共查询到4条相似文献,搜索用时 15 毫秒
1.
A. Matese S.F. Di Gennaro A. Zaldei L. Genesio F.P. Vaccari 《Computers and Electronics in Agriculture》2009,69(1):51-58
In the last decade, wireless technologies have been increasingly applied in precision agriculture. Wireless monitoring systems in particular have been used in precision viticulture in order to understand vineyard variability, and therefore suggest appropriate management practices for improving the quality of the wines.The NAV (Network Avanzato per il Vigneto – Advanced Vineyard Network) system is a wireless sensor network designed and developed with the aim of remote real-time monitoring and collecting of micro-meteorological parameters in a vineyard. The system includes a base agrometeorological station (Master Unit) and a series of peripheral wireless nodes (Slave Units) located in the vineyard. The Master Unit is a typical single point monitoring station placed outside the vineyard in a representative site to collect agrometeorological data. It utilizes a wireless technology for data communication and transmission with the Slave Units and remote central server. The Slave Units are multiple stations placed in the vineyard and equipped with agrometeorological sensors for site-specific environmental monitoring, which store and transmit data to the Master Unit. Software was developed for setup and configuration functionality. A graphical user interface operating on the remote central server was implemented to collect and process data and provide real-time control. The devices were tested in a three-step process: hardware functionality and data acquisition, energy consumption and communication. The NAV system is a complete monitoring system that gave flexibility for planning and installation, which fully responded to the objectives of the work in terms of energy efficiency and performance. 相似文献
2.
3.
Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops 总被引:6,自引:0,他引:6
Antonio-Javier Garcia-Sanchez Felipe Garcia-Sanchez Joan Garcia-Haro 《Computers and Electronics in Agriculture》2011,75(2):288-303
Monitoring different parameters of interest in a crop has been proven as a useful tool to improve agricultural production. Crop monitoring in precision agriculture may be achieved by a multiplicity of technologies; however the use of Wireless Sensor Networks (WSNs) results in low-cost and low-power consumption deployments, therefore becoming a dominant option. It is also well-known that crops are also negatively affected by intruders (human or animals) and by insufficient control of the production process. Video-surveillance is a solution to detect and identify intruders as well as to better take care of the production process. In this paper, a new platform called Integrated WSN Solution for Precision Agriculture is proposed. The only cost-effective technology employed is IEEE 802.15.4, and it efficiently integrates crop data acquisition, data transmission to the end-user and video-surveillance tasks. This platform has been evaluated for the particular scenario of scattered crops video-surveillance by using computer simulation and analysis. The telecommunications metrics of choice are energy consumed, probability of frame collision and end-to-end latency, which have been carefully studied to offer the most appropriate wireless network operation. Wireless node prototypes providing agriculture data monitoring, motion detection, camera sensor and long distance data transmission (in the order of several kilometers) are developed. The performance evaluation of this real tests-bed scenario demonstrates the feasibility of the platform designed and confirms the simulation and analytical results. 相似文献
4.
Development of soft computing and applications in agricultural and biological engineering 总被引:1,自引:0,他引:1
Yanbo Huang Yubin Lan Alex Fang Ronald E. Lacey 《Computers and Electronics in Agriculture》2010,71(2):107-127
Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed. 相似文献