共查询到20条相似文献,搜索用时 32 毫秒
1.
A two-year study in a typical red soil region of Southern China was conducted to determine 1) the dry deposition velocity (Vd) for SO2 and particulate SO4^2- above a broadleaf forest, and 2) atmospheric sulfur fluxes so as to estimate the contribution of various fractions in the total. Using a resistance model based on continuous hourly meteorological data, atmospheric dry sulfur deposition in a forest was estimated according to Va and concentrations of both atmospheric SO2 and particulate SO2^4-. Meanwhile, wet S deposition was estimated based on rainfall and sulfate concentrations in the rainwater. Results showed that about 99% of the dry sulfur deposition flux in the forest resulted from SO2 dry deposition.In addition, the observed dry S deposition was greater in 2002 than in 2000 because of a higher average concentration of SO2 in 2002 than in 2000 and not because of the average dry deposition velocity which was lower for SO2 in 2002. Also,dry SO2 deposition was the dominant fraction of deposited atmospheric sulfur in forests, contributing over 69% of the total annual sulfur deposition. Thus, dry SO2 deposition should be considered when estimating sulfur balance in forest ecological systems. 相似文献
2.
研竞分析了CO2、CH4、N2O、SO2、CFCs等主要温室气体的生态效应,结果表明其生态效应与其性质及浓度有关,提出了缓解温室气体释放的有效对策。 相似文献
3.
ZHAO Xing-Yun QIAN Jun-Long WANG Jian HE Qing-Yan WANG Zu-Liang CHEN Cheng-Zhong 《土壤圈》2006,16(3):371-379
The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record. 相似文献
4.
在人工控制环境条件下研究了CO2浓度对金针菇(Flammulina velutipes)生长发育的影响结果表明,金针菇菌丝正常生长所要求的适宜CO2浓度为261.7-2930.5μmol/L;金针菇子实体原基形成随CO2浓度升高明显受到抑制,所要求的适宜CO2浓度范围为12.3-60μmol/L;菇蕾形成后为获得优质高产金针菇,应提高环境内CO2浓度,并控制在210-600μmol/L范围内。 相似文献
5.
在高CO2浓度下羊草对土壤干旱胁迫响应的人工模拟试验分析表明,CO2浓度升高对羊草具有“施肥”效应,羊草生物量增加20%以上,光合速率提高50%左右,气孔阻力增大,蒸腾速率下降,水分利用效率提高,土壤干旱胁迫对羊草的影响为负效应,与此相反,高CO2浓度下发生土壤干旱胁迫一定程度抑制了CO2的施肥效应。 相似文献
6.
J. Juárez-Rodríguez F. Fernández-Luqueño E. Conde V. Reyes-Varela F. Cervantes-Santiago E. Botello-Alvarez 《Journal of plant nutrition》2013,36(4):511-523
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O. 相似文献
7.
Zubin Xie Georg Cadisch Grant Edwards Elizabeth M. Baggs 《Soil biology & biochemistry》2005,37(7):1387-1395
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited. 相似文献
8.
盐碱地土壤:氧化亚氮和二氧化碳排放的潜在来源? 总被引:2,自引:1,他引:1
Increasing salt-affected agricultural land due to low precipitation,high surface evaporation,irrigation with saline water,and poor cultural practices has triggered the interest to understand the influence of salt on nitrous oxide(N_2O) and carbon dioxide(CO_2)emissions from soil.Three soils with varying electrical conductivity of saturated paste extract(EC_e)(0.44-7.20 dS m~(-1)) and sodium adsorption ratio of saturated paste extract(SARe)(1.0-27.7),two saline-sodic soils(S2 and S3) and a non-saline,non-sodic soil(S1),were incubated at moisture levels of 40%,60%,and 80%water-filled pore space(WFPS) for 30 d,with or without nitrogen(N)fertilizer addition(urea at 525 μg g~(-1) soil).Evolving CO_2 and N2 O were estimated by analyzing the collected gas samples during the incubation period.Across all moisture and N levels,the cumulative N_2O emissions increased significantly by 39.8%and 42.4%in S2 and S3,respectively,compared to S1.The cumulative CO_2 emission from the three soils did not differ significantly as a result of the complex interactions of salinity and sodicity.Moisture had no significant effect on N_2O emissions,but cumulative CO_2 emissions increased significantly with an increase in moisture.Addition of N significantly increased cumulative N_2O and CO_2 emissions.These showed that saline-sodic soils can be a significant contributor of N_2O to the environment compared to non-saline,non-sodic soils.The application of N fertilizer,irrigation,and precipitation may potentially increase greenhouse gas(N2O and CO_2) releases from saline-sodic soils. 相似文献
9.
Kiyoshi Ozaki 《Soil Science and Plant Nutrition》2013,59(1):88-90
It is well known that an increase of and better grain can be obtained by the application of an adequate amount of quick-acting nitrogen fertilizers such as ammonium sulphate, thirty to twenty five days before heading, and this is a common practice of top-dressing, being called “Hogoe” in Japanese. It is also well known that excess of nitrogen supplied at this time makes plants weak against mechanical injury, insects and disease. For the application of “Hogoe”, therefore, an accurate diagnosis of the nitrogen nutrient condition of rice is required. In a series of investigations on the nitrogen metabolism, the author found that asparagine appeared in parallel with the increase of nitrogen concentration in rice plants, and considered that the detection of asparagine would be a good indicator for assessing the nitrogen requirement of rice lantstl). 相似文献
10.
红壤交换性钙、镁和钾的分布及施肥对其影响 总被引:1,自引:0,他引:1
A leaching experiment was Carried out with repacked soil columns in laboratory to study the leaching process of a red soil derived from sandstone as affected by various fertilization practices.The treatments were CK(as a control),CaCO3,CaSO4,MgCO3,Ca(H2PO4)2,Urea,KCl,Multiple(a mixture of the above mentioned fertilizers) and KNO3,The fertilizers were added to the bare surface of the soil columns,and then the columns were leached with 120 mL deionized water daily through perstaltic pumps over a period of 92 days,At the end of leaching process,soils were sampled from different depths of the soil profiles ,i.o.,of 92 days,At the end of leaching process,soils were sampled from different depths of the soil profiles,I.e.0-5cm,5-10cm,10-20cm,20-40cm,and 40-60cm,The results showed when applying Ca,Mg,and K to the bare surface of the soil columns,exchangeable Ca^2 ,Mg^2 ,and K^ in the upper layer of the soil profile increased correspondingly,with an extent depending mainly on the application rates of Ca,Mg,and K and showing a downward trend,CaCO3,CaSO4,MgCO3,and Ca(H2PO4)2 treatments had scarcely and effect on movement of exchangeable K^ ,while CaCO3,and CaSO4 treatments singnificantly promoted the downward movement of exchangealble Mg^2 although these two treatments had no obvious effect on leaching losses of Mg,The fact that under Urea treatment,exchangeable Ca^2 and Mg^2 ,were higher as compared to CK treatment showed urea could prevent leaching of exchangeable Ca^2 and Mg^2 ,the obvious downward movement of exchangeable Ca^2 and Mg^2 was noticed in KCl treatment ,In Multiple treatment,the downward movement of exchangeable Ca^2 and Mg^2 was evident,while that of K^ was less evident,Application of KNO3 strongly promoted the downward movement of exchangeable Ca^2 and Mg^2 in the soil profile. 相似文献
11.
Growing switchgrass (Panicum virgatum, L.), a promising bioenergy crop, needs finely-tuned nitrogen (N) fertilization to improve biomass yields depending on soil types and site characteristics. N fertilization can also affect the soil organic carbon (SOC) pool. Therefore, this study was conducted to assess the effects of N fertilization on switchgrass biomass production and the SOC stock in Ohio. Switchgrass was established at three research stations (Northwest, Jackson, and Western sites) of the Ohio Agricultural Research and Development Center (OARDC) in spring 2004. N fertilizer was applied at four different rates (0, 50, 100, and 200 kg N ha−1) in 2008 and 2009. Aboveground and root biomass and the carbon (C) and N concentrations in plant tissues, SOC concentrations up to 30 cm depth were measured at the end of the growing season in 2009. Aboveground biomass at the Western site was the highest as 26 Mg ha−1 with 200 kg N ha−1 application, but there were no significant effects of N fertilization on aboveground biomass at two other sites and on root biomass across all sites. The amount of N export due to harvesting aboveground biomass increased with increase in N rates but did not vary among sites. With increasing N rates, the SOC stock linearly increased from 102 to 123 and from 55 to 70 Mg C ha−1 at the Northwest and the Jackson sites, respectively. However, this positive correlation was not observed for the Western site (a range of 59 to 67 Mg C ha−1). This study showed a potential of growing switchgrass as a bioenergy crop in Ohio and positive responses of the SOC stock to N fertilization. 相似文献
12.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils. 相似文献
13.
The climate is undergoing rapid changes with rising atmospheric CO2 concentration, increasing temperatures and changes in the hydrological regimes resulting in more frequent and intense drought periods. These three climate change factors will, separately and in combination, affect the biotic and abiotic components of soil communities. This paper reviews the impact of climate change on field communities of enchytraeids with special emphasis on Cognettia sphagnetorum because most relevant studies have involved this species. C. sphagnetorum prefers cold and wet environments and several studies suggest that reductions of soil moisture may have dramatic consequences for C. sphagnetorum and other enchytraeid species. Effects of changing temperatures are less clear partly because thermal conditions influence soil moisture, which complicate the predictions of the outcome from such changes. The predicted increasing annual mean temperature may be stimulating and expand the season for growth and reproduction of enchytraeids; on the other hand, an increased frequency of extreme weather events, with heat waves during summer and bare soil freezes during autumn and spring, may occasionally cause severe mortality. Stimulating effects of increased atmospheric CO2 have been observed, perhaps due to increased food availability via root and litter production. However, effects of CO2 are also influenced by moisture and temperature. Generally, there is a lack of research looking into the complicated interactions between various climate change factors, and little is known about the potential of enchytraeids to adapt to a changing climate. Existing data suggest that C. sphagnetorum is not capable of adapting to a drier climate, thus, a decline in abundance and distribution of this species is possible. Since enchytraeids are of ecological significance in some types of habitats, a reduction may result in serious disruption in the functioning of these decomposer communities. 相似文献
14.
To study effect of C2H2 and change of headspace gas on N2O emission,denitrification,as well as CO2 emission,slurries of an agricultural soil were anaerobically incubated for 7 days at 25℃.Both N2O reduction and CO2 emissions were inhibited by the addition of 100 mL L^-1 of C2H2.However,the inhibition to CO2 emission was alleviated by the replacement of headspace gas,and the N2O emission was enhanced by the replacement.Acetylene disappeared evidently from the soil slurries during the incubation.Consequently results obtained from the traditional C2H2 blocking technique for determination of denitrifcation rate,especially in a long-time incubation,should be explained with care because of its side effect exsting in the incubation environments without change of headspace gas.To reduce the possible side effect on the processes other than denitrification ,it is suggested that headspace gas should be replaced several times during a long-time incubation. 相似文献
15.
M. Maier H. Schack-KirchnerE.E. Hildebrand D. Schindler 《Agricultural and Forest Meteorology》2011,151(12):1723-1730
In the long term, all CO2 produced in the soil must be emitted by the surface and soil CO2 efflux (FCO2) must correspond to soil respiration (Rsoil). In the short term, however, the efflux can deviate from the instantaneous soil respiration, if the amount of CO2 stored in the soil pore-space (SCO2) is changing. We measured FCO2 continuously for one year using an automated chamber system. Simultaneously, vertical soil profiles of CO2 concentration, moisture, and temperature were measured in order to assess the changes in the amount of CO2 stored in the soil. Rsoil was calculated as the sum of the rate of change of the CO2 storage over time and FCO2. The experiment was split into a warm and a cold season. The dependency of soil respiration and soil efflux on soil temperature and on soil moisture was analyzed separately. Only the moisture-driven model of the warm season was significantly different for FCO2 and Rsoil. At our site, a moisture-driven soil-respiration model derived from CO2 efflux data would underestimate the importance of soil moisture. This effect can be attributed to a temporary storage of CO2 in the soil pore-space after rainfalls where up to 40% of the respired CO2 were stored. 相似文献
16.
Kounosuke Fujita Hiroyuki Nobuyasu Takeshi Kuzukawa Joseph J. Adu-Gyamfi Pravat Kumar Mohapatra 《Soil Science and Plant Nutrition》2013,59(5):745-752
An experiment was conducted to examine the effect of CO2 enrichment on the nitrate uptake, nitrate reduction activity, and translocation of assimilated-N from leaves at varying levels of nitrogen nutrition in soybean using 15N tracer technique. CO2 enrichment significantly increased the plant biomass, apparent leaf photosynthesis, sugar and starch contents of leaves, and reduced-N contents of the plant organs only when the plants were grown at high levels of nitrogen. A high supply of nitrogen enhanced plant growth and increased the reduced-N content of the plant organs, but its effect on the carbohydrate contents and photosynthetic rate were not significant. However, the combination of high CO2 and high nitrogen levels led to an additive effect on all these parameters. The nitrate reductase activity increased temporarily for a short period of time by CO2 enrichment and high nitrogen levels. 15N tracer studies indicated that the increase in the amount of reduced-N by CO2 enrichment was derived from nitrate-N and not from fixed-N of the plant. To examine the translocation of reduced-N from the leaf in more detail, another experiment was conducted by feeding the plants with 15NO3-N through a terminal leaflet of an upper trifoliated leaf under depodding and/or CO2 enrichment conditions. The export rate of 15N from the terminal leaflet to other plant parts decreased by depodding, but it increased by CO2 enrichment. CO2 enrichment increased the percentage of plant 15N in the stem and / or pods. Depodding increased the percentage of plant 15N in the leaf and stem. The results suggested that the increase in the leaf nitrate reduction activity by CO2 enrichment was due to the increase of the translocation of reduced-N from leaves through the strengthening of the sink activity of pods and / or stem for reduced-N. 相似文献
17.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2. 相似文献
18.
It is still unclear whether elevated CO2 increases plant root exudation and consequently affects the soil microbial biomass. The effects of elevated CO2 on the fate of the C and nitrogen (N) contained in old soil organic matter pools is also unclear. In this study the short and long-term effects of elevated CO2 on C and N pools and fluxes were assessed by growing isolated plants of ryegrass (Lolium perenne) in glasshouses at elevated and ambient atmospheric CO2 and using soil from the New Zealand FACE site that had >4 years exposure to CO2 enrichment. Using 14CO2 pulse labelling, the effects of elevated CO2 on C allocation within the plant-soil system were studied. Under elevated CO2 more root derived C was found in the soil and in the microbial biomass 48 h after labelling. The increased availability of substrate significantly stimulated soil microbial growth and acted as priming effect, enhancing native soil organic matter decomposition regardless of the mineral N supply. Despite indications of faster N cycling in soil under elevated CO2, N availability to plants stayed unchanged. Soil previously exposed to elevated CO2 exhibited a higher N cycling rate but again there was no effect on plant N uptake. With respect to the difficulties of extrapolating glasshouse experiment results to the field, we concluded that the accumulation of coarse organic matter observed in the field under elevated CO2 was probably not created by an imbalance between C and N but was likely to be due to more complex phenomena involving soil mesofauna and/or other nutrients limitations. 相似文献
20.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil. 相似文献