首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigated the impact of seasonal soil water deficit on the processes driving net ecosystem exchange of carbon (NEE) in old-growth and recently regenerating ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in Oregon. We measured seasonal patterns of transpiration, canopy conductance and NEE, as well as soil water, soil temperature and soil respiration. The old-growth stand (O) included two primary age classes (50 and 250 years), had a leaf area index (LAI) of 2.1 and had never been logged. The recently regenerating stand (Y) consisted predominantly of 14-year-old ponderosa pine with an LAI of 1.0. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. By August, soil volumetric water content within the upper 30 cm had declined to a seasonal minimum of 0.07 at both sites. Between April and June, both stands showed similar rates of transpiration peaking at 0.96 mm day(-1); thereafter, trees at the Y site showed increasing drought stress with canopy stomatal resistance increasing 6-fold by mid-August relative to values for trees at the O site. Over the same period, predawn water potential (psi(pd)) of trees at the Y site declined from -0.54 to -1.24 MPa, whereas psi(pd) of trees at the O site remained greater than -0.8 MPa throughout the season. Soil respiration at the O site showed a strong seasonal correlation with soil temperature with no discernible constraints imposed by declining soil water. In contrast, soil respiration at the Y site peaked before seasonal maximal soil temperatures and declined thereafter with declining soil water. No pronounced seasonal pattern in daytime NEE was observed at either site between April and September. At the Y site this behavior was driven by concurrent soil water limitations on soil respiration and assimilation, whereas there was no evidence of seasonal soil water limitations on either process at the O site.  相似文献   

2.
Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in unmanaged units. Prescribed fire (either in the spring or in the fall) in addition to thinning, had no measurable effect on the mid-term physiological performance and wood growth of second growth ponderosa pine.  相似文献   

3.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

4.
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.  相似文献   

5.
Brooks JR  Meinzer FC  Coulombe R  Gregg J 《Tree physiology》2002,22(15-16):1107-1117
The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecosystem. The fate of deuterated water applied to small plots to create a strong horizontal soil water potential gradient was also monitored to assess the potential for horizontal redistribution of water and utilization of redistributed water by co-occurring shallow-rooted plants. In a 20-year-old Douglas-fir stand, approximately 28% of the water removed daily from the upper 2 m of soil was replaced by nocturnal hydraulic redistribution during late August. In an old-growth ponderosa pine stand, approximately 35% of the total daily water utilization from the upper 2 m of soil appeared to be replaced by hydraulic redistribution during July and August. By late September, hydraulic redistribution in the ponderosa pine stand was no longer apparent, even though total water use from the upper 2 m of soil was nearly identical to that observed earlier. Based on these results, hydraulic redistribution would allow 21 and 16 additional days of stored water to remain in the upper soil horizons in the ponderosa pine and Douglas-fir stands, respectively, after a 60-day drought. At both sites, localized applications of deuterated water induced strong reversal of root sap flow and caused soil water content to cease declining or even temporarily increase at locations too distant from the site of water application to have been influenced by movement of water through the soil without facilitation by roots. Xylem water deuterium values of ponderosa pine seedlings suggested utilization of redistributed water. Therefore, hydraulic redistribution may enhance seedling survival and maintain overstory transpiration during summer drought. These first approximations of the extent of hydraulic redistribution in these ecosystems suggest that it is likely to be an important process in both wet and dry forests of the Pacific Northwest.  相似文献   

6.
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had?~?50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.  相似文献   

7.
Water stress and fire disturbance can directly impact stand structure, biomass and composition by causing mortality and influencing competitive interactions among trees. However, open eucalypt forests of southwest Australia are highly resilient to fire and drought and may respond differently to increased fire frequency and aridity than forests dominated by non-eucalypt species. We measured the variation in stem density, basal area, stand biomass, sapwood area, leaf area and litterfall across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands along an aridity gradient in southwest Australia that had variable fire histories. Fire frequency was defined as the total number of fires over a ∼30-year period and aridity as the ratio of potential evapotranspiration to annual precipitation. Total stand biomass and sapwood area were predicted from diameter at breast height of individual jarrah and marri trees using allometric equations. Leaf area was estimated using digital cover photography. More arid and frequently burnt stands had higher stem density, especially of smaller trees, which were mainly jarrah. Overall, both standing biomass and leaf area decreased at more arid sites, while sapwood area was largely unaffected by aridity, suggesting that these stands respond to increased water limitation by decreasing their leaf area relative to their sapwood area. Biomass of marri was reduced at more arid and, to a lesser extent, at more frequently burnt stands. However, total stand biomass (jarrah and marri) and leaf area index did not vary with fire frequency, suggesting that less marri biomass (due to slower growth rates, higher mortality or less recruitment) was compensated by an increase in the density of jarrah trees (regeneration). We conclude that increased fire and drought shift tree species composition towards more fire-resistant species and result in denser stands of smaller trees. In contrast, total stand biomass declines with increasing aridity, but has no association with fire frequency.  相似文献   

8.
Transpiration, leaf characteristics and forest structure in Metrosideros polymorpha Gaud. stands growing in East Maui, Hawaii were investigated to assess physiological limitations associated with flooding as a mechanism of reduced canopy leaf area in waterlogged sites. Whole-tree sap flow, stomatal conductance, microclimate, soil oxidation-reduction potential, stand basal area and leaf area index (LAI) were measured on moderately sloped, drained sites with closed canopies (90%) and on level, waterlogged sites with open canopies (50-60%). The LAI was measured with a new technique based on enlarged photographs of individual tree crowns and allometric relationships. Sap flow was scaled to the stand level by multiplying basal area-normalized sap flow by stand basal area. Level sites had lower soil redox potentials, lower mean stand basal area, lower LAI, and a higher degree of soil avoidance by roots than sloped sites. Foliar nutrients and leaf mass per area (LMA) in M. polymorpha were similar between level and sloped sites. Stomatal conductance was similar for M. polymorpha saplings on both sites, but decreased with increasing tree height (r(2) = 0.72; P < 0.001). Stand transpiration estimates ranged from 79 to 89% of potential evapotranspiration (PET) for sloped sites and from 28 to 51% of PET for level sites. Stand transpiration estimates were strongly correlated with LAI (r(2) = 0.96; P < 0.001). Whole-tree transpiration was lower at level sites with waterlogged soils, but was similar or higher for trees on level sites when normalized by leaf area. Trees on level sites had a smaller leaf area per stem diameter than trees on sloped sites, suggesting that soil oxygen deficiency may reduce leaf area. However, transpiration per unit leaf area did not vary substantially, so leaf-level physiological behavior was conserved, regardless of differences in tree leaf area.  相似文献   

9.
Cermák J 《Tree physiology》1989,5(3):269-289
The solar equivalent leaf area (A(s)), a simply and easily determined biometrical parameter of leaves, trees and stands, was derived theoretically. The parameter is defined as projected leaf area weighted for the time integral of irradiance at a given location in the canopy relative to that of fully irradiated leaves at the top of the canopy. The efficiency of A(s) as a basis for estimating stand-area transpiration of a mature oak (Quercus robur L.) forest from measurements of transpiration by individual trees was compared with that of other stand and tree characteristics. Stand transpiration estimates based on A(s) were more precise and less prone to systematic error than estimates based on basal area, timber volume, projected tree crown area, projected leaf area, or leaf dry mass. Solar equivalent leaf area reflects both the amount and the physiological properties of leaves and can be used as a measure of tree size and functional capacity. It can be calculated from ordinary forest inventory data on trees and stands, adjusted according to simple phyllometric data. It appears to have wide application in ecological and forestry studies for relating the physiological characteristics of individual leaves to those of entire trees or stands.  相似文献   

10.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

11.
Effects of soil and atmospheric drought on whole-tree transpiration (E(T)), leaf water potential (Ψ(L)) and whole-tree hydraulic conductance (K(T)) were investigated in mature rubber trees (Hevea brasiliensis, clone RRIM 600) during the full canopy stage in the rainy season in a drought-prone area of northeast Thailand. Under well-watered soil conditions, transpiration was tightly regulated in response to high evaporative demand, i.e., above reference evapotranspiration (ET(0)) ~2.2 mm day(-1) or maximum vapor pressure deficit ~1.8 kPa. When the trees experienced intermittent soil drought E(T) decreased sharply when relative extractable water in the top soil was?相似文献   

12.
We studied the bark beetle guild (Coleoptera: Scolytidae) in the ponderosa pine forests of northern Arizona to explore if the species assemblages and relative abundance differ between managed and unmanaged stands. Four stand conditions were assessed: (1) unmanaged stands with high tree density, (2) thinned stands, (3) thinned and burned (with prescribed fire) stands and (4) stands that had been burned by stand replacing wildfires. The study was conducted in the ponderosa pine forests of the Coconino Plateau, northern Arizona. For several decades this area has been relatively free of bark beetle outbreaks despite the current overstocked condition of many stands. We found that a similar species assemblage composed of Dendroctonus frontalis, D. brevicomis, D. valens, D. approximatus, D. ponderosae, and Ips pini occurred across all four stand conditions over 3 years of study. The population levels of all these species were endemic across all stand conditions. The non-aggressive D. approximatus and D. valens were indicator species for thinned and unmanaged stands, respectively, but this was not consistent among years. The ambrosia beetle Gnathotrichus sp. and the bark beetle predator Enoclerus sp. consistently indicated stands burned by wildfire. In addition to our field experiment, we analyzed the historical pattern of attacks of bark beetles in our area of study. Our findings suggest that the pattern of attack of D. brevicomis (the only Dendroctonus species for which attacks have been reported) and Ips spp. has been through scattered small infestations in groups of 1–10 trees. Whereas small infestations by Ips spp. are increasing, those for D. brevicomis are decreasing. Although we agree that the high density stands in northern Arizona are in an “unhealthy” condition, our results do not show that they were supporting large bark beetle outbreaks. Our results challenge the theoretical assumptions about the relationship between stand structure, tree resistance and bark beetle performance.  相似文献   

13.
Sap flow measurement techniques, such as the heat pulse (compensation) method, are practical means for estimating the water use of individual trees and are often the only reasonable alternative for measuring forest and woodland transpiration in complex heterogeneous terrain. The need to scale estimates of water use from a sample of individual stems to a stand (population) of known area may be satisfied by applying scalars of flux based on tree size or domain. We estimated the aggregate errors in applying the heat pulse technique to the estimation of stand transpiration in a poplar box (Eucalyptus populnea F.J. Muell.) woodland in southeastern Queensland, Australia, by a combination of precision analyses, experimental validation and Monte Carlo simulations of sampling errors. Errors in sap flux density measurements were approximately 13%. The potential error in the flux estimates for individual stems with stratified sampling of sap flux density with depth and bole quadrant based on four sensors was an additional 25%. Conducting wood area, diameter at 1.3 m, leaf area and domain based on Ecological Field Theory all proved excellent scalars of flux at the stand level. With a sample size of six trees stratified by diameter, coefficients of variation in scaling to the stand level were approximately 5% for any of these scalars. The greatest potential source of error in estimating stand transpiration by the heat pulse method was in the measurement of the fluxes of individual stems; scaling these measurements to a homogeneous stand of trees involved less uncertainty.  相似文献   

14.
Ueda M  Shibata E 《Tree physiology》2004,24(6):701-706
We examined the water status of Hinoki cypress, Chamaecyparis obtusa (Siebold & Zucc.) Endl., trees after a severe typhoon to determine possible causes of the decline and dieback that can occur in what appear, at first, to be healthy trees in typhoon-damaged forest stands. We found that in apparently healthy trees in a storm-damaged stand, the water conducting area of the trunk cross section was greatly reduced compared with that of similarly sized trees in a nearby undamaged stand. Although leaf specific hydraulic resistance (Wl) from soil to leaf and from trunk to leaf was higher in trees from the storm-damaged than the undamaged stand, Wl values from soil to root were similar. Diurnal patterns in the rates of change in trunk diameter differed between trees in the damaged and the undamaged stand. We conclude that increased aboveground hydraulic resistance caused by a reduction in trunk water conducting area could be a major reason for the decline and dieback of apparently healthy trees in typhoon-damaged stands.  相似文献   

15.
We examined the effects of increased transpiration demand on xylem hydraulic conductivity and vulnerability to cavitation of mature ponderosa pine (Pinus ponderosa Laws.) by comparing trees growing in contrasting climates. Previous studies determined that trees growing in warm and dry sites (desert) had half the leaf/sapwood area ratio (A(L)/A(S)) and more than twice the transpiration rate of trees growing in cool and moist sites (montane). We predicted that high transpiration rates would be associated with increased specific hydraulic conductivity (K(S)) and increased resistance to xylem cavitation. Desert trees had 19% higher K(S) than montane trees, primarily because of larger tracheid lumen diameters. Predawn water potential and water potential differences between the soil and the shoot were similar for desert and montane trees, suggesting that differences in tracheid anatomy, and therefore K(S), were caused primarily by temperature and evaporative demand, rather than soil drought. Vulnerability to xylem cavitation did not differ between desert and montane populations. A 50% loss in hydraulic conductivity occurred at water potentials between -2.61 and -2.65 MPa, and vulnerability to xylem cavitation did not vary with stem size. Minimum xylem tensions of desert and montane trees did not drop below -2.05 MPa. Foliage turgor loss point did not differ between climate groups and corresponded to mean minimum xylem tensions in the field. In addition to low A(L)/A(S), high K(S) in desert trees may provide a way to increase tree hydraulic conductivity in response to high evaporative demand and prevent xylem tensions from reaching values that cause catastrophic cavitation. In ponderosa pine, the flexible responses of A(L)/A(S) and K(S) to climate may preclude the existence of significant intraspecific variation in the vulnerability of xylem to cavitation.  相似文献   

16.
We used 20-mm-long, Granier-type sensors to quantify the effects of tree size, azimuth and radial position in the xylem on the spatial variability in xylem sap flux in 64-year-old trees of Taxodium distichum L. Rich. growing in a flooded forest. This information was used to scale flux to the stand level to investigate variations in half-hourly and daily (24-hour) sums of sap flow, transpiration per unit of leaf area, and stand transpiration in relation to vapor pressure deficit (D) and photosynthetically active radiation (Q(o)). Measurements of xylem sap flux density (J(s)) indicated that: (1) J(s) in small diameter trees was 0.70 of that in medium and large diameter trees, but the relationship between stem diameter as a continuous variable and J(s) was not significant; (2) J(s) at 20-40 mm depth in the xylem was 0.40 of that at 0-20 mm depth; and (3) J(s) on the north side of trees was 0.64 of that in directions 120 degrees from the north. Daily transpiration was linearly related to daily daytime mean D, and reached a modest value of 1.3 mm day(-1), reflecting the low leaf area index (LAI = 2.2) of the stand. Because there was no soil water limitation, half-hourly water uptake was nearly linearly related to D at D < 0.6 kPa during both night and day, increasing to saturation during daytime at higher values of D. The positive effect of Q(o) on J(s) was significant, but relatively minor. Thus, a second-order polynomial with D explained 94% of the variation in J(s) and transpiration. An approximately 40% reduction in LAI by a hurricane resulted in decreases of about 18% in J(s) and stand transpiration, indicating partial stomatal compensation.  相似文献   

17.
We quantified structural features and the aboveground biomass of the deciduous conifer, Metasequoia glyptostroboides (Hu and Cheng) in six plantations in central Japan. In order to derive biomass estimates we dissected 14 M. glyptostroboides trees into three structural components (stem wood, branch wood and foliage) to develop allometric equations relating the mass of these components and of the whole tree to diameter at breast height (DBH). We found robust relationships at the branch and whole tree level that allow accurate prediction of component and whole tree biomass. Dominant tree height was similar within five older (>40 years) plantations (27–33 m) and shorter in a 20-year-old plantation (18 m). Average stem diameter varied from 12.8 cm in the youngest stand to greater than 35 cm in the oldest stand.

Metasequoia have relatively compact crowns distributed over the top 30% of the tree although the youngest stand had the deepest crown relative to tree height (up to 38%). At the individual tree level in older stands, 87% of the aboveground biomass was allocated to the stem, 9% to branch wood and 4% to foliage. We found little difference in the relative distribution of above ground biomass among the stands with the exception of lower foliage biomass in larger diameter trees. Total aboveground biomass of the older stands varied twofold, ranging from a maximum of 450 Mg ha−1 in a 42-year-old stand to a minimum of 196 Mg ha−1 in a 48-year-old stand. Total above ground biomass of the 20-year-old stand was 176 Mg ha−1.  相似文献   


18.
Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to thinning.  相似文献   

19.
Raulier F  Bernier PY  Ung CH  Boutin R 《Tree physiology》2002,22(15-16):1147-1156
The spatially inexplicit or functional multilayer models used to predict canopy transpiration or photosynthesis are based on the assumption that closed stands show less functional variability than structural variability, because foliage tends to arrange itself in space to optimize the capture of light. To validate this assumption, we compared the structural and functional properties, and the measured and modeled transpiration fluxes of two sugar maple (Acer saccharum Marsh.) stands of comparable leaf mass but differing in height and diameter distributions. One stand was characterized by a well-developed single-layer canopy, whereas the other stand had a multilayered canopy and a stem diameter distribution of the classical inverse-J shape. Stand differences in height and diameter distribution, and canopy gap fraction, were highly significant. There were minor but significant differences in leaf mass and leaf mass per unit leaf area (LMA) distributions. We found no differences in tree-level relationships between basal area and either transpiration flux or sapwood area. We compared measurements of stand transpiration with transpiration estimates obtained from a multilayer gas exchange model, in which only the nonspatial inputs, leaf area index and LMA frequency distribution described stand structure. For both stands, modeled values of daily transpiration closely followed measured values (r(2) = 0.94). These results support use of the nonspatially explicit approach to estimating canopy gas exchange, especially if the intent is to scale-up to larger portions of the landscape.  相似文献   

20.
We compared foliar physiology and several measures of tree resistance to insect attack among ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) trees growing in thinned stands. Measurements were made in a second-growth ponderosa pine forest in northern Arizona where the basal area treatments (6.9, 18.4, 27.6, 78.2 m(2) ha(-1)) have been experimentally maintained by frequent thinnings for 32 years before our measurements began in 1994. Most of the physiological characteristics measured were affected by the basal area treatments. As stand basal area increased from 6.9 to 78.2 m(2) ha(-1), predawn water potential, midday water potential, net photosynthetic rate, resin production, phloem thickness, and foliar toughness decreased. Foliar nitrogen concentration was greatest in trees in the intermediate basal area treatments. Our results show that the physiological condition of second-growth ponderosa pine can be manipulated by silvicultural control of stand basal area, and support the hypothesis that high stand basal area increases tree stress and decreases tree resistance to insect attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号