首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RAPD markers were developed for octoploid X Tritordeum (amphiploid Hordeum chilense × Triticum aestivum) and its parents. Two bread wheats, two H. chilense accessions and the two tritordeums synthesized with them were used. A total of 41 arbitrary decamer primers were tested, yielding 190 products that could be assigned to wheat, 185 to H. chilense and 108 that were nonspecific (present in wheat and barley). A total of 44 products were specific to one H. chilense line and 33 to the other 16 of the former were located on the chromosomes using a set of H. chilense in T. aestivum addition lines. The potential of RAPDs for developing addition lines or the detection of introgressions of H. chilense in bread wheat is discussed.  相似文献   

2.
In order to increase variability in the octopioid tritordeum a new octoploid tritordeum has been synthesized after colchicine doubling of the chromosomes of the Hordeum chilense × Triticum aestivum ssp. sphaerococcum hybrid. The amphiploid showed full pairing in 30 % of the pollen mother cells, The fertility was higher than in previous tritordeums (1.65 grains per spikelet and 43.00 grains per spike). Hybrids between the octoploid tritorceums were sterile. However, hexaploid × octopiold trhordeum hybrids were fertile and secondary tritordeums were extracted with increased fertility.  相似文献   

3.
With the aim of widening the genetic variability of hexaploid tritorceum through the wheat parents, amphiploids between Hordeum chilense and Triticum turgidum ssp. dicoccoides, ssp. georgicum, and Cody, polonicum have been synthesized. The meiotic behaviour and the fertility were examined in these amphiploids. The morphology of the amphiploids in comparison to their wheat parents was described.  相似文献   

4.
The genome of bread wheat, AABBDD, was substituted into the cytoplasm of Hordeum chilense by repeated backcrossing to produce alloplasmic lines. The aim of this work was to investigate the effect of H. chilense cytoplasm on agronomic traits in common wheat. Three cytolines were developed. The alloplasmic nature of these lines was confirmed using chloroplast simple‐sequence repeat markers. Each cytoline was compared with its respective euplasmic control for agronomic performance during 2 years of field trials. The interaction between H. chilense cytoplasm and common wheat genome greatly affected most of the traits evaluated. Among them, alloplasmic lines showed delayed anthesis date, lower yield and lower plant height. These effects are similar to those caused by Aegilops cytoplasm. The main conclusion of this work is that H. chilense cytoplasm is of limited value for wheat breeding.  相似文献   

5.
Hexaploid tritordeum, the amphiploid Hordeum chilense x Triticum turgidum conv. durum has a higher grain carotene content than durum wheat. In order to decide strategies for introgressing this character into durum wheat, the effect on the carotene content of tritordeum synthesized with H. chilense and durum wheat differing in carotene content was analysed. Carotene content was evaluated in 35 primary tritordeum lines and their parents, 27 H. chilense accessions and 19 durum wheat cultivars. Some amphiploids have either one barley or wheat parent in common. In general, the influence of H. chilense is more important than that of wheat in the amphiploid carotene content. Nevertheless, the interactions between both parents on the amphiploid carotene content are also important.  相似文献   

6.
Summary Biochemical, karyological and morphological characterization of Triticum turgidum conv. durum/Hordeum chilense addition forms was carried out. Nine H. chilense isozyme markers, belonging to ACPH, CPX, EST, PGM, 6-PGD, GOT and MDH enzymatic systems, were used to identify the chilense chromosomes in 50 monosonic or polysomic addition forms. Several morphological traits were associated with the presence of chilense chromosome in the complement. The transmission frequencies of addition chilense chromosomes were also investigated in the offspring of various crosses.  相似文献   

7.
R.S. Chauhan  B.M. Singh 《Euphytica》1997,96(3):327-330
Reactions of Hordeum chilense accessions H1 and H7 and their amphiploids, HT8, HT9 and HT28 (named as tritordeum) alongwith wheat lines, T22, T24 and T59 used in their synthesis, were studied for resistance to the Karnal bunt pathogen (Tilletia indica) of wheat. Both the accessions of H. chilense and one tritordeum line, HT8, were rated as highly resistant with zero co-efficient of infection, whereas the other two tritordeum lines HT28 and HT9 were rated as moderately susceptible and susceptible with 5.2 and 10.5 co-efficients of infection, respectively, compared to reaction of the wheat lines involved in their synthesis. Karnal bunt infection was maximum on the susceptible wheat cultivar WL-711 with 24.3 co-efficient of infection. All the wheat lines involved in the synthesis of amphiploids were susceptible to Karnal bunt except, T59 (Triticum sphaerococcum) (6X), which showed a moderate level of resistance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The genome of Tritordeum, AABBHchHch, was substituted into the cytoplasms of Triticum aestivum, T. turgidum and Hordeum chilense by repeated back-crossing to produce alloplasmic lines. This substitution did not greatly affect the characters studied, except yield per plot and fertile ears per plant, which were lower on T. turgidum cytoplasm. Cytoplasm from either H. chilense or T. aestivum could be used for breeding tritordeum.  相似文献   

9.
Hybrid necrosis in Triticum is known to be caused by the interaction of two complementary dominant genes. In the present paper, the genotypes for hybrid necrosis of 64 winter wheat cultivars are presented. 41 cultivars were found to possess the Ne2 necrosis gene, whereas 23 cultivars were non-carriers. The Ne1 gene was not found in any of the cultivars analyzed.  相似文献   

10.
The diploid hybrid Hordeum californicum×Secale vavilovii and the tetraploid hybrid H. parodii× S. anatolicum, were obtained through embryo rescue techniques at relative frequencies of 0.70 and 5.3 % of pollinated florets, respectively. Means of 11.741 + 1.1311 per cell at metaphase I of meiosis were obtained in the diploid hybrid and 14.741+ 6.3l11+ 0.22111+ 0.02IV in the tetraploid hybrid with a maximum of 6.01+ 4.011 and 9.011+2.0111+ 1.0IV respectively. In the diploid hybrid there was preponderance of intragenomic pairing (86.7 %). Increased pairing in the tetraploid hybrid was attributed to autosyndesis among Hordeum chromosomes.  相似文献   

11.
The reaction of tritordeum and its Hordeum chilense and Triticum spp. parents to common bunt incited by Tilletia tritici were determined in field experiments. H. chilense accessions were very resistant, and durum wheats exhibited high to moderate levels of resistance. Conversely, bread wheats were highly susceptible. Resistance from H. chilense was expressed in the amphiploids, although the level of resistance was partially diluted at higher ploidy levels. Hexaploid tritordeums were immune to the disease; some infection was observed among the octo-ploids but at much lower levels than in their respective wheat parents.  相似文献   

12.
Chromosomal location of genes for carotenoid pigments in Hordeum chilense   总被引:1,自引:0,他引:1  
In wheat, carotenoids are very important for end‐use quality in noodle production. Hexaploid tritordeums are the amphiploids derived from the cross between a wild diploid barley (Hordeum chilense) and durum wheat. Hexaploid tritordeums exhibit a higher carotenoid content than their respective wheat parents. The cross between H1 and H7 lines of H. chilense was used in order to map quantitative trait loci (QTL) for carotenoid content. Multiple interval mapping identified one QTL mapped on chromosome 2. This knowledge is helpful to transfer this favourable trait to other cereal genomes because of the high crossability of H. chilense with other members of the tribe Triticeae.  相似文献   

13.
×Tritordeum sp. (Ascherson et Graebner) is the amphiploid obtained after chromosome doubling of hybrids between Hordeum chilense (Roem. et Schult.) and diploid, tetraploid or hexaploid wheats. Tritordeums have consistently higher carotenoid pigment contents than durum or bread wheat. Two distinct H. chilense accessions (used for the synthesis of tritordeum) were analysed for this trait. The chromosomal localization of the genes coding the ability of H. chilense to increase the carotene content of wheat were carried out using two sets of wheat- H. chilense addition lines. The a arm of chromosome 7Hch is proposed to be responsible for the high carotene content in tritordeum. The implication of this finding in wheat breeding is discussed.  相似文献   

14.
Hordeum chilense is a wild barley species that has a high degree of genetic variability and significant potential for use in plant breeding. To establish a series of trisomics in H. chilense (2n = 14), plants with 2n + 1 chromosome numbers were isolated from the progenies of selfed triploid plants. Based on both fluorescent in situ hybridization with pAs1 and pTa71 repetitive DNA probes and C-banding patterns, seven different trisomics were tentatively identified. Primary trisomic plants were for chromosomes 1Hch, 4Hch, 5Hch, 6Hch and 7Hch. A secondary trisomic carrying a 5HchS-5HchS isochromosome as the extra chromosome and a trisomic for chromosome 3Hch heterozygous for the 3HchS-4HchL and 4HchS–3HchL interchange were identified. The trisomic for chromosome 1Hch cannot be phenotypically distinguished from the diploid. The rest of the trisomic types were distinguishable from the diploid by their morphological characteristics (relatively poor vigour, decreased size and shorter spikes) but they were morphologically indistinguishable from each other. The frequencies of trisomics among the progenies derived from self-fertilization of these aneuploids ranged from 10.7% to 37.5%, with an average frequency of 26.1%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
F. Ahmad  A. Comeau 《Plant Breeding》1991,106(4):275-283
New intergeneric hybrids were obtained between Triticum aestivum L. cv. Tukuho’ (2n = 6x = 42, AABBDD) and Agropyron fragile (Roth) Candargy PGR 8097 (2n = 4x = 28, PPPP) at a frequency of 1.06 %, through the use of direct embryo culture and in ovulo embryo culture. Such hybrids could be used to transfer barley yellow dwarf virus (BYDV) resistance and winterhardiness into bread wheat. The somatic chromosome number in all the hybrid plants was 2n = 5x = 35, as expected. Considerable variation in chromosome pairing was observed among the different hybrid plants. Average meiotic chromosome configuration at metaphase I was 17.29 Is + 6.57 rod Us + 1.97 ring Us + 0.18 III + 0.03 IV + 0.002 VI. The high level of chromosome pairing in some F1 hybrids was attributed to Ph-suppressor gene(s) present in A. fragile. The hybrids could not be backcrossed to wheat, but amphiploid seeds have been obtained by colchicine treatment.  相似文献   

16.
M. Q. Yu    G. B. Deng    X. P. Zhang    X. R. Ma  J. Chen   《Plant Breeding》2001,120(4):285-289
Chromosome pairing was analysed in F1 hybrids of the wheat cultivar ‘Chinese Spring’ (CS) and its ph1b mutant (CSphlb) with Dasypyrum villosum. On average, 1.61 chromosomes per cell paired in the hybrid CS ×D. villosum, but 14.43 in the hybrid CS ph1b×D. villosum. Genomic fluorescence in situ hybridization (GISH) revealed three types of homoeologous association between wheat (W) and D. villosum (D) chromosomes (W‐D, D‐W‐W and D‐W‐D) in pollen mother cells of the CS ph1b×D. villosum hybrid, and only one type (W‐W), in the CS ×D. villosum hybrid. Both F1 hybrids were self‐sterile. The seed set of the backcross of CS ×D. villosum with CS was 6.67% and that of CS ph1b×D. villosum with CS or CS ph1b was only 0.45%. The chromosome number of BC1 plants varied from 48 to 72. Translocations of chromosome segments or entire arms between wheat and D. villosum chromosomes were detected by GISH in the BC1 plants from the backcross of CS ph1b×D. villosum to CS ph1b.  相似文献   

17.
L. H. Li  Y. S. Dong 《Plant Breeding》1994,112(2):160-166
Callus induced from immature inflorescences of the partially self-fertile hybrids (2 n = 35; ABDPP) between Triticum aestivum (2n = 42; AABBDD) and Agropyron desertorum (2n = 28; PPPP) led to the regeneration of 88 plants on MS medium supplemented with 2 mg/l of 2,4-D. These regenerants were used to investigate somaclonal variation and to obtain more selfed derivatives. Immature inflorescences at the stage of developing floral primordia gave the best response in terms of callus induction and plant regeneration. The regenerants exhibited great variability for most morphological traits. Although the regenerants did not exhibit variation in chromosome number, they did show a higher degree of meiotic instability than the initial hybrid. In particular, the regenerants gave much higher selfed seed-set (5.49 %) than the donor hybrid (0.46 %), so that a total of 484 selfed seeds were obtained.  相似文献   

18.
Z.-Q. Liu    Y. Pei  Z.-J. Pu 《Plant Breeding》1999,118(2):119-123
Random amplified polymorphic DNA (RAPD) markers were generated from 20 wheat, Triticum aestivum lines. Fifty-four fragments generated by six primers of a 10-mer arbitrary sequence were used to study their potential power in differentiating parents with different characteristics and predicting the yield performance of hybrids produced from these parents. Experimental results showed that the 20 wheat lines were divided into four groups. Group I was characterized by more grains per spike, group II by heavy grains and group III by more spikes per unit area and short plants; group IV was similar to group III but had a much higher biomass yield and grain yield. Hybrids from parents in different groups were generally superior to most hybrids from parents in the same group. Both yield performance and heterosis of hybrids from parents between group I and group III were much better than those of other intergroup hybrids. These results suggest that, based on RAPD markers, it is possible to differentiate wheat lines with different performances and that the classification of parents from these markers is of predictive value for developing superior hybrids. However, genetic distance (GD) based on RAPD markers was not significantly correlated with hybrid performance and heterosis. It appears to be impossible to predict hybrid performance from GD itself.  相似文献   

19.
王洪刚  孔令让 《作物学报》1996,22(4):508-512
以八倍体小偃麦小偃693和普通小麦烟农15的六个不同杂种世代为材料,研究了自交和顺交对杂种后代染色体和性状分离的不同影响。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,但回交比自交能使后代中偃麦草染色体丢失更快;回交后代PMCMI染色体构型较为简单,平均交叉结数减少,回交次数过多不利于偃麦草与普通小麦染色体发生遗传重组;自交和回交世代中小偃麦类型、中间类型和小麦类型出现  相似文献   

20.
Hexaploid tritordeum is the amphiploid derived from the cross between Hordeum chilense and durum wheat. The storage proteins synthesized in the Hch genome influence the gluten strength of this amphiploid. The D‐prolamins of H. chilense have been analysed by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis with and without urea. A new locus named GluHch3 has been detected. The effects of allelic variation at this locus on gluten strength, as measured the sodium dodecyl sulphate sedimentation test, were determined using seeds of 92 lines from a cross of two hexaploid tritordeum lines. Two allelic variants have been detected for this locus, which have shown different effects on gluten strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号