首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi-year (2004-2009) field survey of on-farm sowing practices in 10 villages located in south-west Niger close to Niamey, is analysed to investigate the relationships (i) between rainfall and the sowing date of pearl millet and the risk of sowing failure, (ii) between sowing and meteorological/agro-climatic onset dates, (iii) between sowing/onset dates, and simulated and observed yield/biomass at the end of the season. Even if some villages sow without any synchronous or anterior rainfall, most parcels (73% out of the 1551 available cases) are sown during and just after a 2-day wet spell receiving at least 10 mm. In fact, there is a strong correlation (r = 0.82-0.95 depending on onset definition) between the spatial averages of onset and of sowing dates. Most of the failed sowings (≈22% of total sowings) are related to dry spells lasting at least 7 days after an initial 2-day wet spell receiving less than 10 mm. Simulations with the “Système d’Analyse Régionale des Risques Agronomiques - version Habillée” crop model show that the ideal sowing date, retrospectively computed as the one maximizing simulated yield, is on average about 6 days later than the observed one. Despite the large inter-village variance and the relatively weak inter-annual signal in onset dates and seasonal amounts, there is a tendency for weaker yields and especially weaker amounts of biomass for late onset. But crop simulations show that sowing very early, as for example during or just after the first wet spell when at least 90% of rainfall stations receive simultaneously at least 1 mm in two consecutive days (i.e. meteorological onset), does not necessarily maximize simulated yield because of the high risk of long-lasting post-onset dry spells. The farmers’ strategy, that is sowing their field during or just after the first significant wet spell, is combined with the use of photoperiodic varieties to provide the best-suited response to the temporal and spatial variability of onset of the rainy season.  相似文献   

2.
Changes in the diversity of landraces in centres of diversity of cultivated plants need to be assessed in order to monitor and conserve agrobioversity—a key-element of sustainable agriculture. This notably applies in tropical areas where factors such as increased populations, climate change and shifts in cropping systems are hypothesized to cause varietal erosion. To assess varietal erosion of staple crops in a country subjected to various anthropogenic and natural environmental changes, we carried out a study based on a comparison of the diversity of pearl millet and sorghum varieties collected in 79 villages spanning the entire cereal-growing zone of Niger over a 26 year period (1976–2003). For these two crops, the number, name and type of varieties according to important traits for farmers were considered at different spatial scales (country, region, village) at the two collection dates. The results confirmed the high diversity of millet and sorghum varieties in Niger. No erosion of varietal diversity was noted on a national scale during the period covered. Some changes were observed but were limited to the geographical distribution of certain varieties. This highlights that farmers’ management can preserve the diversity of millet and sorghum varieties in Niger despite recurrent and severe drought periods and major social changes. It also indicates that rainfed cereal cropping systems in Niger should remain to be based on millet and sorghum, while reinforcing farmers’ seed systems.  相似文献   

3.
以谷子坡耕地为研究对象,通过人工模拟降雨试验,探究不同生育期谷子在不同坡度下对坡耕地坡面侵蚀过程的影响,揭示黄土高原地区坡耕地侵蚀过程特征和机理.根据试验区现行退耕还林(草)政策、降雨特点及谷子生长特性,在80 mm/h降雨强度和4个坡度(3°,5°,10°,15°)条件下分别对4个生育期(幼苗期、拔节期、抽穗期、灌浆...  相似文献   

4.
Crop residues from millet production in southwest Niger are limited for their utilization as mulch because of many other uses. Thus, branches of an indigenous shrub (Guiera senegalensis J.F. Gmel.) were tested with a randomised block design for their effect on millet (Pennisetum glaucum L.) yield. Pearl millet was planted in 1995 and 1996 on a luvic Arenosol in southwest Niger. Three treatments were applied: control, 1000 kg ha−1 dry matter Guiera-mulch and 2000 kg ha−1 dry matter Guiera-mulch. Mulched plots had 68–94% higher millet yields compared to the control. Differences in soil properties before the treatments were applied, explained a high variability within the treatments. Significant differences of soil properties between blocks led to a distinction of infertile and fertile blocks. In infertile plots with 1000 kg ha−1 Guiera-mulch, millet yield was higher than in plots with 2000 kg ha−1 Guiera-mulch. Due to the many uses of Guiera senegalensis by the local farmers, an application of 1000 kg ha−1 Guiera-mulch, at least on infertile soils, seems a good possibility to increase millet production.  相似文献   

5.
Maize production in marginal tropical regions is at great risk due to rainfall variability and climate change. Climate change is set to increase the variability and uncertainty of inter-annual rainfall. Farmers who depend on rainfed maize production for their livelihoods would therefore benefit from improved climate based forecasting of production likelihood. In this study we developed a simple maize production decision support tool for Masvingo by using seasonal climate forecasts and a crop model to forecast maize yields likelihood prior to the season. We follow up on earlier studies carried out in Zimbabwe which show that the El Nino Southern Oscillation (ENSO) can be used to forecast rainfall and maize yields in Zimbabwe. An ENSO based seasonal climate analysis tool (RAINMAN) was used to produce probabilistic monthly climate forecasts for Masvingo corresponding to the phases of the Southern Oscillation Index (SOI). The climate forecasts were used to run a crop model (AquaCrop) for a variety of scenarios relevant to maize production (monthly rainfall, cultivar selection, planting date, and fertility level). The results of the simulations were similar to those observed by Phillips et al. (1997) and formed the basis for the development of an operational decision support tool. Simulated maize yields varied from 1.2 t/ha to 5.8 t/ha. The simulated yields were higher than expected average yields in a marginal region like Masvingo especially under small holder farming. The work suggested that optimal use of forecasts may lead to improved maize production in Masvingo. The study set a platform for the development of operational climate based maize production decision support tools in Zimbabwe.  相似文献   

6.
A survey was carried out in 136 farm‐households from seven villages in 1995 and 1996 to analyse the traditional fallow cultivation system in Niger. Farmers were asked to give information about land use on their fields, focusing on cropping and fallow periods as well as on cultivation changes compared to the past. In addition, they were interviewed about their management strategies to maintain or improve soil fertility. Millet‐based systems clearly dominate at all sites, either in pure form or intercropped with cowpea, groundnut, sorghum or roselle. At present, almost half of all farmers cultivate their fields on average up to 5 years until it is left fallow. About one‐third use their fields permanently. Most farmers use short fallow periods of 1 to 5 years. Moreover, there was a decrease in the cropping area left fallow, and the fallow period also decreased steadily in the past years. In the mid‐1970s the average fallow period was about 8 years, decreasing to 2.5 years in 1996. The actual fallow periods are too short to allow sufficient positive effects on soil fertility and farmers are aware of this problem. Consequently, farmers employ different fertilization techniques which aim at maintaining or restoring the soil nutrient pool of the fields while providing physical protection against wind and water erosion. Most farmers use animal manure to improve soil fertility and apply mulch from different sources, millet stalks and branches, for soil regeneration. Few farmers employ other strategies such as mineral fertilizer or planting pits. The farmers try to optimize the use of internal and external resources resulting in a mixture of different fertilization and soil protection methods. Internal resources play by far the most important role. Due to the generally limited resource availability farmers concentrate their management efforts on certain areas within each field or on selected fields only. This means a decreased crop production for the individual household and a higher risk of soil degradation because of soil mining or increased erosion risk on the field area where soil fertility management cannot be practised. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Estimates of long-term landscape-scale N2O emissions for greenhouse gas inventories are complicated by large temporal and spatial variability. Much of this variability is likely caused by topographic effects on surface and subsurface water flows. We hypothesized that this variability could be explained as degassing events during anaerobic soil conditions and during transitions from anaerobic to aerobic soil conditions as controlled by precipitation and subsequent water redistribution in complex landscapes. We simulated degassing events in the ecosystem model ecosys run in three-dimensional mode to simulate a fertilized agricultural field with topographic variation derived from a digital terrain map. N2O emissions modelled from two areas within the field that had received 15.5 and 9.9 g N m−2 as urea in May 1998 were compared with those measured by micrometeorological flux towers during June and July 1998. Modelled N2O emissions during 1998 accounted for 2.3 and 2.0% of urea N applied at 15.5 and 9.9 g N m−2, respectively. Degassing events in the model coincided with a key N2O emission event measured in the field during several days after a rainfall in mid-June. During this event, modelled and measured surface fluxes rose rapidly to exceed 1 mg N m−2 h−1 for 2-3 d before declining. Emissions modelled concurrently at different topographic positions within the landscape during the emission event had coefficients of variation that varied over time between 30 and 180%. Much of the spatial variability in modelled emissions was attributed to temporal differences in the progression of emission events at different landscape positions caused by lateral water movement. The magnitude of temporal and spatial variability in N2O emissions suggests that aggregation of flux measurements to regional scales should be based upon sub-daily measurements at representative landscape positions, rather than upon less frequent measurements at individual sites as currently done. The use of three-dimensional ecosystem models with input from digital terrain maps may provide a means for such aggregation to be conducted.  相似文献   

8.
基于GIS的岷江流域降雨侵蚀力时空特征研究   总被引:1,自引:0,他引:1  
利用岷江及周边流域124个气象水文站1981-2010年的日降雨资料计算了该区域的降雨侵蚀力.通过克吕格插值法生成降雨侵蚀力的空间分布图,采用泰森多边形和K-Means聚类法将其划分为3个等级并得到各等级的空间分布格局.根据离差系数、趋势系数和倾向率指标分析了站点年际变化特征及不同等级的时空变化格局.结果显示:(1)年均降雨侵蚀力表现出东南部高,向西迅速降低的特征,且呈现以雅安乐山为中心向东北、西南递减缓慢,向西北递减迅速的环状空间分布格局;(2)岷江流域降雨侵蚀力聚类为侵蚀低、中、高值区,其聚类中心分别为1 054.73,4 594.50和7 153.75 MJ·mm/(hm·h·a),其中侵蚀低值区主要分布在岷江流域上游和大渡河支流流域,中值区主要分布在岷江中下游流域,高值区集中分布在岷江中游的雅安、乐山、眉山和都江堰地区;(3)降雨侵蚀力年际变化呈南北分异特征,以都江堰汶川小金—丹巴为界,北部变化大于南部,变化趋势呈东西分异特征,以茂县理县汶川宝兴—天全汉源—峨边沐川 宜宾一线以东呈下降趋势,以西呈上升趋势.不同地区的降雨侵蚀力变化趋势的显著程度也不同.  相似文献   

9.
Abstract

To investigate spatial variability in topsoil (0–20?cm) pH, available phosphorus (P), potassium (K), total nitrogen (N), and soil organic matter (SOM) of small fields (~2?ha), and to determine the impact of soil heterogeneity on the spatial variability of crop yield two fields were cropped with spring oats and one with winter wheat under humid-temperate conditions. In the two oat fields, some of the measured soil properties (P, K) and the grain yield varied considerably, and strong spatial trends were recorded for most of the soil traits. In the third field, soil properties showed only a moderate spatial variation, and no spatial trends were found. The spatial distribution of SOM and total N in the topsoil had some influence on the spatial pattern of the oat grain yield in the field of Gränichen; however, spatial relationships between soil chemical properties and grain yield were rather weak in our study.  相似文献   

10.
Field trials have demonstrated the potential of soil conservation technologies but have also shown significant spatial–temporal yield variability. This study considers the Pan‐European Soil Erosion Risk Assessment – Desertification Mitigation Cost‐Effectiveness modelling approach to capture a greater range of climatic conditions to assess the potential effect of an improved agricultural management practice emerged from field trials as a promising strategy for enhancing food security and reducing soil and land degradation. The model considers the biophysical and socio‐economic benefits of the improved soil conservation technique (T3) – residue mulch combined with pigeon pea hedges and an organic amendment, against a local baseline practice (T0). The historic rainfall statistics and 50‐year rainfall realizations provide a unique time series of rainfall and an envelope of the potential crop yield. Envelopes of potential biomass production help express the agricultural risk associated with climate variability and the potential of the conservation measures to absorb the risk, highlighting the uncertainty of a given crop yield being achieved in any particular year. T3 elevates yield under both sub‐humid and semi‐arid climates with greater security for sub‐humid areas even though risk of crop failure still exists. The technology offered good potential to increase yields by 20% in 42% of the dryland area in Santiago Island and reduce erosion by 8·6 Mg ha−1, but in terms of cost‐effectiveness, it might be prohibitively expensive for farmers lacking inputs. The findings can enable the assessment of policy options at larger scale or influence adoption of improved conservation measures under the climatic variability of the Cabo Verde drylands and resilience to future climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Development of rural areas needs information about sustainable use of the land. The main objective of this research is to study the spatial distribution pattern of different field types in the traditional agricultural landscape in the Central Spanish Pyrenees (flat fields, four different terrace fields, sloping field and shifting agriculture) related to different geoecological variables: slope, exposition, altitude, distance to the villages, rainfall (intensity and volume), lithology and demographic pressure. Agricultural land patterns were mapped in five valleys in the Central Pyrenees from aerial photographs (1957). These maps were digitised and implemented in a Geographic Information System on a scale 1:50,000. We determined the influence of different geoecological variables in the spatial distribution of land agricultural patterns at local and regional valley using statistical analysis. The results showed that the agricultural area occupied a large extension, despite physical environment limitations, extending even in marginal slopes, with little agricultural skills, creating a complex landscape with different field patterns. At the local scale (valley), slope and distance are the more influence variables to explain the spatial distribution of the different field types. At the regional scale, in the Western valleys, sloping fields and shifting agriculture predominate, while terraces dominate in the Eastern valleys. Distance to the village and rainfall intensity is the more determinant factors in the spatial distribution. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Gross Primary Productivity (GPP) is a critical measure of the health and sustainability of natural ecosystems. Understanding the magnitude, spatial patterns and processes of GPP will underpin predictions of the impact of climate change on the carbon cycle. In Australia, savannas account for one third of the terrestrial carbon stores and therefore, estimating the magnitude of savanna GPP and studying the spatial relationship between GPP and environmental determinants at the regional scale is essential in understanding ecosystem responses to increasing atmospheric CO2 concentrations and climate change. In this study we employed an integrated approach combining in situ measurements, eddy covariance based flux tower data and remote sensing techniques to examine the role of environmental drivers in controlling the spatial variation in GPP of savannas in the Northern Territory (NT), Australia. We used field based light use efficiency (LUE), regional specific meteorology and Moderate Resolution Imaging Spectro-radiometer (MODIS) based fraction of absorbed Photosynthetically Active Radiation (fPAR) data to estimate GPP. The estimated GPP agreed quite well (only a 6% error) with GPP estimated from flux tower at the Howard Springs site. The spatial pattern of GPP along the Northern Australian Tropical Transect (NATT) was calculated and showed a strong gradient in GPP from the coast (12.50°S where rainfall was 1622 mm year−1) to inland (17.73°S where mean rainfall was 643 mm year−1) with a decrease of 77%. A decreasing trend in GPP with rainfall is noticed especially at the dry end of the transect studied. However, in the wet end and middle part of the transect (e.g. dominated by different Eucalyptus species), the response of GPP to changes in rainfall is reduced. This finding suggests that the influence of rainfall on various Eucalyptus species may be dampened by biotic factors. Our results suggest that future changes in precipitation driven by climate change may affect the future distribution and dynamics of GPP in northern Australia.  相似文献   

13.
A two-year field experiment was conducted in Niger to explore the effects of integrated use of millet glume-derived compost (MGD-Compost) and NP fertilizer on soil microbial biomass carbon (Cmic), nitrogen (Nmic) and millet yields. Three compost rates (3000 kg ha?1, 1500 kg ha?1 and 0 kg ha?1) and three NP fertilizer rates (100%, 50% and 0% of recommended NP fertilizer) were arranged in a factorial experiment organized in a randomized complete block design with three replications. Combined application of compost and NP fertilizer induced a synergistic effect on Cmic and Nmic. Compost application increased millet grain yield from 59% to 91% compared to control. Combined application of compost and NP fertilizer increased millet grain yields from 57% to 70% in 2013 and from 36% to 82% in 2014 compared to sole application of mineral fertilizer. Agronomic efficiency (AE) of nitrogen values increased by 3.7 and 2.3 times than those of sole NP fertilizer application in 2013 and 2014, respectively. Phosphorus AE was 1.6 times higher than that of the sole application of NP fertilizer. These findings indicate that integrated application of MGD-Compost and NP fertilizer enhances soil microbial biomass content and increases millet grain yield in a low-input cropping system.  相似文献   

14.
Soil respiration is an important component of terrestrial carbon cycling and can be influenced by many factors that vary spatially. This research aims to determine the extent and causes of spatial variation of soil respiration, and to quantify the importance of scale on measuring and modeling soil respiration within and among common forests of Northern Wisconsin. The potential sources of variation were examined at three scales: [1] variation among the litter, root, and bulk soil respiration components within individual 0.1 m measurement collars, [2] variation between individual soil respiration measurements within a site (<1 m to 10 m), and [3] variation on the landscape caused by topographic influence (100 m to 1000 m). Soil respiration was measured over a two-year period at 12 plots that included four forest types. Root exclusion collars were installed at a subset of the sites, and periodic removal of the litter layer allowed litter and bulk soil contributions to be estimated by subtraction. Soil respiration was also measured at fixed locations in six northern hardwood sites and two aspen sites to examine the stability of variation between individual measurements. These study sites were added to an existing data set where soil respiration was measured in a random, rotating, systematic clustering which allowed the examination of spatial variability from scales of <1 m to 100+ m. The combined data set for this area was also used to examine the influence of topography on soil respiration at scales of over 1000 m by using a temperature and moisture driven soil respiration model and a 4 km2 digital elevation model (DEM) to model soil moisture. Results indicate that, although variation of soil respiration and soil moisture is greatest at scales of 100 m or more, variation from locations 1 m or less can be large (standard deviation during summer period of 1.58 and 1.28 μmol CO2 m−2 s−1, respectively). At the smallest of scales, the individual contributions of the bulk soil, the roots, and the litter mat changed greatly throughout the season and between forest types, although the data were highly variable within any given site. For scales of 1-10 m, variation between individual measurements could be explained by positive relationships between forest floor mass, root mass, carbon and nitrogen pools, or root nitrogen concentration. Lastly, topography strongly influenced soil moisture and soil properties, and created spatial patterns of soil respiration which changed greatly during a drought event. Integrating soil fluxes over a 4 km2 region using an elevation dependent soil respiration model resulted in a drought induced reduction of peak summer flux rates by 37.5%, versus a 31.3% when only plot level data was used. The trends at these important scales may help explain some inter-annual and spatial variability of the net ecosystem exchange of carbon.  相似文献   

15.
辽河流域降雨侵蚀力的时空变化分析   总被引:3,自引:0,他引:3       下载免费PDF全文
降雨侵蚀力是反映流域降雨侵蚀能力的综合指标之一。根据辽河流域10个气象站的日降雨量资料,利用日降雨侵蚀力模型估算辽河流域的降雨侵蚀力。结果表明:辽河流域降雨侵蚀力的空间变异与降雨量的空间分布趋势基本一致,由东南向西北递减,变化于1000—3800MJ·mm/(hm^2·h·a)之间;降雨侵蚀力年内集中度高,6—8月3个月约占全年的80%;降雨侵蚀力年际变化大,年际变率Cv在0.367—0.649之间,采用时序系列的Mann—Kendall检验表明,降雨侵蚀力并无显著变化趋势;特别是在流域水土流失严重的西辽河地区,年降雨侵蚀力较小,但年内集中程度大,年际变化更突出。  相似文献   

16.
Land‐use dynamics in drylands are complex processes. In the context of a typical agropastoral village in northwestern Syria Im Mial, the effects of demographic and social changes, reduced soil productivity, changes in agricultural technologies and historical events on land use and land productivity are examined. Decreasing yields, mainly the result of reduced fallow periods and low investments in the land, and the deterioration of the grazing resources are the two main signs of the loss of land productivity in the area. The growing population forces the villagers to practise continuous rainfed barley cultivation with no or only occasional fallow, and without any application of plant nutrients. Also, technological changes, from the use of donkey ploughs and hand harvesting to less labour‐intensive and time‐consuming cultivation practices with tractors and combine harvesters, and the increased importance of stubble in the livestock diet have contributed to the reduction of the fallow periods. The villagers attribute the yield decreases mainly to the low rainfall in the area. The high rainfall variability discourages the fallowing of fields because continuous cultivation maximizes the chances for good harvests in years with high rainfall. There is also an expansion of cultivation into the less fertile and sloping traditional grazing areas. Population growth, increased numbers of livestock and the expansion of cultivated land into grazing areas has also put pressure on the grazing resources of the village. The possession of livestock is seen as a sign of wealth and the villagers aim to have large flocks of animals. For them, livestock is also an important means for investment of cash earned from off‐farm work, which is the main source of income for most of the households in the village. There is a recent trend of increasing levels of crop‐livestock integration with less free grazing that produces higher return to the land users. This may also have a positive effect on the restoration and conservation of the degraded natural traditional grazing grounds. The stabilization and productive use of the land resources in this dry environment requires the combined and interdisciplinary effort from both the land‐users and the policy‐makers. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Quantifying the nitrous oxide (N2O) and nitric oxide (NO) fluxes emitted from croplands remains a major challenge. Field measurements in different climates, soil and agricultural conditions are still scarce and emissions are generally assessed from a small number of measurements. In this study, we report continuously measured N2O and NO fluxes with a high temporal resolution over a 2-year crop sequence of barley and maize in northern France. Measurements were carried out using 6 automatic chambers at a rate of 16 mean flux measurements per day. Additional laboratory measurements on soil cores were conducted to study the response of NO and N2O emissions to environmental conditions.The detection limit of the chamber setup was found to be 3 ng N m−2 s−1 for N2O and 0.1 ng N m−2 s−1 for NO. Nitrous oxide fluxes were higher than the threshold 37% of the time, while they were 72% of the time for NO fluxes.The cumulated annual NO and N2O emissions were 1.7 kg N2O-N ha−1 and 0.5 kg NO-N ha−1 in 2007, but 2.9 kg N2O-N ha−1 and 0.7 kg NO-N ha−1 in 2008. These inter-annual differences were largely related to crop types and to their respective management practices. The forms, amounts and timing of nitrogen applications and the mineralization of organic matter by incorporation of crop residues were found to be the main factor controlling the emissions peaks. The inter-annual variability was also due to different weather conditions encountered in 2007 and 2008. In 2007, the fractioned N inputs applied on barley (54 kg ha−1 in March and in April) did not generate N2O emissions peaks because of the low rainfall during the spring. However, the significant rainfall observed in the summer and fall of 2007, promoted rapid decomposition of barley residues which caused high levels of N2O emissions. In 2008, the application of dairy cattle slurry and mineral fertilizer before the emergence of maize (107 kg Nmin ha−1 or 130 kg Ntot ha−1 in all) coincided with large rainfalls promoting both NO and N2O emissions, which remained high until early summer.Laboratory measurements corroborated the field observations: NO fluxes were maximum at a water-filled pore space (WFPS) of around 27% while N2O fluxes were optimal at 68% WFPS, with a maximum potentially 14 times larger than for NO.  相似文献   

18.
The Souar lithologic formation in semi-arid Tunisia is undergoing severe gully erosion which is threatening soil and water resources. Soil conservation strategies have focused more on terracing than on gully control techniques, since the contribution of gully sediment yield in the overall soil loss from watersheds is unknown. The paper reports investigations into the sediment yield provided by head-cut as well as sidewall–floor erosion of first order gullies on gentle and steep slope catchments underlined by the Souar lithologic formation. We measured mean field sediment volumes evacuated by different headward reaches of 10 and 9 gullies located on gentle and steep slope catchments, respectively. Two equations between the length of the gully head cutting and the corresponding volume of evacuated sediment were established. The treatment with a Geographic Information System (Arc View) of air photographs of six flights from 1952 to 2000 allowed the calculation of the volume of sediment provided both by head cutting and gully sidewalls–floor erosion through the following up of gully extension in eight catchments during the five periods separating the dates of these flights. Total gully erosion was on average 1.66 m3 ha− 1 year− 1 for the gentle slopes and 5.603 m3 ha− 1 year− 1 for the steep slopes. Sidewalls–floor contribution in total erosion was on average 81.5% for the gentle slopes and 77.8% for the steep slopes. We found out that the mean annual rainfall resulting from 40 mm daily rainfall threshold explained better the variation of annual head cutting sediment yield for these five periods than any other annual rainfall resulting from lower daily rainfall thresholds. Two equations between these two variables were established both for gentle and steep slope catchments.  相似文献   

19.
The extent of within-field spatial variability of pesticide degradation was characterised in topsoil and subsoil, using the compounds isoproturon, bentazone and mecoprop, which are major contaminants of groundwater and surface freshwater in Europe. Twenty topsoil samples from 0 to 15 cm depth and twenty subsoil samples from 50 to 60 cm depth were collected from a single agricultural field within a 160×90 grid. It was shown that degradation rates of all compounds declined with soil depth. Variability of pesticide degradation rates, pesticide sorption and formation of non-extractable pesticide residues was higher in subsoil relative to topsoil. Furthermore, in the subsoil, there was variation in large scale soil physicochemical composition, which did not occur in topsoil. The greater variability in pesticide degradation rates in subsoil relative to topsoil could be the result of a greater range of degradation kinetics, which could reflect greater spatial variability in the distribution and/or activities of pesticide metabolising communities.  相似文献   

20.
A 27-year soil temperature record at five depths and soil heat flux record at one depth were analyzed for a grassland area in The Netherlands. The annual mean soil temperature of the last 23 years of soil measurements (no data gaps) showed a statistically significant increase of about 1.0 °C, consistent with the observed air temperature increase of about 1.3 °C for the same period. This positive trend correlates well with global brightening of 5.3 W m−2 per decade. The 10-day mean soil temperature varied smoothly throughout the year with relatively small inter-annual variability. The deeper the measurement depth, the smoother the annual cycle and the smaller the variability. In February and at the end of the year the variability appears to be somewhat larger. A Fast Fourier Transform was applied to the measurements and revealed an annual and daily damping depth of 1.80 m and 0.10 m, respectively. An example of the usefulness of this data is provided for agriculture, where an aggressive root-knot nematode is affected by the mean soil temperature increase. It appears that the 600 degree day life-cycle threshold is reached 16 days earlier, which may lead to a potential serious increase in agriculture crop damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号