首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Rising levels of atmospheric CO2 have often been found to increase above and belowground biomass production of C3 plants. The additional translocation of organic matter into soils by increased root mass and exudates are supposed to possibly increase C pools in terrestrial ecosystems. Corresponding investigations were mostly conducted under more or less artificial indoor conditions with disturbed soils. To overcome these limitations, we conducted a 14CO2 pulse-labelling experiment within the German FACE project to elucidate the role of an arable crop system in carbon sequestration under elevated CO2. We cultivated spring wheat cv. “Minaret” with usual fertilisation and ample water supply in stainless steel cylinders forced into the soil of a control and a FACE plot. Between stem elongation and beginning of ripening the plants were repeatedly pulse-labelled with 14CO2 in the field. Soil born total CO2 and 14CO2 was monitored daily till harvest. Thereafter, the distribution of 14C was analysed in all plant parts, soil, soil mineral fractions and soil microbial biomass. Due to the small number of grown wheat plants (40) in each ring and the inherent low statistical power, no significant above and belowground growth effect of elevated CO2 was detected at harvest. But in comparison to ambient conditions, 28% more 14CO2 and 12% more total CO2 was evolved from soil under elevated CO2 (550 μmol CO2 mol−1). In the root-free soil 27% more residual 14C was found in the FACE soil than in the soil from the ambient ring. In soil samples from both treatments about 80% of residual 14C was found in the clay fraction and 7% in the silt fraction. Very low 14C contents in the CFE extracts of microbial biomass in the soil from both CO2 treatments did not allow assessing their influence on this parameter. Since the calculated specific radioactivity of soil born 14CO2 gave no indication of an accelerated priming effect in the FACE soil, we conclude that wheat plants grown under elevated CO2 can contribute to an additional net carbon gain in soils.  相似文献   

2.
In arid and semiarid Mediterranean regions, an increase in the severity of drought events could be caused by rising atmospheric CO2 concentrations. We studied the effects of the interaction of CO2, water supply and inoculation with a plant-growth-promoting rhizobacterium (PGPR), Pseudomonas mendocina Palleroni, or inoculation with an arbuscular mycorrhizal (AM) fungus, Glomus intraradices (Schenk & Smith), on aggregate stabilisation of the rhizosphere soil of Lactuca sativa L. cv. Tafalla. The influence of such structural improvements on the growth of lettuce was evaluated. We hypothesised that elevated atmospheric CO2 concentration would increase the beneficial effects of inoculation with a PGPR or an AM fungus on the aggregate stability of the rhizosphere soil of lettuce plants. Leaf hydration, shoot dry biomass and mycorrhizal colonisation were decreased significantly under water-stress conditions, but this decrease was more pronounced under ambient vs elevated CO2. The root biomass decreased under elevated CO2 but only in non-stressed plants. Under elevated CO2, the microbial biomass C of the rhizosphere of the G. intraradices-colonised plants increased with water stress. Bacterial and mycorrhizal inoculation and CO2 had no significant effect on the easily-extractable glomalin concentration. Plants grown under elevated CO2 had a significantly higher percentage of stable aggregates under drought stress than under well-watered conditions, particularly the plants inoculated with either of the assayed microbial inocula (about 20% higher than the control soil). We conclude that the contribution of mycorrhizal fungi and PGPR to soil aggregate stability under elevated atmospheric CO2 is largely enhanced by soil drying.  相似文献   

3.
Elevated concentration of atmospheric carbon dioxide will affect carbon cycling in terrestrial ecosystems. Possible effects include increased carbon input into the soil through the rhizosphere, altered nutrient concentrations of plant litter and altered soil moisture. Consequently, the ongoing rise in atmospheric carbon dioxide might indirectly influence soil biota, decomposition and nutrient transformations.N-mineralisation and activities of the enzymes invertase, xylanase, urease, protease, arylsulfatase, and alkaline phosphatase were investigated in spring and summer in calcareous grassland, which had been exposed to ambient and elevated CO2 concentrations (365 and 600 μl l−1) for six growing seasons.In spring, N-mineralisation increased significantly by 30% at elevated CO2, while there was no significant difference between treatments in summer (+3%). The response of soil enzymes to CO2 enrichment was also more pronounced in spring, when alkaline phosphatase and urease activities were increased most strongly by 32 and 21%. In summer, differences of activities between CO2 treatments were greatest in the case of urease and protease (+21 and +17% at elevated CO2).The stimulation of N-mineralisation and enzyme activities at elevated CO2 was probably caused by higher soil moisture and/or increased root biomass. We conclude that elevated CO2 will enhance below-ground C- and N-cycling in grasslands.  相似文献   

4.
Experimentation with dynamics of soil carbon pools as affected by elevated CO2 can better define the ability of terrestrial ecosystems to sequester global carbon. In the present study, 6 N HCl hydrolysis and stable-carbon isotopic analysis (δ13C) were used to investigate labile and recalcitrant soil carbon pools and the translocation among these pools of sorghum residues isotopically labeled in the 1998-1999 Arizona Maricopa free air CO2 enrichment (FACE) experiment, in which elevated CO2 (FACE: 560 μmol mol−1) and ambient CO2 (Control: 360 μmol mol−1) interact with water-adequate (wet) and water-deficient (dry) treatments. We found that on average 53% of the final soil organic carbon (SOC) in the FACE plot was in the recalcitrant carbon pool and 47% in the labile pool, whereas in the Control plot 46% and 54% of carbon were in recalcitrant and labile pools, respectively, indicating that elevated CO2 transferred more SOC into the slow-decay carbon pool. Also, isotopic mixing models revealed that increased new sorghum residue input to the recalcitrant pool mainly accounts for this change, especially for the upper soil horizon (0-30 cm) where new carbon in recalcitrant soil pools of FACE wet and dry treatments was 1.7 and 2.8 times as large as that in respective Control recalcitrant pools. Similarly, old C in the recalcitrant pool under elevated CO2 was higher than that under ambient CO2, indicating that elevated CO2 reduces the decay of the old C in recalcitrant pool. Mean residence time (MRT) of bulk soil carbon at the depth of 0-30 cm was significantly longer in FACE plot than Control plot by the averages of 12 and 13 yr under the dry and wet conditions, respectively. The MRT was positively correlated to the ratio of carbon content in the recalcitrant pool to total SOC and negatively correlated to the ratio of carbon content in the labile pool to total SOC. Influence of water alone on the bulk SOC or the labile and recalcitrant pools was not significant. However, water stress interacting with CO2 enhanced the shift of the carbon from labile pool to recalcitrant pool. Our results imply that terrestrial agroecosystems may play a critical role in sequestrating atmospheric CO2 and mitigating harmful CO2 under future atmospheric conditions.  相似文献   

5.
Awareness of global warming has stimulated research on environmental controls of soil methane (CH4) consumption and the effects of increasing atmospheric carbon dioxide (CO2) on the terrestrial CH4 sink. In this study, factors impacting soil CH4 consumption were investigated using laboratory incubations of soils collected at the Free Air Carbon Transfer and Storage I site in the Duke Forest, NC, where plots have been exposed to ambient (370 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. Over 1 year, nearly 90% of the 360 incubations showed net CH4 consumption, confirming that CH4-oxidizing (methanotrophic) bacteria were active. Soil moisture was significantly (p < 0.01) higher in the 25–30 cm layer of elevated CO2 soils over the length of the study, but soil moisture was equal between CO2 treatments in shallower soils. The increased soil moisture corresponded to decreased net CH4 oxidation, as elevated CO2 soils also oxidized 70% less CH4 at the 25–30 cm depth compared to ambient CO2 soils, while CH4 consumption was equal between treatments in shallower soils. Soil moisture content predicted (p < 0.05) CH4 consumption in upper layers of ambient CO2 soils, but this relationship was not significant in elevated CO2 soils at any depth, suggesting that environmental factors in addition to moisture were influencing net CH4 oxidation under elevated CO2. More than 6% of the activity assays showed net CH4 production, and of these, 80% contained soils from elevated CO2 plots. In addition, more than 50% of the CH4-producing flasks from elevated CO2 sites contained deeper (25–30 cm) soils. These results indicate that subsurface (25 cm+) CH4 production contributes to decreased net CH4 consumption under elevated CO2 in otherwise aerobic soils.  相似文献   

6.
The objective of this study was to determine the effect of drought stress and elevated CO2 concentrations around the shoots on N rhizodeposition of young wheat plants. In a pot experiment, the plant N pool was labeled through 15NH3 application to shoots at nontoxic NH3 concentrations, and the impact of low water supply (40% field capacity), elevated CO2 (720 μmol mol−1 CO2), and the combination of both factors on the 15N distribution was studied. Total 15N rhizodeposition ranged from 5 to 11% of the total 15N recovered in the plant/soil system. Elevated CO2 concentration as well as drought stress increased the belowground transport of N and increased the relative portion of N rhizodeposition on total 15N in the plant/soil system. However, while the increased N rhizodeposition with elevated CO2 was the result of increased total belowground N transport, drought stress additionally increased the portion of 15N found in rhizodeposition vs roots. Elevated CO2 intensified the effect of drought stress. The percentage of water soluble 15N in the 15N rhizodeposition was very low under all treatments, and it was significantly decreased by the drought-stressed treatments.  相似文献   

7.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

8.
Initial effects of elevated atmospheric CO2 concentration on N2O fluxes and biomass production of timothy/red clover were studied in the laboratory. The experimental design consisted of two levels of atmospheric CO2 (ca. 360 and 720 μmol CO2 mol−1) and two N fertilisation levels (5 and 10 g N m−2). There was a total of 36 mesocosms comprising sandy loam soil, which were equally distributed in four thermo-controlled greenhouses. In two of the greenhouses, the CO2 concentration was kept at ambient concentration and in the other two at doubled concentration. Forage was harvested and the plants fertilised three times during the basic experiment, followed by harvest, a fertilisation with the double amount of nitrogen and rise of water level. Under elevated CO2, harvestable and total aboveground dry biomass production of a mixed Trifolium/Phleum stand was increased at both N treatments compared to ambient CO2. The N2O flux rates under ambient CO2 were significantly higher at both N treatments during the early growth of mixed Phleum/Trifolium mesocosms compared to the N2O flux rate under elevated CO2. However, when the conditions were favourable for denitrification at the end of the experiment, i.e. N availability and soil moisture were high enough, the elevated CO2 concentration enhanced the N2O efflux.  相似文献   

9.
It is still unclear whether elevated CO2 increases plant root exudation and consequently affects the soil microbial biomass. The effects of elevated CO2 on the fate of the C and nitrogen (N) contained in old soil organic matter pools is also unclear. In this study the short and long-term effects of elevated CO2 on C and N pools and fluxes were assessed by growing isolated plants of ryegrass (Lolium perenne) in glasshouses at elevated and ambient atmospheric CO2 and using soil from the New Zealand FACE site that had >4 years exposure to CO2 enrichment. Using 14CO2 pulse labelling, the effects of elevated CO2 on C allocation within the plant-soil system were studied. Under elevated CO2 more root derived C was found in the soil and in the microbial biomass 48 h after labelling. The increased availability of substrate significantly stimulated soil microbial growth and acted as priming effect, enhancing native soil organic matter decomposition regardless of the mineral N supply. Despite indications of faster N cycling in soil under elevated CO2, N availability to plants stayed unchanged. Soil previously exposed to elevated CO2 exhibited a higher N cycling rate but again there was no effect on plant N uptake. With respect to the difficulties of extrapolating glasshouse experiment results to the field, we concluded that the accumulation of coarse organic matter observed in the field under elevated CO2 was probably not created by an imbalance between C and N but was likely to be due to more complex phenomena involving soil mesofauna and/or other nutrients limitations.  相似文献   

10.
We evaluated the possibility of elevated CO2 concentration ([CO2]) to reduce the negative effect of drought on growth and physiological parameters of cassava (Manihot esculenta Crantz). Plants were grown with 390 ppm or 750 ppm of CO2, under well-watered or under water deficit conditions. The study was conducted in a climate-controlled greenhouse using 14 L pots, for 100 days. For any value of fraction of transpirable soil water (FTSW) the carbon assimilation was always higher for plants grown under elevated [CO2]. Still, elevated [CO2] reduced the negative effect of drought on transpiration, water use efficiency, all growth measures and harvest index. Elevated [CO2] increased the dry matter of tuber roots (DMTR) of well-watered plants by 17.4%. The DMTR of plants grown under water deficit were 124.4 g and 58.9 g, respectively, for plants under elevated and ambient CO2, an increase of 112%. Thus, the CO2 effect was relatively stronger to the production of tuberous roots when cassava were subjected to water-deficit. Our results suggest that cassava tuber production might be resilient to changes in precipitation that will accompany higher atmospheric CO2 and reinforce cassava as a specie that can significantly contribute to mitigate hunger in a changing climate environment.  相似文献   

11.
Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L. cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F. pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community.  相似文献   

12.
Besides increased growth, plants cultivated under elevated carbon dioxide (CO2) show reduced transpiration and improved water use efficiency due to decreased stomatal conductances. While growth profits from the longer availability of soil water under CO2 enrichment, increased canopy temperature may counteract these positive effects. Here we report on time series of soil temperatures and moistures from six years in which spring crops were cultivated in free-air CO2 enrichment (Mini-FACE) experiments. Besides air and soil climate, temperature and relative humidity were determined in wheat canopies. Measurements rested on five replicates per treatment, representing a control (CON), an ambient air (AMB) and a FACE treatment. While the CON and AMB plots did not receive additional CO2, concentrations were moderately elevated by 150 μl l?1 in the FACE plots. Plant growth differed among years due to the different climate and duration of individual experiments. Total biomass production was increased in the FACE treatments but significant effects were found only in one out of six years. In most of the years, soil temperatures tended to be reduced and soil moistures remained higher under elevated CO2. Because the observed differences recurred during the growing season, we conclude that CO2 enrichment was responsible for changes of the soil microclimate. At the same time vapour pressure deficit in the canopy significantly differed between the treatments for some days. While canopy heating due to CO2 enrichment occurred in the early growing season these effects disappeared later suggesting that the stronger increase in leaf area index in the FACE treatments mitigated heating effects over time. The results support the supposed effects of CO2 enrichment on the canopy climate and indicate a ‘microclimatic paradox’ with higher soil water availability due to the reduced transpiration and stronger canopy heating in FACE plots at least early in the season.  相似文献   

13.
Turnover of C and N in an arable soil under Free Air Carbon Dioxide (FACE) experiment was studied by the use of 13C natural abundance and 15N-labeled fertilizers. Wheat was kept four growing seasons under ambient and elevated CO2 concentrations and fertilized for three growing seasons. Density fractionation of soil organic matter (SOM) allowed to track 13C and 15N in free particulate organic matter (fPOM; <1.6 g cm−3), particulate organic matter occluded within aggregates with two densities (oPOM 1.6, oPOM 1.6-2.0 g cm−3), and in mineral-associated organic matter (>2.0 g cm−3) fractions. Elevated CO2 and N fertilization did not significantly affect C and N contents in the bulk soil. Calculated mean residence time (MRT) of C and N revealed the qualitative differences of SOM density fractions: (i) the shortest MRTC and MRTN in fPOM confirmed high availability of this fraction to decomposition. Larger C/N ratio of fPOM under elevated vs. ambient CO2 indicated an increasing recalcitrance of FACE-derived plant residues. (ii) There was no difference in MRT of C and N between lighter and heavier oPOMs probably due to short turnover time of soil aggregates which led to oPOM mixing. The increase of MRTC and MRTN in both oPOMs during the experiment confirmed the progressive degradation of organic material within aggregates. (iii) Constant turnover rates of C in the mineral fraction neither confirmed nor rejected the assumed stabilization of SOM to take place in the mineral fraction. Moreover, a trend of decreasing of C and N amounts in the Min fraction throughout the experiment was especially pronounced for C under elevated CO2. Hence, along with the progressive increase of CFACE in the Min fraction the overall losses of C under elevated CO2 may occur at the expense of older “pre-FACE” C.  相似文献   

14.
Increased root exudation and a related stimulation of rhizosphere-microbial growth have been hypothesised as possible explanations for a lower nitrogen- (N-) nutritional status of plants grown under elevated atmospheric CO2 concentrations, due to enhanced plant-microbial N competition in the rhizosphere. Leguminous plants may be able to counterbalance the enhanced N requirement by increased symbiotic N2 fixation. Only limited information is available about the factors determining the stimulation of symbiotic N2 fixation in response to elevated CO2.In this study, short-term effects of elevated CO2 on quality and quantity of root exudation, and on carbon supply to the nodules were assessed in Phaseolus vulgaris, grown in soil culture with limited (30 mg N kg−1 soil) and sufficient N supply (200 mg N kg−1 soil), at ambient (400 μmol mol−1) and elevated (800 μmol mol−1) atmospheric CO2 concentrations.Elevated CO2 reduced N tissue concentrations in both N treatments, accelerated the expression of N deficiency symptoms in the N-limited variant, but did not affect plant biomass production. 14CO2 pulse-chase labelling revealed no indication for a general increase in root exudation with subsequent stimulation of rhizosphere microbial growth, resulting in increased N-competition in the rhizosphere at elevated CO2. However, a CO2-induced stimulation in root exudation of sugars and malate as a chemo-attractant for rhizobia was detected in 0.5-1.5 cm apical root zones as potential infection sites. Particularly in nodules, elevated CO2 increased the accumulation of malate as a major carbon source for the microsymbiont and of malonate with essential functions for nodule development. Nodule number, biomass and the proportion of leghaemoglobin-producing nodules were also enhanced. The release of nod-gene-inducing flavonoids (genistein, daidzein and coumestrol) was stimulated under elevated CO2, independent of the N supply, and was already detectable at early stages of seedling development at 6 days after sowing.  相似文献   

15.
Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2.Thus,climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops.In this study,plant physiology,soil carbon,and soil enzyme activities were measured to investigate the impacts of elevated CO2 and drought stress on a Stagnic Anthrosol planted with soybean (Glycine max).Treatments of two CO2 levels,three soil moisture levels,and two soil cover types were established.The results indicated that elevated CO2 and drought stress significantly affected plant physiology.The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions.Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil,probably by improving the soil water effectiveness for organic decomposition and mineralization.Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC),but the interactive effects of drought stress and CO2 on them were not significant.Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation.These results suggested that drought stress had significant negative impacts on plant physiology,soil carbon,and soil enzyme activities,whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts.  相似文献   

16.
This study aimed at determining the impact of long-time elevated CO2 fumigation on fungal communities in a temperate forest soil. In addition to the CO2 concentration, both time and its interaction with the CO2 affected the activity of 1,4-β-N-acetylglucosaminidase that is mainly of the fungal origin in the soil. No significant change in Shannon's indexes (from 18S rDNA-PCR-DGGE) was observed between the ambient and elevated CO2 treatments. Analysis of time-course indicated that the succession of soil fungal community was altered by the elevated CO2 fumigation, and the variations in the soil samples under Pinus koraiensis Sieb. et Zucc were larger than those under the Pinus sylvestriformis (Takenouchi) T. Wang ex Cheng samples. The results suggest that the increase in atmospheric CO2 concentrations could alter the temporal patterning of soil fungal communities.  相似文献   

17.
Increasing atmospheric CO2 concentration impacts the terrestrial carbon(C) cycle by affecting plant photosynthesis, the flow of photosynthetically fixed C belowground, and soil C pool turnover. For managed agroecosystems, how and to what extent the interactions between elevated CO2 and N fertilization levels influence the accumulation of photosynthesized C in crops and the incorporation of photosynthesized C into arable soil are in urgent need of exploration.We conducted an experiment simulating elevated CO2 with spring wheat(Triticum aestivum L.) planted in growth chambers.13C-enriched CO2 with an identical 13C abundance was continuously supplied at ambient and elevated CO2 concentrations(350 and 600 μmol mol-1, respectively) until wheat harvest.Three levels of N fertilizer application(equivalent to 80, 120, and 180 kg N ha-1 soil) were supplied for wheat growth at both CO2 concentrations. During the continuous 62-d 13CO2 labeling period, elevated CO2 and increased N fertilizer application increased photosynthesized C accumulation in wheat by 14%–24% and 11%–20%, respectively, as indicated by increased biomass production, whereas the C/N ratio in the roots increased under elevated CO2 but declined with increasing N fertilizer application levels. Wheat root deposition induced 1%–2.5% renewal of soil C after 62 d of 13CO2 labeling. Compared to ambient CO2, elevated CO2 increased the amount of photosynthesized C incorporated into soil by 20%–44%. However, higher application rates of N fertilizer reduced the net input of root-derived C in soil by approximately 8% under elevated CO2. For the wheat-soil system, elevated CO2 and increased N fertilizer application levels synergistically increased the amount of photosynthesized C. The pivotal role of plants in photosynthesized C accumulation under elevated CO2 was thereby enhanced in the short term by the increased N application. Therefore, robust N management could mediate C cycling and sequestration by influencing the interactions between plants and soil in agroecosystems under elevated CO2.  相似文献   

18.
Several recent studies have indicated that an enriched atmosphere of carbon dioxide (CO2) could exacerbate the intensity of plant invasions within natural ecosystems, but little is known of how rising CO2 impacts the belowground characteristics of these invaded systems. In this study, we examined the effects of elevated CO2 and nitrogen (N) inputs on plant and soil microbial community characteristics of plant communities invaded by reed canary grass, Phalaris arundinacea L. We grew the invasive grass under two levels of invasion: the invader was either dominant (high invasion) at >90% plant cover or sub-dominant (low invasion) at <50% plant cover. Experimental wetland communities were grown for four months in greenhouses that received either 600 or 365 μl l−1 (ambient) CO2. Within each of three replicate rooms per CO2 treatment, the plant communities were grown under high (30 mg l−1) or low (5 mg l−1) N. In contrast to what is often predicted under N limitation, we found that elevated CO2 increased native graminoid biomass at low N, but not at high N. The aboveground biomass of reed canary grass did not respond to elevated CO2, despite it being a fast-growing C3 species. Although elevated CO2 had no impact on the plant biomass of heavily invaded communities, the relative abundance of several soil microbial indicators increased. In contrast, the moderately invaded plant communities displayed increased total root biomass under elevated CO2, while little impact occurred on the relative abundance of soil microbial indicators. Principal components analysis indicated that overall soil microbial community structure was distinct by CO2 level for the varying N and invasion treatments. This study demonstrates that even when elevated CO2 does not have visible effects on aboveground plant biomass, it can have large impacts belowground.  相似文献   

19.
Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil fauna. The experimental design is a factorial arrangement of elevated [CO2] and [O3t] treatments, applied using Free-Air CO2 Enrichment technology to 30 m diameter rings, with all treatments replicated three times. Within each ring, three communities were established consisting of: (1) trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) (2) trembling aspen and sugar maple (Acer saccharum) and (3) trembling aspen. After 4 yr of stand development, soil fauna were extracted in each ring. Compared to the control, abundance of total soil fauna, Collembola and Acari decreased significantly under elevated [CO2] (−69, −79 and −70%, respectively). Abundance of Acari decreased significantly under elevated [O3t] (−47%). Soil fauna abundance was similar to the control under the combination of elevated [CO2+O3t]. The individual negative effects of elevated [CO2] and elevated [O3t] are negated upon exposure to both gases. We conclude that soil fauna communities will change under elevated [CO2] and elevated [O3t] in ways that cannot be predicted or explained from the exposure of ecosystems to each gas individually.  相似文献   

20.
《Soil biology & biochemistry》2001,33(4-5):491-501
Model multispecies terrestrial communities composed of four trophic levels (plants, herbivores, parasitoids, decomposers) were established in the Ecotron controlled environment facility. Two experimental runs enabled us to investigate the effects of enhanced temperature on below-ground microbial processes (N-mineralisation, urease, arginine deaminase, protease activity and potential denitrification) in both ambient and elevated (ambient +200 ppm) CO2 atmospheres.The enzyme activities involved in nitrogen cycling showed weak responses to elevated temperature in both experimental runs. In the Ambient CO2 Run, protease and arginine deaminase values tended to be lower in elevated temperature; on the other hand, N-mineralisation, urease and denitrification enzyme activity (DEA) were higher. In the Elevated CO2 Run, all microbial variables showed higher activities at elevated temperature, although only the results for DEA and arginine deaminase were statistically significant. The interaction between higher temperature and elevated CO2 weakly affected root growth and tissue C:N ratio, limiting feedbacks into the microbial community.Besides temperature and CO2, substrate availability, water stress and successional development regulated the response of the soil microbes. The supply of organic carbon and nitrogen in the soil allowed plant growth and maintenance of the microbial population. Nitrogen competition between vegetation and microbes restricted net microbial growth. The increase of dissolved organic carbon (DOC) at higher CO2 and temperature levels significantly favoured DEA. The high water regime in the soil also favoured DEA and inhibited oxidation of organic compounds, as indicated by low levels of enzyme activity. Additionally, water stress decreased rooting density in the soil; this resulted in negative feedback into microbial processes. We conclude that water stress and soil nitrogen deficiency caused an early levelling-off of both microbial population growth and activity rates during the early part of the model ecosystem's development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号