共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of fly ash on N mineralization in sewage sludge was studied during a 5-week aerobic incubation of soil-waste mixtures at different loading rates under controlled conditions. Periodically, the mixtures were leached with distilled water and the inorganic N released was determined in the percolates. The data were tested by an analysis of variance with repeated measures. Significant differences were found among different incubation periods and also between different treatments. The net N mineralization, expressed as a percentage of organic N added in the sludge, was drastically reduced when higher rates (500 Mg ha-1) of fly ash were added. 相似文献
2.
Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil 总被引:3,自引:0,他引:3
An incubation experiment lasting 120 days was carried out to ascertain the effect on the soil microbial activity and organic
matter mineralization of adding a sewage sludge compost contaminated with two different levels of Cd to an arid soil. Two
composts, with a low (2 mg kg–1) and high (815 mg kg–1) Cd content, respectively, were used in this experiment. Both composts increased the total organic C, humic substance and
water-soluble C contents, the beneficial effects still being noticeable after 120 days of incubation. The most labile C fraction
(water-soluble C) was the most sensitive to the high Cd content. The high Cd concentration decreased soil microbial biomass
C and stimulated the metabolic activity of the microbial biomass, the metabolic quotient (qCO2) revealing itself to be a very sensitive index of the stress that the incorporation of a Cd-contaminated sewage sludge compost
causes in a soil. The effect of Cd contamination on enzyme activities (urease, protease that hydrolyse N-α-benzoil-l-arginamide, phosphatase, and β-glucosidase) depended on the enzyme studied.
Received: 10 September 1997 相似文献
3.
P. Jiménez O. Ortiz D. Tarrasón M. Ginovart M. Bonmatí 《Biology and Fertility of Soils》2007,44(2):393-398
This work has evaluated the effects of thermally dried (TDS) or composted (CDS) dewatered sewage sludge on β-glucosidase activity,
total (TCH) and extractable (ECH) carbohydrate content, microbial biomass carbon and basal respiration of soils from limestone
quarries under laboratory conditions. Two doses (low and high) of the dewatered sludge (DS) or of the respective TDS or CDS
were applied to a clayey and a sandy soil, both coming from working quarries. The soil mixtures and the controls (soils with
no added sludge) were incubated for 9 months at 25°C and 30% of field capacity. The addition of sludge increased all the studied
soil parameters, and the increase depended on the amount of sludge. Except in the case of TCH and ECH, the enhancing effect
decreased with time, but at the end of incubation, parameters of the treated soils were higher than those of the control.
The rank order of the initial stimulating effect was soil–TDS ≥ soil–DS ≥ soil–CDS, and probably, this order depended on the
proportion of stable organic matter, which was the lowest in the TDS. Values of metabolic quotient (qCO2) were higher at the lower dose, and they did not change during incubation in the CDS-treated soils. Both TCH and ECH were
the parameters with the greatest significant sludge and dose effects. Basal respiration, microbial biomass carbon and β-glucosidase
activity were the best measured parameters in distinguishing the long-term effects of the three sludge types over the soils. 相似文献
4.
To solve soil shortage in reclaiming subsided land of coal mines, the principal chemical properties of artificial soil formed by mixing organic furfural residue and inorganic fly ash were examined. The results indicated that the artificial soil was suitable for agriculture use after irrigation and desalination, the available nutrients in the artificial soil could satisfy the growth demand of plants, and the pH tended to the neutrality. 相似文献
5.
粉煤灰堆场附近农田土壤硒环境污染评价 总被引:2,自引:1,他引:2
对贞观山煤灰库附近农田土壤、土壤剖面、灌溉水、母岩以及稻米,蔬菜等农作物中Se含量特征及污染现状进行了系统分析与评价.结果显示:煤灰库周围的农田土壤Se含量范围为0.15~6.12mg/kg,受到不同程度污染.土壤Se含量空间分布特征表明.离煤灰库越近的农田土壤Se污染越严重.农田土壤Se污染主要是由Se含量超标地表水灌溉以及煤灰库的长期处置所引起的,受母岩的影响不大.研究区稻米Se含量较高,为0.04~1.12mg/kg,部分稻米样品Se含量超标严重,并且受土壤Se污染影响明显.长期食用Se含量超标大米对人体健康会产生潜在危害. 相似文献
6.
P. A. Gibbs B. J. Chambers A. M. Chaudri S. P. McGrath C. H. Carlton-Smith J. R. Bacon C. D. Campbell & M. N. Aitken 《Soil Use and Management》2006,22(1):11-21
In a long‐term study of the effects on soil fertility and microbial activity of heavy metals contained in sewage sludges, metal‐rich sludge cakes each with high Zn, Cu or Cd concentrations were applied annually for 4 years (1994–1997) to nine sites throughout Britain. These sites were selected to represent agricultural soils with a range of physical and chemical properties, typical of those likely to be amended with sewage sludge. The aim was to establish individual total Zn (approx. 60–450 mg kg?1), total Cu (approx. 15–200 mg kg?1) and total Cd (approx. 0.2–4 mg kg?1) metal dose–response treatments at each site. Sludges with low metal concentrations were added to all treatments to achieve as constant an addition of organic matter as possible. Across the nine sites, soil pH was the single most important factor controlling Zn (P < 0.001; r2 = 92%) and Cd extracted with 1 m NH4NO3 (P < 0.001; r2 = 72%), and total iron content the most important factor controlling Cu extracted with 1 m NH4NO3 (P < 0.001; r2 = 64%). There were also positive relationships (P < 0.001) between soil organic carbon (C) concentrations and soil biomass C and respiration rates across the nine sites. Oxidation of sludge C following land application resulted in approximately 45% of the digested sludge cake C and approximately 64% of the ‘raw’ sludge cake C being lost by the end of the 4‐year application period. The sludge cake applications generally increased soil microbial biomass C and soil respiration rates, whilst most probable numbers of clover Rhizobium were generally unchanged. Overall, there was no evidence that the metal applications were damaging soil microbial activity in the short term after the cessation of sludge cake addition. 相似文献
7.
An experiment was conducted for two years in northwest India to explore the feasibility of using coal fly ash for reclamation of waterlogged sodic soils and its resultant effects on plant growth in padi–wheat rotation. The initial pH, electrical conductivity, exchangeable sodium percentage and sodium adsorption ratio of the experimental soil were 9.07, 3.87 dS m−1, 26.0 and 4.77 (me l)−1/2, respectively. The fly ash obtained from electrostatic precipitators of thermal power plant had a pH of 5.89 and electrical conductivity of 0.88 dS m−1. The treatments comprised of fly ash levels of 0.0, 1.5, 3.0, 4.5, 6.0 and 7.5 per cent, used alone as well as in combination with 100, 80, 60, 40, 20 and 10 per cent gypsum requirement of the soil, respectively. There was a slight reduction in soil pH while electrical conductivity of the soil decreased significantly with fly ash as measured after padi and wheat crops. The sodium adsorption ratio of the soil decreased with increasing fly ash levels, while gypsum treatments considerably added to its favourable effects. Fly ash application increased the available elemental status of N, K, Ca, Mg, S, Fe, Mn, B, Mo, Al, Pb, Ni, Co, but decreased Na, P and Zn in the soil. An application of fly ash to the soil also increased the concentrations of above elements except Na, P and Zn in the seeds and straw of padi and wheat crops. The available as well as elemental concentrations in the plants was maximum in the 0 per cent fly ash + 100 per cent gypsum requirement treatment except Na and heavy elements like Ni, Co, Cr. The treatment effects were greater in the fly ash + gypsum requirement combinations as compared to fly ash alone. Saturated hydraulic conductivity and soil water retention generally improved with the addition of fly ash while bulk density decreased. Application of fly ash up to 4.5 per cent level increased the straw and grain yield of padi and wheat crops significantly in both years. The results indicated that for reclaiming sodic soils of the southwest Punjab, gypsum could possibly be substituted up to 40 per cent of the gypsum requirement with 3.0 per cent acidic fly ash. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
8.
以小麦-玉米轮作体系下的沙质潮土为研究对象,选用经无害化处理后的城市污泥产物,通过2013~2015年田间定位试验,研究了不同城市污泥施用量对土壤肥力的影响,以期为城市污泥资源化利用提供理论基础和技术依据。设置单施化肥(CK)、CK+污泥15 t·hm~(-2)(CS1)、CK+污泥30 t·hm~(-2)(CS2)和CK+污泥45 t·hm~(-2)(CS3)共4个处理。主要研究结果如下:(1)连续定位试验结果表明,同一施用量污泥处理的土壤p H值随施用时间的增加呈下降趋势;土壤有机质(SOM)和养分含量如全氮(TN)、有效磷(AP)和速效钾(AK)随施用时间的增长呈上升趋势;(2)与CK比较,在2015年玉米季施用污泥各处理的土壤p H值显著降低了0.34~0.83个单位(P0.05),且与污泥施用量呈反比,以高施量污泥45 t·hm~(-2)下降最多;土壤SOM、TN、AP和AK分别显著提高了52.1%~166.9%、77.3%~177.8%、215.7%~486.3%和167.2%~379.0%(P0.05),且与污泥施用量呈正比,以高施量污泥45 t·hm~(-2)效果最显著;(3)试验所用污泥施用量范围内不会造成土壤和植物籽粒重金属污染,能够保持土壤环境健康;(4)与CK比较,施用污泥各处理土壤微生物量碳(MBC)、氮(MBN)含量均显著提高(P0.05),且与污泥施用量呈正比,并且季节不同也显著影响土壤MBC、MBN含量(P0.05);施用污泥能够显著提高土壤MBC/MBN(P0.05),说明施用污泥能够改变土壤微生物群落组成;(5)施用污泥,尤其是高施量污泥45 t·hm~(-2),在保证土壤和植物籽粒质量安全下,其土壤培肥效果最优。 相似文献
9.
为了解粉煤灰充填复垦土壤重金属污染情况,通过实地试验与现场采样化验相结合的方法,对复垦时间不同的粉煤灰复垦土壤里砷(As)、镉(Cd)、铬(Cr)、汞(Hg)、铅(Pb)、铜(Cu)、硒(Se)、锌(Zn)、、镍(Ni)和氟(F)等重金属和微量元素含量的时空变异性进行了研究。结果发现:以土壤本底值作为评价标准时,粉煤灰充填复垦土壤整体处于受污染状态。其中,表层复垦土壤受到Cd、Se、Zn、F 4种元素污染较重;粉煤灰充填复垦土壤适合旱作,不适合用作水田;随着复垦时间的增加,表层复垦土壤的污染指数呈递增趋势。 相似文献
10.
污泥复混肥对早熟禾草坪草生长性状及土壤酶活性的影响 总被引:3,自引:0,他引:3
为使城市生活污泥得以无害化、资源化综合利用,通过盆栽试验,研究了经无害化处理的生活污泥辅以化肥配制的污泥复混肥对早熟禾草坪草生长以及土壤酶活性的影响.结果表明:在氮、磷、钾施用总量相同的条件下,随复混肥中污泥含量的增加,草坪土壤脲酶、蛋白酶、转化酶活性显著提高,草坪草的颜色明显改善,剪草量、分蘖数显著增加,特别在生长中后期草坪颜色提高两个等级,剪草量鲜重增加10~15g·盆-1,分蘖数增加30~50个·盆-1,细胞膜透性降低40%.但污泥提供氮素养分占总氮量的60%以上时,其肥料效应的增加不再显著,故在配制污泥复混肥时,以污泥提供氮素养分占总氮量的60%左右为宜. 相似文献
11.
Yong Bok Lee Ho Sung Ha Bum Ki Park Ju Sik Cho Pil Joo Kim 《Soil Science and Plant Nutrition》2013,59(2):171-178
Abstract The salt titration (ST) method was evaluated as a method to determine ZPC in comparison with the potentiometric titration (PT) method for 26 soils with variable charge clays, i.e., Oxisols and Ultisols from Thailand and Andisols from Japan. In addition to the determination of ST-pH0 as the zero point of charge, a calculation procedure (STPT method) was adopted here in order to acquire more information from the titration curve. Furthermore, for the purpose of cross-checking of ZPC determined by the PT method, the ST procedure was successively applied to the samples analyzed by the PT method (PTST method). The soil to solution ratios of 1: 10 to 1: 5 gave almost an identical ST-pH0 value for every soil. The values of both ST-pH0 and PT-ZPC ranged from 4.7 to 6.3 for the Andisols, while for the Oxisols and Ultisols, they were always below 4.2. The difference between the values of ST-pH0 and PT-ZPC was only slight for the Andisols, whereas it was sometimes large (0.4 pH unit) for the Oxisols and Ultisols. Nevertheless, it was concluded that the ST method with its modification (STPT) was comparable to or even better than the PT method for the soil characterization work due to its convenience and simplicity. 相似文献
12.
Summary The abundance of nematodes was investigated in agricultural plots treated in three different ways, the first with no treatment, the second with 300 m3 ha-1 a-1 raw sewage sludge and the third with 300 m3 ha-1 a-1 sewage sludge with the addition of heavy metals. The nematodes were determined down to the genus and were assigned to five feeding groups. Total nematode numbers were highest in the site treated with sewage sludge and heavy metals. The smallest total numbers were found in the control site. The plant-feeding nematode genera showed different patterns of abundance depending on the sludge treatment and heavy metal content. For the mycophagic and bacteriophagic nematodes, numbers increased with the amount of sludge, especially in the sites with a higher heavy metal content. The family Rhabditidae was the most numerous group in the sludge plus heavy metals treatment. In contrast to these findings, the omnivorous nematodes were very rare in the sludgetreated plots and were completely absent in plots treated with sludge plus heavy metals, whereas predatory nematodes were numerous only after the application of sludge alone. 相似文献
13.
T. A. Forge M. L. Berrow J. F. Darbyshire A. Warren 《Biology and Fertility of Soils》1993,16(4):282-286
The common soil protozoan Colpoda steinii was used to study the toxicity of sulphate solutions of Ni, Cd, Cu, and Zn. The growth of C. steinii was reduced by 50% in the presence of 0.10, 0.22, 0.25, and 0.85 mg litre-1 of Ni, Cd, Cu and Zn, respectively, during 24 h of incubation at 25°C, as calculated from a regression analysis of probit-transformed data. The same growth assay was used to assess the toxicity of soil solution extracted by centrifugation from soil samples of field plots of a grass/clover ley on a sandy loam treated with sewage sludge spiked with additional Cd, Cu, Cr, Ni, Pb, or Zn at concentrations either equivalent to or twice the limits for heavy metals recommended in recent EC guidelines (Commission of European Communities directive 86/278/EEC). The toxicity of these soil solutions varied with the season of the year. None of the soil solutions extracted in winter (February 1991) inhibited the growth of C. steinii. In summer (July 1991), the growth was reduced in solutions extracted from plots that were amended with sludge plus additional Zn or Ni at twice the maxima recommended by the EC. The changes in toxicity to C. steinii of the soil solutions between February and July were positively correlated with increases in heavy metal concentrations of Zn and Ni between winter and summer. These preliminary results suggest that regular protozoan bioassays may be used to monitor the biological availability of heavy metals in soils, especially when combined with other microbial assays and with chemical analyses of soil solutions. 相似文献
14.
Dispersion of saline–sodic soils was rather difficult to leach. Therefore, negative effects of freeze–thaw on soil physical properties should be reduced by inexpensive and practical methods. This study investigates the effect of freeze–thaw cycles (3, 6, and 9) on wet aggregate stability, bulk density, and permeability coefficient in three soils with different electrical conductivity and exchangeable sodium percentage levels (soil I: 5.30 dS m−1, 47.51%; soil II: 42.80 dS m−1, 55.45%; soil III: 36.30 dS m−1, 59.34%) which consist of different proportions of sewage sludge and fly ash by volume (10%, 20%, and 30%). The experiment was conducted under laboratory conditions using disturbed and non-cropped soil samples mixed with sewage sludge and fly ash. Soils mixed with sewage sludge produced higher aggregate stability and permeability coefficients and lower bulk density values as compared to the soils mixed with fly ash. Sewage sludge added with a rate of 30% eliminated the negative effects of freeze–thaw processes on wet aggregate stability. Freeze–thaw processes did not affect the bulk density of the soils II and III, which were mixed with sewage sludge. However, fly ash addition decreased the bulk density of these soils very significantly after nine freeze–thaw cycles. Addition of sewage sludge or fly ash with rates of 20% and 30% significantly increased the permeability coefficients in soil I after nine freeze–thaw cycles. Results indicated that addition of sewage sludge and/or fly ash to saline–sodic soils could be alternative way for reducing negative effects of freezing–thawing on soil wet aggregate stability, bulk density, and permeability coefficient. 相似文献
15.
Cu, Ni and Zn were added at different rates (low and±25% of current limits) and combinations to sewage sludges and the effects
on soil microorganisms were monitored in laboratory incubations. Respiration was measured frequently during weeks 1–7, whilst
extractable metals (with EDTA and CaCl2), microbial biomass C and metabolic quotient were recorded at 3 and 7 weeks. Inputs of one metal affected extractable concentrations
of that metal and of the second metal tested in each experiment. Cu behaved differently from Ni and Zn, with little extractable
by CaCl2. Whereas CaCl2-Ni and -Zn increased markedly between weeks 3 and 7, Cu concentrations did not change. Respiration was reduced at 1 week
by Ni inputs and by Cu in combination with Ni. Zinc inputs at 1 week, and all metal inputs after 3 weeks, increased respiration.
Biomass C was lower at higher metal inputs and with Zn the exception occurred at 3 weeks when biomass C was higher. Metal
inputs generally increased metabolic quotient, although responses to Zn were often non-significant. Not all metal responses
were additive, with effects of one metal frequently more pronounced with high levels of another. For Cu, the organic bound
fraction was a better predictor of microbial response than the exchangeable fraction. For Ni the reverse was the case in one
experiment, whilst extractable Zn was not closely correlated with microbial indices. Metal inputs close to permitted levels,
in particular Cu, affected microbial processes but responses varied with time after sludge application.
Received 26 August 1998 相似文献
16.
Effects of N-enriched sewage sludge on soil enzyme activities 总被引:5,自引:0,他引:5
Sewage sludge is increasingly used as an organic amendment to soil, especially to soil containing little organic matter. However, little is known about utility of this organic amendment with N-enriched or adjusted C:N ratios in soil. We studied the effects of adding of different doses (0, 100, 200 and 300 t ha−1) and C:N ratios (3:1, 6:1 and 9:1) of sewage sludge on enzyme activities (β-glucosidase, alkaline phosphatase, arylsulphatase and urease) in a clay loam soil at 25 °C and 60% soil water holding capacity. Nitrogen was added in the form of (NH4)2 SO4 solution to the sludge to reduce the C:N ratio from 9:1 to 6:1 and 3:1. The addition of different doses and C:N ratios of the sludge caused a rapid and significant in the enzymatic activities in soils, this increase was specially noticeable in soil treated with high doses of the sludge. In general, enzymatic activities in sludge-amended soils tended to decrease with the incubation time. All activities reached peak values at 30 days incubation and then gradually decreased up to 90 days of incubation. Sewage sludges also the increased available metal (Cu, Ni, Pb and Zn) contents in the soils. However, the presence of available soil metals due to the addition of the sludge at all doses and C:N ratios did negatively affect all enzymatic activities in the soils. This experiment indicated that all doses and C:N ratios of sewage sludge applied to soil would have harmful effects on enzymatic activity. Some heavy metals found in sewage sludge may negatively influence soil enzyme activities during the decomposition of the sludge. 相似文献
17.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid
waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition
of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio
and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless,
their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological
quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with
the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent
when the soil was amended with municipal solid waste than when it was amended with sewage sludge.
Received: 28 May 1996 相似文献
18.
施用辐照处理的污水污泥对作物产量和土壤氮的影响 总被引:1,自引:0,他引:1
A field experiment was conducted to study the feasibility of irradiated and non-irradiated sewage sludge as a fertilizer for the growth of wheat and rice. The irradiated and non-irradiated sewage sludge were applied at rates of 0 (CK), 75, 150, 225 and 300 kg N ha-1 for wheat, and 0 (CK), 112.5, 225, 337.5 and 450 kg N ha-1 for rice, respectively. (NH4)2SO4 at a rate of 150 kg N ha-1 for wheat, and 225 kg N ha-1 for rice were added to the control treatments. Additionally, 20 kg 15N ha-1 in the form of (NH4)2SO4 was added to each treatment for wheat to study the effect of sewage sludge on chemical nitrogen fertilizer recovery. The results showed that the irradiation of sewage sludge by gamma ray at a dosage of 5 kGy increased crop yield by 11%~27% as compared to the non-irradiated treatments. Irradiation stimulated mineralization of organic nitrogen in the sludge and improved seedling growth. It was found that addition of irradiated sludge could reduce the leaching loss of chemical nitrogen fertilizer. Both irradiated and non-irradiated sewage sludge could increase the content of soil total nitrogen. Based on the preliminary results, it was concluded that irradiated sewage sludge could partly substitute for chemical nitrogen fertilizer in crop production. 相似文献
19.
Application of fine-textured and Ca-rich fly ash may be helpful in enhancing soil carbon content via protecting soil organic C (SOC) by organo-mineral complexation and via reducing CO2 emission by carbonation (e.g. formation of CaCO3). However, very limited information is available on the effects of fly ash application on gases loss of C and soil C content. In this study, to estimate the potential use of fly ash as a soil amendment for SOC enhancement purposes, the effects of fly ash application (0, 5, and 10 w/w %) on microbial biomass C (MBC), CH4 and CO2 emissions, and on soil C content were investigated. A 60-days incubation experiment was conducted with an acidic soil in the presence of organic input (pig manure compost, PMC; hairy vetch, HV) with contrasting substrate quality under changing water regime from water-logged to unsaturated via a transition period. Fly ash application did not affect MBC under water-unsaturated conditions, but reduced (P < 0.01) microbial growth under water-logged conditions, probably due to the increased solubility of a certain toxic element such as arsenic under the anaerobic conditions. Across the 60 days of incubation, the CO2 emission was reduced by fly ash regardless of organic input by 20.5–41.3%; meanwhile, a decline of CH4 emission by fly ash application was significant (P < 0.05) only in the HV treatment. Overall, fly ash application slowed down gases C loss and increased soil C content, probably due to the retardation of CH4 and CO2 emission as well as the addition of C contained in the fly ash. Biochemical (inhibition of microbial activity), chemical (formation of CaCO3 via carbonation), and physical (restriction of gas diffusion) mechanisms were suggested for the fly ash effects. 相似文献
20.
Long-term effects of farmyard manure and sewage sludge on some soil biochemical characteristics 总被引:2,自引:0,他引:2
A. Saviozzi A. Biasci R. Riffaldi R. Levi-Minzi 《Biology and Fertility of Soils》1999,30(1-2):100-106
Changes in some soil biochemical properties were investigated following repeated applications of aerobically digested sewage
sludge (SS) under field conditions over 12 years, and compared with those of an adjacent soil cultivated and amended with
5 t ha–1 year–1 (dry weight) farmyard manure (FYM) for at least 40 years, as well as with those of an adjacent uncultivated soil, in order
to ascertain changes in soil quality. A short-term aerobic incubation was used to determine the potential of the samples to
mineralize the organic C supplied. Results indicated that cultivation caused a reduction in total, humified and potentially
mineralizable organic C, total N, light-fraction (LF) C, total and water-soluble carbohydrates, phenolic compounds, cation-exchange
capacity (CEC), microbial biomass C, specific respiration, hydrolytic and urease activities, and an increase in the heavy
metal content. Total and water-soluble carbohydrates and phenolic compounds expressed as a percentage of total organic C (TOC)
were similar in the differently managed plots. Of the two amendments, FYM treatments showed higher amounts of TOC and N, LF-C,
total and water-soluble carbohydrates, phenolic substances, CEC, specific respiration of biomass, hydrolytic and urease activities,
similar amounts and characteristics of humified organic matter and lower concentrations of Cu, Zn and Cr. Both FYM and SS
were inadequate treatments for the restoration of soil organic matter lost as a consequence of cultivation.
Received: 20 October 1998 相似文献