consumption, weight gain, feed efficiency, survival, percentages visceral fat and fillet yield, or proximate composition of fillets among channel catfish fed diets containing either 5% menhaden fish meal, meat and bone/blood meal, catfish by-product meal, poultry by-product meal, or hydrolyzed feather meal with supplemental lysine. The data indicate that these animal protein sources can be used interchangeably in diets for channel catfish without affecting fish growth, feed efficiency, or body composition.  相似文献   

7.
A study was conducted to evaluate the effects of using high-protein "finishing" feeds on production and fat content of channel catfish. Fish were fed either: a 32% protein feed for 150 days; a 28% protein feed for 150 days; a 28% protein feed for 90 days and then a 38% protein feed for 60 days; a 28% protein feed for 90 days and then a 35% protein feed for 60 days; a 28% protein feed for 120 days and then a 38% protein feed for 30 days; or a 28% protein feed for 120 days and then a 35% protein feed for 30 days. The study was conducted in earthen ponds stocked with channel catfish at a rate of 14,826 fish/ha (35 g initial weight) and fed once daily to satiation. There were no significant differences in either feed consumption, weight gain, final weight, feed conversion ratio, survival, or percentage visceral fat of catfish regardless of treatment. Fillets from fish fed the 28% protein feed for 150 days contained more fat than fish on other treatments. There was no advantage of finishing channel catfish on high-protein diets as compared to feeding either a 28 or 32% protein feed for the entire grow-out period.  相似文献   

8.
A factorial experiment was conducted to evaluate effect of dietary protein (28% or 32%), animal protein (0, 3, or 6%), and feeding rate (satiation or >90 kg/ha per d) on production characteristics, processing yield, and body composition of pond-raised channel catfish Ictalurus punctatus . Fingerling channel catfish (average weight: 55 g/fish) were stocked into 60, 0.04-ha ponds at a rate of 18,530 fish/ha. Five ponds were used for each dietary treatment. Fish were fed once daily to satiation or no more than 90 kg/ha per d for 147 d. Fish fed at a rate of >90 kg/ha per d consumed about 85% of the amount of feed consumed by fish fed to satiation. Dietary protein did not affect the total amount of feed fed, amount of feed consumed per fish, weight gain, feed conversion efficiency, or fillet protein. Animal protein had no effect on the total amount of feed fed, amount of feed consumed per fish, weight gain, or fillet protein and ash. Fish fed a diet containing 6% animal protein converted feed more efficiently than fish fed diets containing 0% and 3% animal protein. Fish fed to satiation daily consumed more feed, gained more weight, converted the feed less efficiently, and had a higher carcass yield, a higher level of visceral fat as compared to fish fed at a rate of >90 kg/ha per d. Feeding rate had no effect on fillet protein. Results from this study indicated that both a 28% and a 32% protein diet with or without animal protein provided the same growth rate of channel catfish raised in ponds from fingerlings to marketable size if feed is not restricted below a maximum rate of 90 kg/ha per d. Even though there were some interactions among the three factors evaluated, dietary protein levels of 28% to 32% and animal protein levels of 0% to 6% do not appear to markedly affect carcass yield and fillet proximate composition of pond-raised channel catfish.  相似文献   

9.
A feeding trial was undertaken to evaluate compensatory growth in channel catfish and to chronicle the changes in body condition associated with the imposed feeding strategy. Four 1200-L circular tanks were each stocked with approximately 600 fingerling channel catfish (mean initial weight 32 g). Two tanks represented control fish which were fed to apparent satiation once daily throughout the trial. The two remaining tanks of fish were unfed for 4 wk and subsequently refed daily to apparent satiation for the following 10 wk in order to elicit a compensatory growth response. Fish fed to apparent satiation during the first 4 wk of the trial had a 41% increase in body weight, while the fasted fish decreased in weight by 20%. During the subsequent refeeding period, previously unfed fish were not able to increase growth rates sufficiently to overcome weight loss imposed by the 4-wk feed restriction. However, after 8 wk of refeeding, total increase in body weight of the previously unfed fish was 179 % of initial weight and similar to that of control fish which gained 231 % of initial weight. Hepatosomatic index (HSI) and condition factor decreased rapidly during the fasting period and increased rapidly to control levels during subsequent refeeding. The intraperitoneal fat (1PF) ratio and muscle ratio responded more slowly to feed restriction with IPF ratio decreasing consistently after 2 wk feed restriction. Muscle ratio showed little effect from the 4-wk period of feed deprivation. It appears that not feeding channel catfish fingerlings for 4 wk is too long to induce a compensatory growth response that is optimal for aquaculture; however, HSI may be the index of choice for detecting when refeeding should begin to maximize compensatory growth.  相似文献   

10.
Abstract.— This study evaluated the effects of dietary protein concentration (26, 28, and 32%) on growth. feed efficiency, processing yield, and body composition of USDA103 and Mississippi "normal" (MN) strains of channel catfish raised in ponds. Fin-gerling channel catfish (average weight = 32.5 and 47.3 g/fish for USDA103 and MN strains, respectively) were stocked into 24 0.04-ha ponds (12 ponds/ strain) at a density of 18,530 fish/ha. Fish were fed once daily to apparent satiation from May to October 1999. There were no interactions between fish strain and dietary protein concentration for any parameters measured. Regardless of dietary protein concentrations, the USDA103 strain consumed more feed and gained more weight than the MN strain. There were no differences in feed conversion ratio (FCR) or survival between the two strains. Feed consumption, weight gain, FCR, and survival were not affected by dietary protein concentration. The USDA103 strain exhibited a lower level of visceral fat, a higher carcass yield, a lower level of fillet moisture, and a higher level of fillet fat than the MN strain. Regardless of fish strains, fish fed the 32% protein diet had a lower level of visceral fat and a higher fillet yield than fish fed the 26% protein diet. Fish fed the 32% protein diet were also higher in carcass yield as compared to those fed the 28% protein diet. Fillet moisture, protein, and fat concentrations were not affected by dietary protein concentration. Results from this study indicate that the USDA103 strain of channel catfish appears to possess superior traits in growth characteristics compared with the MN strain that is currently cultured commercially. Both strains appear to have the same dietary protein requirement.  相似文献   

11.
Abstract

A pond trial was conducted to compare growth, feed efficiency, survival, processing yield, and body composition of the NWAC103 strain of channel catfish, Ictalurus punctatus and the F1 channel X blue catfish hybrid (CB hybrid), I. punctatus X I. furcatus. Each genotype was stocked into five 0.4-ha earthen ponds at a rate of 14,820 fish/ha. Initial weights were 24.9 and 31.8 g/fish for the NWAC103 strain of channel catfish and the CB hybrid, respectively. Fish were fed a commercial, 28% protein diet once daily to satiation for 160 days. Compared to NWAC103 channel catfish, the CB hybrid consumed more diet, gained more weight, converted diet more efficiently, and had higher net production, survival, carcass yield, nugget yield, visceral fat, fillet moisture and protein, and a lower level of fillet fat. There were no differences in fillet yield and fillet ash concentration between the channel X blue catfish hybrid and the channel catfish. These results suggest that the CB hybrid possesses superior production traits compared with the NWAC103 channel catfish. However, problems of producing a large number of hybrid fingerlings in a cost-effective manner remain to be resolved before the hybrid catfish can be commercially farmed.  相似文献   

12.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

13.
Abstract.— This study was conducted to evaluate corn gluten feed as an alternative feedstuff in the diet of pond-raised channel catfish Ictalurus punctatus . Three 32%-protein diets containing 0%, 25%, or 50% corn gluten feed were tested. Channel catfish fingerlings (average weight: 57 g/fish) were stocked into 15 0.04-ha ponds at a rate of 18,530 fish/ha. Five ponds were used for each dietary treatment. Fish were fed to satiation once daily for a 147-d growing period. No differences were observed in feed consumption, weight gain, feed conversion ratio, survival, or fillet protein concentration among fish fed the test diets. Fish fed diets containing 25% and 50% corn gluten feed exhibited a lower level of visceral fat and a higher carcass yield than fish fed the control diet without corn gluten feed. The diet containing 50% corn gluten feed resulted in a lower level of fillet fat and a higher level of moisture than the control diet. There were no visible differences in the coloration of skin or fillet of channel catfish fed diets with and without corn gluten feed. Results from this study indicated that channel catfish can efficiently utilize corn gluten feed at levels up to 50%n without adverse effect on feed palatability, weight gain, or feed efficiency. Corn gluten feed may be beneficial in reducing fattiness of channel catfish and improving carcass yield by reducing the digestible energy to protein ratio of the diet.  相似文献   

14.
Two 7 day feeding trials were conducted with channel catfish swim-up fry to evaluate growth, feed conversion ratio, and body composition of fish fed one of the following feeds: salmon starter, catfish starter, or trout starter. Fish fed the salmon or trout starter feeds gained 50–75% more weight, converted feed more efficiently, and had higher body fat stores than fish fed the catfish starter feed. This may be related to the higher protein and energy content of these two feeds. It may be advantageous to feed salmonid starter feeds to hatchery reared catfish fry; however, it is not known whether or not the improved performance observed in the hatchery continues once the fish are stocked into nursery and grow out ponds.  相似文献   

15.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

16.
Channel catfish, Ictalurus punctatus, adults were stocked at 3,705 fish/ha in twelve 0.04-ha earthen ponds and fed to satiation either once or twice daily with diets containing either 32 or 38% protein for 170 days. Experimental diets with the appropriate levels of essential amino acids, vitamins, and minerals were formulated by a commercial feed mill. There were no significant differences (P > 0.05) in growth and body composition of channel catfish when analyzed by protein level, feeding frequency, or their interaction. Average individual fish weight at harvest was 1,600 g. Average net production was 3,125 kg/ha. Dry-weight percentages of protein, fat, and ash in the carcass were 55.5, 38.1, and 6.7%, respectively, and in the waste (head, skin, and viscera) were 40.5, 43.2. and 12.5%. respectively. Third-year channel catfish may be able to utilize a diet with lower (<32%) protein levels and a reduced energy: protein ratio.  相似文献   

17.
Two studies were conducted to evaluate the effects of (I) high-protein (38%) finisher feed fed to satiation for 30,45,60, or 90 days prior to harvest and (2) dietary protein (32 vs. 38%) and feeding regimen (satiation or restricted) on growth and fattiness of channel catfish. Each study was conducted for two years in earthen ponds stocked with channel catfish at a rate of 13,590 fish/ha (35 to 40 g initial weight) for year 1 and 6,800 fish/ha (0.45 to 0.6 kg initial weight) for year 2. Years refer to year of experiment and not fish age class. There were no significant differences in total yield, dressed yield, or muscle fat, regardless of diet or feeding regimen within year. Year-one fish (study 2) fed to satiation tended to gain more weight and appeared to convert feed better than fish fed at a restricted rate. In study 2 there were significant interactions between year and feed, and between year and feeding regimen. Percentage visceral fat was reduced by feeding a high-protein feed during year 1 (study 1). Females also generally had a higher percentage visceral fat than males, regardless of diet. Year-two-fish generally contained a higher percentage of visceral fat as compared to year-one fish. In study 2, there was a significant interaction effect between year, feed, feeding regimen, and sex on visceral fat. Increasing dietary protein or restricting feed appeared to have only marginal effects on fattiness in channel catfish. Fish size and/or age appeared to influence fattiness more than diet or feeding regimen.  相似文献   

18.
Channel catfish, Ictalurus punctatus, fingerlings were stocked (13,585 fish/ha) in twelve 0.04-ha earthen ponds and fed to satiation with diets containing either 34 or 38% protein (79.1 or 88.8 mg protein/kcal), either once or twice daily for 170 days. Experimental diets with the proper levels of essential amino acids, vitamins, and minerals were formulated by a commercial feed mill. No significant differences (P < 0.05) in growth and body composition of channel catfish were found when analyzed by protein level, feeding frequency, or their interaction. Average individual fish weight at harvest was 461 g. Net production was 4,152 kg/ha. Percentage protein, fat, and ash in the waste (head, skin, viscera, and frame) were 41.5, 41.4, and 12.2%, respectively, while fillet had 65.7, 30.4, and 4.0%, respectively.  相似文献   

19.
Plant protein sources were evaluated in 32% protein grow-out feeds for channel catfish (initial weight: 180 g/fish) stocked at high densities (24,700 fish/ha) in 0.04 ha earthen ponds. Each of the eight practical-type feeds was assigned for five replicate ponds. The fish were fed to satiation once daily for 170 d. Specifically, cottonseed meal and cottonseed meal plus supplemental lysine were evaluated as replacements for soybean meal. Soybean meal, a combination of soybean meal and cottonseed meal, or a combination of soybean meal and cottonseed meal plus supplemental lysine were evaluated as a substitute for animal protein sources. Based on weight pin, feed conversion ratio, body composition, percentage visceral fat, and dressed yield, the data indicated that cottonseed meal plus lysine can be used as a total substitute for soybean meal in catfish feeds. However, it is not recommended that more than 30% cottonseed meal be used in catfish feeds until additional data are available on the effects of gossypol on reproduction in catfish. Also, data indicated that plant proteins can be used as a total replacement for animal protein without detrimental effects. Reduced weight gain was observed in fish fed a feed that contained 68% of the established available lysine requirement. However, fish fed feeds estimated to contain only 76 or 82% of the available lysine requirement did not show reduced weight gain. This suggests that lysine may be more highly available from cottonseed meal than previously estimated, or that natural food organisms in the pond contributed nutrients including lysine, or that fish were able to consume enough of the marginally deficient feeds to meet their requirement for lysine. This study was conducted with large catfish fed a 32% protein feed to satiation once daily. If smaller fish, a lower protein fed, or a restricted feeding regimen had been used, the results may have been different.  相似文献   

20.
Potential feeds, feeding schedules, and feed supplements for growing M. rosenbergii postlarvae to a juvenile size of 0.5 g were evaluated. Postlarvae were grown in 69 L aquaria for 6 to 9 weeks at densities of 1.3 or 2.0/L at a water temperature of 28 C. An experimental diet (HFX-EXD-86X) and four commercially available feeds (Purina Trout Chow No. 2, Silver Cup Fish Feed—Salmon No. 3, Zeigler Shrimp Post Larval Granules No. 3, and MFC Clover Brand 38% Catfish Fingerling Crumbles) were tested. Prawns fed Purina Trout Chow No. 2 had the best survival and yield. Four feeding schedules were then evaluated with Purina Trout Chow No. 2 as the only food: once daily (at 1600 h), twice daily (at 0800 and 1600 h), twice daily (at 0800 and 2000 h), and three times daily (at 0800, 1600, and 2400 h). Prawns in the oncedaily treatment exhibited the best survival, final weight, yield, and food conversion ratio. A oncedaily frequency was then used to test the effects of supplementing the Purina diet with beef liver, squid mantle, codfish muscle, or cooked (scrambled) chicken egg, at 20% dry weight of the total diet. Prawns fed the beef liver supplement had the best final weight and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号