首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
柑橘地土壤大孔隙与优先流的关系研究   总被引:1,自引:1,他引:0  
以重庆市江津区10和20a林龄的柑橘地为研究对象,应用优先流染色法和室内图像提取技术,土壤水分穿透曲线及Poiseulle方程综合分析土壤大孔隙与优先流的关系。结果表明,大孔隙使染色区的水分渗透速率较非染色区提高了1.48倍以上。柑橘地大孔隙孔径范围在0.3~1.7mm,半径大于0.7mm的土壤大孔隙是形成优先流路径的主要孔径范围。  相似文献   

2.
以重庆四面山草地为研究对象,利用染色示踪法观察优先流的发生区域,采用水分穿透曲线和Poiseulle方程分析土壤大孔隙的数量、形态特征及其对优先流的影响。结果表明:研究地土壤剖面大孔隙呈现聚集态分布,孔径范围在0.3~2.2mm之间,其中半径大于1.3mm的大孔隙是优先流发生的主要通道。各孔径范围内染色区土壤大孔隙数量较未染色区高出1个数量级,大孔隙数量随土壤深度增加而减小,这样的分布特征有利于水压梯度的形成,有助于水分的快速垂直运移。染色区较非染色区有更大的稳定出流速率,约1.12~2.02倍,这得力于大孔隙数量和密度上的优势,这一优势极大地影响了优先路径分布和优先流发生。  相似文献   

3.
桂东南花岗岩丘陵区不同土地利用方式土壤大孔隙特征   总被引:2,自引:1,他引:1  
根据水分穿透曲线和Poiseuille方程,定量研究桂东南花岗岩区6种(次生林、柑橘园、玉米地、杉木林、撂荒地和桉树林)不同土地利用方式土壤大孔隙半径范围、数量及分布情况,分析不同土地利用方式对土壤大孔隙特征的影响。结果表明:(1)不同土地利用方式土壤水分穿透速率存在差异,土壤水分出流速率短时间内可达到稳定状态,柑橘园不同土层之间稳定出流速率变化较大;(2)不同土地利用方式的土壤大孔隙半径为0.4~2.4 mm,主要集中分布在0.4~1.2 mm,均值为0.85 mm,<1.2 mm的小半径孔隙数量较多;(3)随着土层深度的增加和孔隙半径的减小,土壤大孔隙数量总体表现为随土层深度的增加而逐渐减少,大半径孔隙较少,小半径孔隙较多;(4)不同土地利用方式的土壤大孔隙仅占土壤体积的0.36%~6.38%,但其土壤大孔隙平均体积与稳定出流速率、土壤大孔隙平均半径与饱和导水率均呈极显著相关关系,分别决定了稳定出流速率79.92%和饱和导水率36.45%的变异。  相似文献   

4.
四面山2种林地大孔隙特征与优先流关系研究   总被引:1,自引:1,他引:0  
以重庆四面山张家山林区针阔混交林和楠竹林为研究对象,采用室外染色和水分穿透曲线理论,结合Poiseulle方程和流量方程研究大孔隙与优先流之间的关系。结果表明,混交林和楠竹林两种林地在0-10cm层稳定出流速率均达到0.7ml/s以上,10cm以下2种林地染色区和未染色区稳定出流速率均逐渐下降。针阔混交林土体染色区出流速率是未染色区出流速率2.42~2.84倍,而楠竹林达到3.0~3.14倍。针阔混交林和楠竹林的大孔隙孔径范围在0.4~3.2mm,其中半径大于1.5mm大孔隙是两种林地形成优先流的最主要孔径范围。  相似文献   

5.
北京昌平区农地土壤大孔隙特征   总被引:4,自引:0,他引:4  
研究在利用染色示踪法对北京昌平区农地的优先流发生区进行判断的基础上,采用Photoshop软件和土壤水分穿透曲线对该农地的大孔隙数量与分布特征进行量化分析。结果表明:试验农地的土壤大孔隙半径主要集中在0.5~2.8mm之间,平均半径为0.695~0.711mm,大孔隙率为5.10%~22.06%。随着土壤深度的增加,染色区在土壤剖面上呈现出集中分布的特征,同时,染色面积比例逐渐减小。各土层染色区的稳定出流速率是未染色区的1.39~2.05倍,在大孔隙各孔径范围内,染色区的数量是未染色区的1.33~3.57倍。大孔隙的垂直分布表现出上层多、下层少的特点,其中半径小于1.5mm的孔隙占98%以上。染色区在大孔隙密度、大孔隙连通性上的优势能够使其更快地进行水分运输并更早达到稳定,因而也就更易成为优先流发生区。  相似文献   

6.
根系对浅表层土大孔隙分布特征及饱和渗透性的影响   总被引:2,自引:1,他引:1  
根系的存在对土壤大孔隙的产生及渗透特性有着重要影响,为研究浅表层土体中根系生物量与土壤大孔隙特征之间的数值关系,在缙云山针阔混交林中选取杉木单株植物根际土体为研究对象,进行染色示踪试验及根系生物量测量,取样后在室内采用自制定水头装置进行水分穿透试验和渗透试验。结果表明:(1)不同土壤剖面和不同土层深度的土壤染色面积不同,距离树木主干位置越远的剖面染色面积越大,而距离主干位置越近的剖面染色面积越小,且随着土层深度的增加整体上每个剖面上染色面积比均下降;(2)4个剖面整体表现出随土层深度的增加根系数量减少的趋势,根系直径主要集中在0.2~10 mm,且0.2~1 mm径级的根系较多;(3)染色区较未染色区具有更大的稳定出流速率,4个剖面染色区的出流速率分别为未染色区的1.97,1.81,1.77,1.70倍,且随着土层深度的增加大孔隙数量减少,大孔隙的半径分布范围在0.3~1.7 mm;(4)大孔隙度和根系生物量与渗透系数呈正相关关系,大孔隙度决定了渗透系数94.5%的变异,根系生物量决定了渗透系数87.4%的变异。  相似文献   

7.
普洱茶种植对滇南红壤大孔隙的影响   总被引:3,自引:0,他引:3  
杨坤  赵洋毅  王克勤  段旭  韩姣姣  李耀龙 《土壤》2019,51(3):586-593
为探讨滇南典型红壤下普洱茶种植对土壤大孔隙的影响,以灌草地和茶地为研究对象,采用染色示踪法观察土壤剖面,运用Photoshop CS 5、Image pro Plus 6.0软件进行图像处理,利用土壤水分穿透曲线和Poiseulle方程研究了该地区的大孔隙特征。结果表明:茶地在耕作层大面积染色中,染色深度可达土层40 cm深度,灌草地于土层2.8 cm深度开始出现大孔隙流,灌草地比茶地更易发生大孔隙流;样地大孔隙主要集中在当量孔径0.4~2.5mm,其中茶地和灌草地当量孔径0.4~1.0 mm大孔隙密度分别占95.2%和95.5%,当量孔径1 mm的大孔隙密度较低,且灌草地大于茶地;大孔隙密度分布为10~20 cm土层最高,随着土层深度增加依次递减,整体上土壤大孔隙密度关系为灌草地茶地;土壤大孔隙不同当量孔径密度和染色面积比与土壤饱和导水率呈现显著性相关关系,当量孔径1mm的大孔隙仅占4.61%,但控制了饱和导水率90.8%的变异。茶地相较于灌草地土壤结构遭到破坏,水分向下运移速率慢,渗透量减小,致使水土流失加重。  相似文献   

8.
为探明植物根系特征对土壤大孔隙的影响,以红河干旱河谷典型地段玉溪新平县龙潭箐小流域内林地、荒草地、园地和农地4种地类下植物根系和土壤为研究对象,基于水分穿透曲线法和经典统计分析,定量分析了植物根系特征对土壤大孔隙形成的影响。结果表明:(1) 4种地类土壤水分穿透曲线的稳定出流速率表现为林地园地荒草地农地,各地类间显著差异(p0.05),土壤每层水分穿透曲线发展趋向一致,均为先增加后趋于稳定,表层出流速率均大于深层;(2) 4种地类土壤大孔隙当量半径在0.3~3.7 mm范围内,其中,0.3~1.0 mm的密度最大,占大孔隙总数量的96%以上,大于1.0 mm的密度最小,只占小于大孔隙总数的4%;大孔隙密度为1.383×10~4~2.477×10~4个/m~2,4种地类中大孔隙密度均随着土层深度的增加而逐渐减少,整体趋势表现为林地园地荒草地农地;(3)随着土层深度的递增4种地类样地中植物根长密度及根重密度都表现为减小的趋势;细根系(根径d1 mm)对土壤大孔隙的形成有高贡献度,而相对较粗的根系(根径d1 mm)对土壤大孔隙的产生贡献度较低;(4)农地、园地与林地土壤大孔隙率和0d≤5 mm根径范围内的根重密度相关性极显著(p0.01);荒草地则是跟3d≤5 mm根径范围内的根重密度显著相关(p0.05)。细根系显著影响土壤大孔隙的形成,而粗根系的影响较低。  相似文献   

9.
辽西半干旱区森林土壤大孔隙特征研究   总被引:3,自引:0,他引:3  
根据水分穿透曲线和Poiseulle方程,研究了辽西半干旱区8种植被类型下土壤大孔隙的半径范围、个数及分布情况。结果表明,不同植被下土壤大孔隙半径分布在0.5~2.3mm,加权平均半径在0.61~1.85mm,均值为0.95mm,均值为粗通气孔隙标准的近2倍,>1.4mm的特大孔隙仅为大孔隙总数的2.73%,0.5~1.4mm的孔隙占97.27%,表现出大半径孔隙少而小半径孔隙多的特点。不同植被下土壤大孔隙度在0.95%~5.24%,仅占土壤体积很小的一部分,但大孔隙平均半径与稳定出流速率和饱和导水率之间有显著线性相关关系,决定了稳定出流速率71%的变异和饱和导水率50%的变异。  相似文献   

10.
黑龙江省水源地优先流区与基质流区土壤特性分析   总被引:3,自引:1,他引:3  
以黑龙江省东部山地天然次生林为研究对象,采用野外染色示踪和统计分析相结合的方法,应用Photoshop Cs5,Image pro Plus6.0图像处理软件,分析天然次生林下优先流区和基质流区土壤特性差异。结果表明:黑龙江省东部山地天然次生林土壤优先流现象极为明显,主要以大孔隙流、指流以及管流为主。表层土壤孔隙间的连通性好,水分运动过程变得相对均匀,不易于发生优先流。10—45cm土层范围内,染色路径不再整体均匀扩散,表现出明显的优先运移特征,产生优先流,并表现出了一定的环绕特性。从土壤表层到底层,染色区非毛管孔隙度比未染色区高0.3%~2.0%。非毛管性孔隙可视为大孔隙,是产生优先流的主要原因。0—40cm土层范围内,染色区土壤饱和持水量、毛管持水量和田间持水量均高于未染色区,染色区土壤容重均低于未染色区。20—40cm是该地区天然次生林土壤产生"优先路径"最明显的土层。在此范围内优先流区土壤入渗速率明显大于基质流区,证明该区土壤特性差异是黑龙江省东部山地天然次生林优先流产生的主要原因。  相似文献   

11.
大孔隙和优先水流及其对污染物在土壤中迁移行为的影响   总被引:33,自引:3,他引:33  
本文研究了冻融和干湿交替过程对土壤大孔隙及由其导致的优先水流形成的作用,以及表面活性剂直链烷基苯磺酸盐在水稻和大豆土壤中的优选迁移。  相似文献   

12.
土壤水非均匀流动的碘-淀粉染色示踪研究   总被引:9,自引:1,他引:8  
盛丰  方妍 《土壤》2012,44(1):144-148
在壤土和粉质黏土条件下采用碘-淀粉染色示踪方法分别开展了6个和4个不同土壤初始含水率和入渗水量的示踪试验,通过分析入渗深度和染色面积分布模式来研究入渗条件(土壤初始含水率、入渗水量和土壤质地)对土壤水非均匀流动特征的影响。研究表明:①土壤初始含水率升高时,土壤水入渗深度增大,但土壤初始含水率对染色面积分布模式无明显影响;②土壤水入渗深度随入渗水量的增大而增大,但入渗水量的增大对土壤水入渗深度增大的影响有限;③当入渗水量较小时,土壤水流运动以优先流为主;随着入渗水量的增大,土壤水流运动逐渐转变成以基质流为主的流动形态;④土壤水在细质地土壤(粉质黏土)中运动具有更高的非均匀程度,非均匀流通道总宽度较窄。  相似文献   

13.
为探究低山丘陵地区优先流形态特征,该研究以南方典型低山丘陵区—江苏省南京市江宁区三种典型土地利用方式(水田、旱地和林地)为研究对象,采用野外亮蓝染色示踪试验结合室内图像处理的方法,定量分析不同位点(田内、过渡带、田埂)土壤染色面积比、染色路径和优先流类型差异。结果表明:各土地利用方式下土壤染色面积比(stained area ratio,SAR)随着土层深度的增加急剧降低,水田平均SAR高于旱地和林地,SAR差异主要体现在20~40 cm,不同位点平均SAR总体表现为田内高于过渡带和田埂;各样地不同位点染色路径数(staining path number,SPN)随着土层深度的增加先增大后减小,整个剖面平均SPN林地最多,且大部分分布于田内,水田和旱地各位点平均SPN分布则相反。各土地利用方式下田内、过渡带水流类型0~15 cm为均质流/非均质指流,15 cm以下均为高相互作用大孔隙流,田埂水流类型为高相互作用大孔隙流。水田的SPN和SPW<4 mm占比(SPW:stained path width,染色路径宽度)最大;不同位点下田内SAR、SPW较其余两个位点大;除SPW<...  相似文献   

14.
北京昌平区农地土壤优先流影响硝态氮运移的试验分析   总被引:4,自引:0,他引:4  
为了探讨在优先流影响下农地土壤水分与溶质的运移规律,以昌平农地土壤为研究对象,通过原状土取样和分层填充制备实验土柱,模拟存在优先流和平衡入渗2种水分下渗过程,分析优先流对农地土壤中硝态氮运移的影响。结果表明:相较于平衡入渗,存在优先流的土壤中硝态氮运移的速率更快、数量更多,且其穿透曲线表现出拖尾现象。优先流的存在会使土壤的水分出流速率达到平衡入渗过程的1.48~2.69倍,且波动程度较大;受其影响,硝态氮运移表现出快速、大量下渗的特征,原状土柱中NO3-的穿透时间为12 h,此时的孔隙体积为0.36,相较于填充土柱分别减少了57%和27%。此外,原状土柱中以NO3-标记的优先流占水流总量的43.83%,引起的NO3-累计淋出量占总量的97.60%,这表明有限的优先流流量能够引起绝大部分的硝态氮运移。土壤优先流还使得其穿透曲线表现出拖尾现象,这可能是由于优先流和基质流之间下渗速率的不平衡造成的。  相似文献   

15.
紫色土坡耕地土壤大孔隙流的定量评价   总被引:4,自引:0,他引:4  
为阐明大孔隙丰富且孔径呈两极分化的紫色土坡耕地土壤大孔隙流的运移规律,通过室内土柱试验获取耕作层0~20 cm、非耕作层20~40 cm原状土柱和填装土柱的穿透曲线,分析饱和条件下土壤大孔隙流发生规律,并采用解析法CXTFIT软件拟合了水分优先运移参数,PFSP指标(大孔隙流引起的穿透曲线延展量与水动力弥散作用及两区作用引起的延展量的比值)定量评价土壤大孔隙流的贡献率。研究结果表明:1)以填装土柱水流为平衡基质流计算,耕作层0~20 cm原状土柱中大孔隙流的导水贡献率为66.2%~68.5%,而Br-累积淋出量占总淋出量的62.3%~66.1%。对于非耕作层20~40 cm,土壤大孔隙流导水贡献率为0.2%~1.7%,而Br-随大孔隙流运移的比例却达14.5%~20.5%。说明耕作层土壤中大孔隙流现象远比在非耕作层土壤中更为显著;2)PFSP值结果表明大孔隙流作用对穿透曲线延展量的贡献率最大,两区交换运移作用次之,水动力弥散作用的最小。即PFSP值越大,大孔隙流对总水流通量的贡献率越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号