首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the ability of corticotropin-releasing hormone (CRH), lysine vasopressin (LVP), oxytocin (OT), and angiotensin II (AII) to stimulate adrenocorticotropin (ACTH) secretion from porcine anterior pituitary (AP) cells in vitro and to evaluate the role of protein kinase C (PKC) in the interaction between CRH and LVP. In this study, porcine AP cells were enzymatically and mechanically dispersed, cultured (150,000 cells/well) for 4 d, and then challenged with doses of various neuropeptides for 3 hr. CRH (10−7−10−10 M) was the most potent of the peptides tested in stimulating ACTH release from porcine AP cells. In fact, none of the other peptides consistently affected ACTH concentrations relative to basal levels. However, LVP potentiated CRH action, even though by itself, it failed to stimulate ACTH production. Neither OT or AII potentiated CRH-stimulated ACTH release from porcine AP cells. To determine whether the interaction between CRH and LVP was regulated partially by the protein Kinase C (PKC) pathway, we challenged AP cells in a 30-min incubation with 10−7 M staurosporine (ST), a treatment predicted to decrease PKC activity. Then, cells were washed and challenged with 10−9 M LVP, 10−9 M CRH, and 10−9 M CRH + LVP. Treatment with ST decreased (P < 0.05) CRH + LVP-stimulated ACTH release. To further demonstrate an interaction between protein kinase A (PKA) and PKC transduction pathways in the observed synergism between CRH and LVP to enhance ACTH secretion, we also challenged AP cells with 10−7 M phorbol 12, 13-myristate acetate (PMA) and 5 μM forskolin (FOR) for 3 hr. This treatment was predicted to enhance PKA and PKC activities, respectively, and thereby enhance ACTH concentrations. Challenging cells with FOR + PMA enhanced (P < 0.001) ACTH release above basal concentrations, but more important, it increased (P < 0.001) ACTH concentration above that elicited by either drug given alone. Taken together, our in vitro studies support the conclusion that CRH is the principal regulator of ACTH secretion in the pig. In contrast to the results in most other species evaluated, vasopressin alone did not affect ACTH release. However, LVP can enhance the effectiveness of CRH in releasing ACTH, and this enhancement appears to rely, at least in part, on the activation of the PKC signal transduction pathway.  相似文献   

2.
Previously it has been shown that androgen suppresses transportation-induced increases in plasma adrenocorticotropic hormone (ACTH), possibly by suppressing the secretion of corticotrophin releasing hormone (CRH) or arginine vasopressin (AVP) from the hypothalamus, or secretion of ACTH from the pituitary gland. The aim of the present study was to examine androgen target sites in the caprine diencephalon and pituitary gland using immunohistochemical methods. The androgen receptor (AR) was expressed strongly in the bed nucleus of the stria terminalis, the medial preoptic area, the arcuate nucleus, the ventromedial hypothalamic nucleus and the suprachiasmatic nucleus in the diencephalon. Between 8% and 11% of CRH and AVP neurons in the paraventricular hypothalamic nucleus (PVN) expressed AR. In the pituitary gland, 7.1% of corticotrophs expressed AR. The results are consistent with the proposal that androgen acts directly and indirectly on CRH and/or AVP neurons in the PVN. The possibility of a direct action of androgen on the corticotrophs in the pituitary gland was also considered.  相似文献   

3.
The objective of the present study was to evaluate the temporal aspects associated with corticotropin-releasing hormone (CRH) and vasopressin (VP) stimulated bovine adrenocorticotropic hormone (ACTH) secretion in vitro and in vivo. For the in vitro studies, bovine anterior pituitary glands were enzymatically dispersed to establish primary cultures. On day 5 of culture, cells were challenged for 3 h with medium alone (Control) or various combinations and concentrations of bovine CRH (bCRH) and VP. Both CRH and VP each increased (P < 0.05) ACTH secretion. Maximal increases in ACTH secretion occurred in response to 0.1 microM CRH (5.5-fold) and 1 microM VP (3.7-fold), relative to Control cells. The in vivo portion of the study examined possible temporal differences in the activation of the pituitary-adrenal axis by CRH and VP. Jersey cows were randomly assigned to one of four groups (n = 8 cows/group): (i) Control (saline); (ii) bCRH (0.3 microg/kg BW); (iii) VP (1 microg/kg BW) and (iv) bCRH (0.3 microg/kg BW) + VP (1 microg/kg BW). Jugular blood samples were collected at 15-min intervals for 4 h pre- and for 6 h post-treatment; samples were also taken at 1, 5 and 10 min post-treatment. Plasma concentration of ACTH did not differ among treatment groups for the 4-h pre-treatment period. At 1 min post-treatment, bCRH + VP, VP and bCRH increased ACTH secretion by 22.4-, 9.6- and 2.2-fold, respectively, relative to Control (32.7 +/- 7.2 pg/ml). Maximal plasma concentration of ACTH occurred at 5, 10 and 15 min post-treatment for the VP (1017.7 +/- 219.9 pg/ml), bCRH + VP (1399.8 +/- 260.1 pg/ml) and bCRH (324.8 +/- 126.2 pg/ml) treatment groups respectively. Both the in vitro and in vivo data demonstrated that while VP acutely activates the bovine pituitary-adrenal axis, CRH-induced ACTH secretion is slower in onset but of longer duration. The present study also provides insight into the dynamics of ACTH and cortisol (CS) responsiveness to CRH and VP in cattle.  相似文献   

4.
In order to clarify the functional relationship between thyroid, adrenal and gonadal hormones, hypothyroidism was induced by administration of thiuoracil in adult male and female rats, and the effects of hypothyroidism on the adrenal and the gonadal axes were investigated in the present study. 1. The functional relationship between thyroid and adrenal hormones: Adrenal weights and corticosterone were lowered, whereas the secretion of ACTH, corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) increased in hypothyroid rats compared to euthyroid rats. These results indicate that hypothyroidism causes adrenal dysfunction directly and results in hypersecretion of CRH and AVP from the hypothalamus. 2. The functional relationship between thyroid and gonadal hormones: The pituitary response to LHRH was lowered, whereas the testicular response to hCG was not changed in hypothyroid rats. Hypothyroidism suppressed copulatory behavior in male rats. These results suggest that hypothyroidism probably causes dysfunction in gonadal axis at the hypothalamic-pituitary level in male rats. In adult female rats, hypothyroidism inhibited the follicular development accompanied estradiol secretion, whereas plasma concentrations of progesterone and prolactin (PRL) increased in hypothyroid female rats. Hypothyroidism significantly increased the pituitary content of vasoactive intestinal peptide (VIP) though it did not affect dopamine synthesis. These results suggest that hypothyroidism increases pituitary content of VIP and this increased level of VIP likely affects PRL secretion in a paracrine or autocrine manner. In female rats, inhibition of gonadal function in hypothyroid rats mediated by hyperprolactinemia in addition to hypersecretion of endogenous CRH.  相似文献   

5.
The presence of a receptor for calcitonin (CT) and the effect of chicken CT (cCT) on adrenocorticotropic hormone (ACTH) secretion stimulated by rat/human corticotropin‐releasing hormone (rhCRH) in the hen anterior pituitary were studied. The specific [125I]cCT binding component was present in the plasma membrane of hen anterior pituitary and this binding component had properties of a receptor which has binding specificity to cCT, reversibility, saturable binding, high affinity and limited capacity. When anterior pituitary cells were incubated in vitro, cCT increased the maximal secretion of chicken ACTH stimulated by rhCRH. These results suggest that CT may act directly on the anterior pituitary via its receptor binding and enhances the ACTH secretion by CRH.  相似文献   

6.
The present study examined the effect of transportation stress on hypothalamic–pituitary–adrenal axis responsiveness to tropic hormone stimulation and on abundance of corticotropin releasing factor (CRF) receptor R1 (CRFR1) and arginine vasopressin (AVP) receptor V3 (V3) mRNAs in the anterior pituitary (AP) of cattle. Holstein steers were transported for 10 h or used as non-transported controls (NTC). Blood samples were collected at start of transportation and every 1–2 h thereafter. To test AP responsiveness to tropic hormones, animals were challenged (i.v.) with CRF (0.5 μg/kg), AVP (1 μg/kg) or CRF plus AVP immediately after end of transportation and blood samples collected every 30 min for 3 h. The AP of animals transported for 0, 4 or 10 h were harvested for mRNA analyses. Plasma ACTH in transported animals increased within 1 h and remained elevated for 6 and 8 h versus NTC and 0 h values, respectively. Plasma concentrations of cortisol increased in response to transportation and remained elevated throughout the transport period. Injection of CRF or AVP to NTC animals increased plasma ACTH, but ACTH secretion in response to CRF or AVP was dramatically reduced in transported animals. ACTH secretion following co-injection of CRF and AVP tended to be less in transported animals, but was almost 100% greater than when secretagogues were administered separately. Despite decreased AP responsiveness to CRF and AVP, AP CRFR1 and V3 mRNAs were increased after 10 h transportation. Results indicate decreased AP responsiveness to CRF and AVP may regulate duration of ACTH secretion in response to transportation stress in cattle.  相似文献   

7.
Endocrine systems may be used as indicators of stress in two ways. The primary role of a hormone may be as part of the homeostatic response to a stimulus (e.g., adrenaline, corticosteroids). The amplitude of hormone response may correlate with the severity of the stimulus and any change indicate that the body is responding. Alternatively, a hormone may have a key role in normal body function (e.g., reproduction) and stress may deleteriously alter the hormone signal prevent normal function. This demonstrates that the stimulus was sufficiently severe that homeostatic mechanisms were unable to maintain normal function. Stress may effect reproduction by reducing both LH pulse amplitude and frequency. The LH surge may also be delayed. Several mechanisms may account for these effects both at the hypothalamus and pituitary. Corticosteroids have a broad, yet fundamental, role in homeostasis and have been used as primary indicators of stress for many years. Excess corticosteroid can be detrimental so the concentration is controlled via the hypothalamus-pituitary-adrenal (HPA) axis by multi-level feedback mechanisms. Under field and experimental conditions, after an initial large response prolonged stimulation leads to a gradually reducing plasma corticosteroid concentrations. This has been interpreted as a reduction in perceived stimulus severity or habituation to the stimulus and the animal deemed "less stressed" and its welfare "better." However, this reduction may be due to the intrinsic control mechanisms designed to prevent prolonged increases in corticosteroid concentrations. The stress signal at higher brain levels may still be present and the animal may still be experiencing the stimulus as aversive. Thus, the welfare interpretation of a corticosteroid concentration may differ during the time course of a stress response. A greater understanding of the mechanisms controlling corticosteroid secretion at each level of the HPA is required to determine what is the correct interpretation at any time point. To address these issues, we have used mathematical modelling to produce representations of possible control mechanisms at each level of the HPA. The starting point was to measure AVP and CRH concentrations in hypophysial portal blood and ACTH and cortisol concentrations in jugular blood in conscious sheep during 2h road transport (a cognitive stimulus). Modelling identified the signal inputs that were most likely to explain the secretion rate of each hormone. Modelling suggested that the reduction in AVP and CRH secretion observed during transport was most likely due to a reduction in stimulus input, with a significant contribution from cortisol negative feedback only on AVP secretion. At the pituitary level, ACTH secretion was stimulated more by AVP than by CRH (ratio 2.3:1) and there was also a stimulatory effect related to cortisol concentration at the time of sampling. However, the responses to both stimuli were curtailed by cortisol negative feedback and an inhibitory effect of prior CRH concentration. These are complex effects, but the modelling does suggest that while "stress" inputs may reduce over time hormone negative feedback is a major factor reducing hormone responses. When interpreting hormone data for animal welfare purposes, it is important not to interpret a reduction in hormone concentration due to intrinsic hormone control mechanisms as a reduction due to a decrease in the stress stimulus.  相似文献   

8.
促肾上腺皮质激素释放激素结合蛋白(CRH-BP)是37 ku的分泌糖蛋白,其结构与促肾上腺皮质激素释放激素(CRH)受体不同,但与CRH和尿皮素(UCN)具有很高的亲和力.CRH-BP具有重要的生物调控作用,对CRH诱导的脑垂体促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)的释放具有抑制作用.应激和代谢因素能改变体内CRH-BP的表达与调控,CRH-BP在生产分娩、炎性疾病、阿尔海默症(Alzheiner′s disease)和其他机能障碍等过程中也具有广泛的作用,这说明CRH-BP在大脑和脑垂体中可能还有其他潜在功能,研究CRH-BP在中枢和外周的作用及机理,有利于阐明其在病因学方面的潜在地位,有助于治疗CRH失调引起的机能紊乱.  相似文献   

9.
The aim for this study was to analyze responsiveness of the hypothalamo-pituitary-adrenocortical axis to exogenous bovine corticotropin-releasing hormone (bCRH) in calves. Two dose-response studies were carried out, using either bCRH alone (dose rates of 0, .01, .03, and .1 microg bCRH/kg live weight) or in combination with arginine-vasopressin (bCRH:AVP, 0:0, .1:.05, .5:.25, and 1:.5 microg kg live weight). The bCRH was administered i.v. to calves (n = 5 to 7 per dose) housed individually or in groups. Serial blood samples were obtained from before to 300 min after injection and analyzed for plasma ACTH and cortisol concentrations. The lowest bCRH dose that produced a response in all calves was .1 microg/kg. In the experiment using bCRH with AVP, increasing the bCRH dose from .1 to 1 microg/kg resulted in an increase in peak ACTH concentration (321 vs. 2,003 pg/mL) but did not significantly affect the peak cortisol concentration (37 vs. 40 ng/mL). The time to reach the peak cortisol concentration increased with the dose of bCRH with AVP (from 38 to 111 min). The ACTH and cortisol concentrations determined at any time between 20 and 90 min after bCRH injection were correlated to the integrated responses calculated as areas under the ACTH and the cortisol curves (r between .61 and .99, P<.05). In comparison with results from studies in humans, pigs, and sheep, our data showed that the pituitary of calves seems less sensitive to CRH than that of other mammals, despite a greater capacity to produce ACTH. Moreover, the calf's adrenals seem to have a lower capacity to produce cortisol than adrenals of other mammals. As in other species, it seems that AVP enhances the release of ACTH and cortisol. For CRH challenge to be used in calves, we suggest injecting at least .1 microg of bCRH/kg live weight either with or without AVP and taking several blood samples before injection and between 20 and 90 min after injection.  相似文献   

10.
Apelin and its mRNA are expressed in several tissues, including the supraoptic and paraventricular nuclei in the hypothalamus. Although apelin is reported to be involved in the regulation of fluid homeostasis, little is known about the postprandial dynamics of apelin in plasma and its regulatory effects on the anterior pituitary hormones of ruminants. Therefore, the aims of this study were to investigate the following: (1) changes in plasma apelin concentrations in response to food intake under conditions of hydration (free access to water) or dehydration (water restriction), and (2) the effects of intravenous administration of apelin on plasma concentrations of arginine-vasopressin (AVP), ACTH, GH, and insulin. In Experiment 1 with the use of goats, the postprandial plasma apelin concentration was significantly increased under the dehydration condition compared with the hydration condition, and this increase was accompanied by increased plasma concentrations of AVP and ACTH after 24 h of dehydration. In Experiment 2 with the use of sheep and hydration conditions, the intravenous administration of apelin ([Pyr(1)]-apelin-13; 0.5 mg/head) caused a tendency to increase or caused a significant increase in plasma concentrations of AVP, ACTH, GH, insulin, and glucose. On the basis of these findings, we concluded that apelin is involved in the feeding process, and it regulates endocrine functions in the anterior pituitary gland via AVP in ruminant animals.  相似文献   

11.
Glutamate is the dominant excitatory neurotransmitter in a large number of physiological processes including neuroendocrine regulation. Some pharmacological studies have shown that different subtypes of glutamate receptor, such as the N-methyl-D-aspartic acid (NMDA) and alpha-amino-3-hydroxy-5-methy-4-isoxazolepropionic acid (AMPA) receptors, are involved in stress-induced adrenocorticotropin (ACTH) and prolactin secretion. However, the roles of the respective glutamate receptors and the mechanism of ACTH and prolactin secretion during stress via these receptors have not been investigated in detail. In the present study, we evaluated the role of AMPA-type glutamate receptor in ACTH and prolactin regulation under restraint stress in adult male rats. Male rats pretreated with a selective AMPA receptor antagonist, 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX; 50 microg), through a lateral ventricle cannula were stressed by immobilization. Administration of NBQX inhibited ACTH and prolactin secretion in response to restraint stress. However, NBQX had no significant effects on the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, as measured by the accumulation of 3, 4-dihydroxyphenylalanine (DOPA). In addition, administration of NBQX suppressed stress-induced prolactin secretion in the male rats pretreated with alpha-MT, an inhibitor of dopamine synthesis, and infused with dopamine solution (2.5 microg/200 microl/10 min). These results indicated that the effects of NBQX on prolactin secretion might be mediated by non-dopamine mechanisms. The contents of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) in the median eminence (ME) of the male rats decreased during restraint stress; however, the fluctuations in CRH and AVP were eliminated by NBQX administration. These results suggest that stress-induced ACTH and prolactin release mediated by neurotransmission via AMPA receptors might be partly attributable to hypophysiotropic regulatory factors in the hypothalamus.  相似文献   

12.
We evaluated the effect of maternal obesity before and throughout gestation on offspring hypothalamic-pituitary-adrenal axis function. Multiparous Rambouillet by Columbia crossbred ewes were fed either 100% of National Research Council (NRC) recommendations (control, C) or 150% of NRC recommendations (obese, OB) from 60 d before mating until lambing. Ten lambs born to OB ewes (five males and five females), and eight lambs born to C ewes (three male and five female) were studied. From delivery to weaning lambs were maintained with their mothers, who were all fed 100% NRC recommendations. After weaning, all lambs were group housed and fed the same diet to meet NRC requirements. At 19 mo of age lambs were placed in individual pens and fed a pelletized diet to meet maintenance requirements. Jugular vein catheters were placed and 2 d later lambs received an intravenous (i.v.) adrenocorticotropic hormone (ACTH) challenge followed by an i.v. corticotropin-releasing hormone (CRH)/arginine vasopressin (AVP) challenge 1 d later. Thirty d later offspring were again catheterized and placed into metabolism crates for 2 d before receiving an isolation stress test. ACTH and cortisol responses to the isolation stress test and CRH/AVP challenge and cortisol responses to ACTH challenge were determined. Cortisol was quantified via radioimmunoassay and ACTH was quantified using an Immulite 1000; both were analyzed using repeated measures using the MIXED procedure of SAS. Offspring from OB ewes had elevated basal plasma ACTH and cortisol compared with C offspring before all three challenges (P < 0.05). Offspring from OB mothers tended (P = 0.06) to have a greater ACTH response after an i.v. CRH/AVP injection than offspring from C mothers (12,340 ± 1,430 vs 8,170 ± 1,570 area under the curve, respectively). Cortisol response to the CRH/AVP and ACTH challenges was not influenced by maternal nutrition (P = 0.46) and averaged 4.77 ± 0.2 μg/dL and 1.94 ± 0.01 μg/dL, respectively. The ACTH response following the isolation stress test was also similar (P = 0.82) for OB and C offspring (147 ± 20 pg/mL), and cortisol response during the isolation stress test was similar between C and OB offspring (P = 0.64, 5.25 ± 0.3 μg/dL). These findings suggest that maternal obesity before and during gestation does not affect stress responses by the offspring, but has an impact on hypothalamic-pituitary-adrenal sensitivity. The lack of differences in cortisol release under the influence of difference concentrations of ACTH during the CRH/AVP challenge could indicate adrenal dysfunction in OB offspring.  相似文献   

13.
OBJECTIVE: To evaluate the effects of mitotane administration on the function and morphology of pituitary corticotrophs in clinically normal dogs. ANIMALS: 12 clinically normal adult Beagles. PROCEDURES: Dogs were randomly assigned to the control group or the mitotane treatment group. In mitotane treatment group dogs, mitotane was administered for 1 month. In both groups, ACTH stimulation testing and corticotrophin-releasing hormone (CRH) stimulation testing were performed. Magnetic resonance imaging (MRI) of the pituitary gland and brain was performed in mitotane treatment group dogs before and after administration of mitotane. After CRH stimulation testing and MRI, dogs were euthanatized and the pituitary gland and adrenal glands were excised for gross and histologic examination. RESULTS: ACTH concentrations in mitotane treatment group dogs were significantly higher than in the control group dogs following CRH stimulation. Magnetic resonance imaging revealed that pituitary glands were significantly larger in treatment group dogs after administration of mitotane, compared with before administration. On gross and histologic examinations, the adrenal cortex was markedly atrophied. Immunohistochemistry revealed hypertrophy of corticotrophs in pituitary glands of mitotane treatment group dogs. CONCLUSIONS AND CLINICAL RELEVANCE: These findings indicate that inhibition of the adrenal cortex by continuous administration of mitotane leads to functional amplification and morphologic enhancement of corticotrophs in clinically normal dogs. In instances of corticotroph adenoma, hypertrophy of individual corticotrophs induced by mitotane may greatly facilitate enlargement of the pituitary gland and increases in ACTH secretion.  相似文献   

14.
Factors which induce the corpus luteum persistent (CLP) creation in animal ovaries are located in the hypothalamic-pituitary-ovarian axis and also in the uterus. In cows and likewise in others animals, various mediators of inflammatory reaction are released, mainly proinflammatory cytokines from inflamed uterus into the blood and lymph. Afterwards the cytokines cross the blood-brain barrier, and though the brain mediators alter the hormonal profile and amplitude pulses of the hormones release in the hypothalamus and the pituitary. Until it is known, that cytokines: IL-1, IL-2, IL-6, TNF-alpha and also IFN-alpha, administered into the median eminence, cause an increase in corticotrophin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) concentrations and decrease in the pituitary gland hormones secretion. The immune system, represented in the corpora lutea (CL) by numerous macrophages/monocytes, limphocytes and neutrophils plays an important role in the luteolysis process. The stimulating factor of the infiltration of these cells is an increased PRL level. The preovulatory increase in PRL level regulates the number of macrophages in newly-formed CL and later influences the number of these cells in the luteolysis period. The pulsatory release and high levels of the hypophyseal oxytocin (OT) and uterine PGF2alpha ensure the beginning and the normal course of the luteolysis period. The cytokines decrease OT concentration and disorder its pulsatory release from the pituitary. In these circumstances the quantity of the uterine PGF2alpha reaching ovaries, is insufficient to begin luteolysis. In the inflamed uterus, the elevation of PGE2 and PGI2 synthesis takes place. Both prostaglandins cause smooth uterine muscles relaxation and the dilatation of blood and lymph vessels in this organ. In these conditions, the blood and lymph outflow from the uterus is several times slower than in the control animals. The secretion of P4 and E2 from CLP, in comparison with control animals, is significantly lower. Decreased P4 concentration during the luteal phase of the estrous cycle, and E2 in the initiation of the luteolysis period, may cause the insufficient preparation of the endometrium for hypophyseal OT activity. Finally, we can assume that the creation of the CLP in the animal ovary is an exceptionally complex and not yet fully understood process.  相似文献   

15.
Cushing's disease caused by pituitary corticotroph adenoma is a common endocrine disease in dogs. A characteristic biochemical feature of corticotroph adenomas is their relative resistance to negative feedback by glucocorticoids. In this study, we examined gene expression related to adrenocorticotropic hormone (ACTH) production and secretion, and the negative feedback by glucocorticoids in canine corticotroph adenoma. We used resected corticotroph adenomas from 10 dogs with Cushing's disease. In order to investigate the alteration of gene expression between corticotroph adenoma and normal corticotrophic cells, ACTH-positive cells in the anterior lobe were microdissected using a laser-capture microdissection system, and mRNA levels of proopiomelanocortin (POMC), corticotropin releasing hormone receptor 1 (CRHR1), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11 beta hydroxysteroid dehydrogenase (11HSD) type 1 and type 2 were determined using real-time RT-PCR. POMC, CRHR1, and 11HSD2 mRNA levels in corticotroph adenoma were greater than those in normal corticotrophic cells (POMC, 5.5-fold; CRHR1, 4.9-fold; 11HSD2, 4.2-fold, P<0.01, respectively). MR and 11HSD1 mRNA levels in corticotroph adenoma were lower than those in normal corticotrophic cells (MR, 2.2-fold; 11HSD1, 2.9-fold, P<0.01, respectively). GR mRNA levels did not differ between corticotroph adenoma and normal corticotrophic cells. Our results may help to understand the increased ACTH production and the resistance to negative feedback suppression by glucocorticoids in canine corticotroph adenomas. These changes in gene expression may have a role in the growth of canine corticotroph adenoma, and help elucidate the pathophysiology of dogs with Cushing's disease.  相似文献   

16.
In the present paper the effects of nonapeptide hormones and of some of their chemical analogues were investigated on progesterone and testosterone production in granulosa cells of sow ovaries; the experiments were made in vitro. This objective was given by data on potential regulatory roles of nonapeptides at the level of hypothalamus, pituitary and reproductive organs. The goal of this experiment was to analyze the effects of various doses of oxytocin (OT), arginine-8-vasopressin (AVP), arginine-8-vasotocin and of some of their analogues on progesterone and testosterone production in vitro in granulosa cells of sow ovaries. The production activity of granulosa cells was investigated which were obtained from slaughtered sows without any changes in their reproductive process and abnormalities in their reproductive organs. Follicles of the size 2-5 mm without marked paleness in the early follicular phase were selected for aspiration. Granulosa cells with determined viability (more than 75%) and concentration (2 million/ml) were cultivated in defined culture conditions (37.5 degrees C, 5% CO2) after threefold resuspension and centrifugation of follicle fluid. These hormonal preparations were used in the experiments: pFSH, synthetic OT, synthetic AVP, synthetic AVP with antidiuretic effects and synthetic AVT. Progesterone and testosterone concentrations were analyzed radioimmunoanalytically using commercial kits of the Institute of Radio ecology and Nuclear Technology at Kosice. Statistically significant differences between the groups were evaluated by Student's t-test. The administered preparations were found to influence progesterone and testosterone production in dependence on the doses applied (Figs. 1-6). OT stimulation of progesterone production in granulosa cells indicated its regulatory role in relation to secretion of this hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The present studies were undertaken to examine the effect of tumour necrosis factor (TNF) alpha on prostaglandins (PGs) F(2alpha) and E(2) release by cultured porcine endometrial cells harvested on days 13-16 after oestrus in comparison to stimulation with oxytocin (OT) and luteinizing hormone (LH). A time-dependent effect of TNFalpha (10 ng/ml) on PGF(2alpha) release was observed in stromal and luminal epithelial cells. Moreover, TNFalpha increased PGF(2alpha) secretion from both endometrial cell types with effective concentrations of 1 (p < 0.05), 10 and 50 ng/ml (p < 0.01). The effect of TNFalpha (10 ng/ml) on endometrial PGF(2alpha) and PGE(2) release was compared with OT (100 nmol/l) and LH (100 ng/ml). All factors affected PGF(2alpha) secretion from stromal cells, however, the stimulation tended to be more potent after OT and LH (p < 0.01) than after TNFalpha (p < 0.05) treatment. In epithelial cells, only TNFalpha was able to stimulate PGF(2alpha) release (p < 0.001). PGE(2) secretion from stromal cells increased after incubation with TNFalpha and OT (p < 0.05). Only LH stimulated PGE(2) release from epithelium (p < 0.001), and its action was very effective when compared with TNFalpha or OT (p < 0.01). Summarizing, TNFalpha induces both PGs secretion from cultured porcine endometrium, but preferentially stimulates PGF(2alpha) release from luminal epithelial cells. Therefore, similarly to OT and LH, TNFalpha may be considered as a potential modulator of endometrial PGF(2alpha) production during luteolysis in the pig.  相似文献   

18.
19.
Previous data show that, in horses, plasma atrial natriuretic peptides (ANP and NT-ANP) remain elevated for a long time after exercise. To study whether exercise-induced changes in hormonal and fluid balance explain this, we measured plasma concentrations of COOH- and NH2-terminal atrial natriuretic peptides (ANP(99-129) and NT-ANP(1-98) together with arginine vasopressin (AVP), adrenocorticotrophin (ACTH), beta-endorphin, cortisol, catecholamines, and indicators of fluid balance in six Finnhorses after a graded submaximal exercise test on a treadmill. After exercise, AVP and catecholamines diminished rapidly; atrial peptides, ACTH, beta-endorphin, and cortisol remained elevated longer. ANP reached its peak value at 5 min and NT-ANP at 30 min post-exercise. At 60 min, ANP was still significantly increased and NT-ANP even above its level at the end of exercise. The different temporal patterns of ANP and NT-ANP are most probably explained by differences in their plasma half-lives. The post-exercise increase in NT-ANP indicates that the release of atrial peptides is stimulated during recovery after exercise. The rapid decrease in AVP and catecholamines suggests that these hormones do not explain the long-lasting increase in atrial peptides. Cortisol remained elevated longer and it may have contributed to some extent. After exercise, the packed cell volume (PCV) decreased more slowly than plasma total protein and electrolytes, which refers to a slow post-exercise return in blood volume. Taken together, the present results show that the long-lasting post-exercise increase in plasma atrial peptides in horses is most probably explained by elevated central blood volume and that the role of vasoactive hormones is small.  相似文献   

20.
OBJECTIVE: To evaluate the degree of pituitary exposure, completeness of hypophysectomy, and perioperative morbidity associated with an alternative paramedian surgical approach and excisional technique for the canine pituitary gland. STUDY DESIGN: Experimental imaging, surgical, and endocrinologic study. ANIMAL POPULATION: Nine healthy, purpose-bred Beagle dogs. METHODS: Surgical landmarks for the pituitary were determined by computed tomography (CT), and then using a ventral paramedian approach medial to the rami of the mandible, the pituitary was exposed and removed en bloc by manipulation and ultrasonic aspiration. Efficacy of the procedure was evaluated using endocrinologic and pathologic observation. RESULTS: CT images allowed the precise location of surgical landmarks for hypophysectomy. Statistically significant decreases in secretion of all measured pituitary hormones except adrenocorticotropic hormone (ACTH) occurred after hypophysectomy. Despite the absence of gross evidence of residual pituitary tissue, immunohistochemical staining revealed residual pituitary cells in the sella turcica of most dogs. CONCLUSION: CT imaging and a paramedian approach facilitated surgical access to the pituitary gland by a transoral technique; however, use of an ultrasonic aspirator removed all visible pituitary glands but left cellular remnants capable of ACTH secretion in the sella turcica. CLINICAL RELEVANCE: Although this technique did not result in complete hypophysectomy, clinical use in dogs with pituitary-dependent hyperadrenocorticism is warranted because the goal is not complete hypophysectomy but removal of a pituitary tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号