共查询到19条相似文献,搜索用时 93 毫秒
1.
基于多特征融合和深度置信网络的稻田苗期杂草识别 总被引:5,自引:4,他引:5
杂草的准确识别是田间杂草精准防控管理的前提,机器视觉技术是实现杂草准确识别的有效手段。该文以水稻苗期杂草为研究对象,采集稻田自然背景下和不同光照条件下的6种杂草图像共928幅,包括空心莲子草、丁香蓼、鳢肠、野慈姑、稗草和千金子。采用1.1G-R颜色因子将杂草RGB图像进行灰度化,选择自动阈值自动分割得到杂草前景二值图像,通过腐蚀膨胀形态学操作进行叶片内部孔洞填充,应用面积滤波去除其他干扰目标,最后将杂草二值图像与RGB图像进行掩膜运算得到去除背景的杂草图像;提取杂草图像的颜色特征、形状特征和纹理特征共101维特征,并对其进行归一化处理。在双隐含层和单隐含层的深度置信网络(deep belief networks,DBN)结构基础上,对DBN隐含层节点数选择方法进行研究。针对双隐含层DBN节点数,选择恒值型、升值型和降值型3种节点组合方式进行优化研究,当网络结构为101-210-55-6时杂草识别率为83.55%;通过对单隐含层节点参数优化得到网络结构为101-200-6时杂草识别率达到91.13%。以同一测试样本的运行时间值作为模型的测试时间对3种不同模型进行耗时测试,SVM模型、BP模型和DBN模型测试结果分别为0.029 7、0.030 6和0.034 1 s,试验结果表明基于多特征融合的DBN模型的识别精度最高,且耗时较其他2种模型相差不大,可满足实时检测的速度要求,所以在实际应用中应优先选择基于多特征融合的DBN模型。该研究可为稻田杂草识别与药剂选择性喷施提供参考。 相似文献
2.
为提高油茶果采摘机器人机器视觉的识别率,该文提出了基于偏好人工免疫网络识别的油茶果多特征融合识别方法。在对油茶果图像进行处理的基础上,提取待识别目标区域的颜色特征、形态特征、纹理特征进行聚类,并提取典型油茶果多特征作为偏好抗体,使多特征参数在偏好免疫算法中进行有效融合。仿真试验结果表明,多特征融合的识别方法对油茶果果实的识别率在晴天时达到了90.15%,阴天时达到了93.90%。而时间复杂度基本不变,取得了较好的识别效果,该研究可为下一步油茶果采摘机器人智能采摘提供参考。 相似文献
3.
为了实现天白花菇、白花菇、茶花菇和光面菇这4种类型香菇的分选,研究了多种菌盖纹理模型以及各个模型参量的融合,并设计了整个香菇类型自动分选系统。首先从香菇菌盖中截取合适大小的纹理区域,利用灰度直方图统计,灰度共生矩阵(grey level co-occurrence matrix),高斯马尔科夫随机场(Gauss Makov Random Field)模型和分形维数模型从该区域中共提取23个纹理特征参数。然后使用顺序前向搜索法对各个模型特征数据进行融合,从中得出6个简约特征。最后构建K近邻分类器作为香菇类别分类器并对提取后的简约特征进行分类。试验结果表明,香菇类型分选模型的分选正确率可达到93.57%,利用香菇菌盖纹理对香菇进行类型分类是可行的。 相似文献
4.
探讨了基于多进制小波变换与多维纹理特征融合相结合的遥感影像融合方法。在融合过程中,首先对高分辨率全色影像和多光谱影像进行多进制小波分解,再联合提取局部方差、局部梯度、局部能量和局部信息熵4维纹理特征,将高分辨率影像的高频分量分别与多光谱影像的高频分量以多维纹理特征进行多判据联合方法融合,形成新的高频分量,然后与多光谱影像的低频分量进行多进制小波逆变换,最后经 RGB合成为彩色影像。试验选取淮南矿区SPOT 10 m与TM 30 m空间分辨率影像,从目视判读(定性评价)、地物光谱曲线分析、定量评价指标三方面对融合方法进行了评价。结果表明,该方法既保留了原影像的光谱信息,同时也改善了影像的清晰度和分辨率,利用融合后的影像进行矿区土地利用变化监测,效果明显提高。 相似文献
5.
基于颜色及纹理特征的果蔬种类识别方法 总被引:2,自引:4,他引:2
为更好地表述果蔬图像纹理特征,提高智能果蔬识别系统识别准确性,提出一种颜色完全局部二值模式纹理特征提取算法。果蔬识别系统模型利用颜色完全局部二值模式提取图像纹理特征,利用HSV颜色直方图、外点/内点颜色直方图提取图像颜色特征,采用匹配得分融合算法将颜色和纹理特征相融合,采用最近邻分类器实现果蔬农产品分类。通过不同光照条件下和不同数量训练样本条件下的试验得出:颜色完全局部二值模式的果蔬图像纹理表述能力明显优于和差直方图等果蔬图像纹理操作子,识别率提升最小在5%以上,更适合果蔬分类;对比其他纹理特征提取算法,采用颜色完全局部二值模式与颜色特征进行融合时,识别率最优,时间开销约为1.1 s。该方法能够应用到智能果蔬识别系统中,提升系统识别准确性。 相似文献
6.
为解决果园机器视觉导航中果树行识别易受果园复杂环境干扰的问题,该研究提出一种采用动态选取融合因子对彩色图像与深度图像进行图层融合并采用纹理-灰度梯度能量模型进行图像分割的果树行视觉识别算法。首先,通过搭建立体视觉系统获取果园彩色图像与对应的深度图像,并基于饱和度(S)通道图像的灰度值选取动态融合因子,实现对果园彩色图像与深度图像的图层融合;然后,分别计算融合图像的纹理特征图像与灰度梯度特征图像,并建立纹理-灰度梯度结合的能量模型,基于模型能量最小原则进行树干与背景的分割;最后,以树干与地面交点为果树行特征点进果树行直线拟合,完成果树行角度的识别。并对上述算法分别进行果树行识别试验与移动作业平台视觉对行导航试验。果树行识别试验结果表明,该研究算法果树行角度识别平均偏差为2.81°,与基于纹理、灰度梯度特征的果树行识别算法相比识别平均偏差分别降低2.37°和1.25°。移动作业平台视觉导航试验结果表明,在作业平台速度为0.6 m/s时,对行行驶最大偏差为12.2 cm,平均偏差为5.94 cm。该研究提出的视觉导航算法可以满足果园移动作业平台视觉对行导航需求,研究成果将为基于机器视觉的果园自动导航系统的研究与优化奠定基础。 相似文献
7.
基于高光谱图像纹理特征的牛肉嫩度分布评价 总被引:2,自引:5,他引:2
传统牛肉品质的检测方法耗时长,效率低,破坏样品,已不能满足现代化生产的需要。为了实现对牛肉嫩度品质的快速无损检测和评价,该文利用高光谱成像系统,以西门塔尔牛多个胴体的背最长肌部位为研究对象,采集56个有效样本的高光谱立体图像,研究无损评价牛肉样品的嫩度分布。通过提取样本的反射光谱信息,并利用逐步回归算法结合遗传算法(GA,genetic algorithm)筛选出牛肉剪切力值(WBSF,warner-bratzler shear force)的特征波段。利用主成分分析(PCA,principle component analysis)提取样品的3个主成分。基于选出的特征波段图像和提取的主成分,通过计算图像灰度共生矩阵求取每幅图像8个主要纹理特征参数,分别建立了基于支持向量机(SVM,support vector machine)和线性判别(LDA,linear discriminant analysis)法的嫩度等级判别模型。经分析比较,基于主成分纹理特征优于基于特征波段图像建立的预测模型,并且,线性判别模型识别准确率相比支持向量机模型较高。基于主成分纹理特征建立的线性判别模型预测集判别精度为94.44%。研究结果证明,基于高光谱图像纹理特征分析,可以建立牛肉的嫩度判别模型,对牛肉嫩度快速无损检测技术研究提供理论参考。 相似文献
8.
9.
在番茄自然生长条件下利用计算机双目视觉获取的二维图像其处理必然会涉及到特征匹配不确定问题。该文利用近红外光谱和可见光谱各自有效的生物信息,在双目匹配搜索中,提取多源视觉融合图像的番茄有效形心点,采用极线约束和唯一性约束进行区域相关双向匹配。试验结果表明,基于此匹配方法可以实现果实的唯一匹配,准确率较高。 相似文献
10.
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster- Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。 相似文献
11.
小麦全蚀病是检疫性的土传病害,对小麦生产危害极大,对其发生的监测是治理的根本。遥感技术可实时、宏观监测病害发生发展,尤其是成像光谱技术的图谱合一,可精准对病害识别和分类。该文首先通过主成分分析提取不同小麦白穗率的冠层光谱特征;再通过灰色聚类分析方法,研究白穗率等级的可分性;最后利用基于径向基(RBF,radial basis function)核函数的支持向量机对全蚀病害的近地成像高光谱图像进行分类,从而验证近地成像光谱在全蚀病监测上的可行性。研究结果显示:该方法对5种程度的小麦全蚀病白穗率的分类精度均达94%以上,Kappa值大于0.8。研究表明利用该方法,通过近地成像光谱图像可以准确监测小麦全蚀病的病情,对小麦全蚀病的治理有指导意义。 相似文献
12.
基于图像特征融合的苹果在线分级方法 总被引:1,自引:7,他引:1
苹果在线分级是提升苹果商品化价值的重要环节,需要同时满足分级准确度和速度要求。为进一步提高苹果在线分级效率,该文借助机器视觉技术动态采集苹果传输过程中的实时图像,提出改进的三层Canny边缘检测算法来提取苹果轮廓以克服采集图像中的光线噪声影响,通过分析苹果分级指标,采用判别树对苹果的果径、缺陷面积、色泽等特征进行初步分级判断,并采用粒子群参数优化的支持向量机对果形、果面纹理、颜色分布等特征进行模型构建与分级,最后,通过将两种分级判断结果进行决策融合来实现样本精确分级。同时,采取图像压缩和特征降维方法提高实时性。试验结果表明,基于图像特征决策融合的苹果分级准确率可达到95%,平均分级速率可达到4个/s。研究结果为水果的在线分级提供参考。 相似文献
13.
基于计算机视觉的稻谷霉变程度检测 总被引:2,自引:1,他引:2
为了实现无损检测稻谷储藏中的霉变,该研究以引起稻谷霉变的5种常见真菌(米曲霉、黑曲霉、构巢曲霉、桔青霉和杂色曲霉)为对象,首先进行真菌培养,制成悬浮液,然后将悬浮液接种到稻谷样品中,对稻谷样品模拟储藏,确定不同霉变程度的稻谷类型,划分为对照组(无霉变)、轻微霉变组和严重霉变组。利用计算机视觉系统对三组稻谷样品进行图像采集和图像处理,提取灰度、颜色和纹理特征,共获取68个图像特征。采用支持向量机(support vector machines,SVM)和偏最小二乘法判别分析(partial least squares discriminant analysis,PLS-DA)构建模型,分别用于无霉变稻谷与霉变稻谷的区分和稻谷霉变类型区分。为了降低模型复杂度和数据冗余,利用连续投影算法(successive projections algorithm,SPA)来消除原始数据变量间的共线性,优选特征值。结果表明:利用所有参数构建的SVM模型能够很好的区分对照组与霉变组,其中建模集和验证集总体区分准确率分别为99.7%和98.4%;SVM模型对于稻谷严重霉变类型的区分效果要优于轻微霉变稻谷,其中对稻谷轻微霉变类型建模集和验证集总体区分的准确率分别为99.3%和92.0%,对稻谷严重霉变类型区分的总体准确率分别为100%和94%,且整体上SVM模型的效果要优于PLS-DA模型。而基于SPA优选特征构建的模型区分结果表明,SVM模型区分效果优于PLS-DA模型,其中,在建模集和验证集中,对无霉变和霉变稻谷总体区分准确率分别为99.8%和99.5%,对稻谷轻微霉变种类区分总体准确率分别为99.8%和90.5%,对稻谷严重霉变种类区分总体准确率分别为100%和95.0%。因此,基于计算机视觉对稻谷霉变检测是可行的,而且SPA优选特征能够较好反映稻谷霉变特征,基于优选特征和SVM模型能够较好地稻谷霉变进行识别和区分,结果较好,可以为实际应用提供技术支持和参考。 相似文献
14.
基于图像处理与人工神经网络的小麦颗粒外观品质评价方法 总被引:7,自引:3,他引:7
综合利用计算机视觉、图像处理、人工神经网络技术,实现小麦品质评价自动化。通过比较不同背景,发现在黑色毛面纸板背景下,使用数码像机获得容易处理的小麦图像。应用分水岭算法自主开发了图像分割处理软件,分割小麦图像并识别提取出完整的小麦颗粒,针对每个小麦颗粒,计算了其12个形态学特征、12个色泽参数等图像特征参数。利用所提取的24个小麦图像特征参数,采用人工神经网络BP算法建立起小麦粒径外观品质评价模型,并应用于小麦的品质识别,取得了良好的试验结果。多次建模运算证明,该方法具有较好的稳定性,对小麦粒径外观品质评价的平均识别准确率可达93%。 相似文献
15.
为了准确、自动地提取蝗虫信息进行蝗灾测报,提出了一种基于机器视觉的草地蝗虫识别方法,用于超低空蝗灾预警系统所自动采集的视频中草地蝗虫头数信息的提取。该方法先根据跃起草地蝗虫的背景构成,把原始图像分为天空子图像和草地子图像;然后,采用帧间差分法检测两子图像中的运动区域;最后,运用蝗虫的形态特征因子对检测的运动区域进行再分类,识别跃起蝗虫。把自动识别的跃起蝗虫头数,带入建立的跃起蝗虫头数与和地面蝗虫头数之间的数学模型中,从而得到地面蝗虫的数量,进行地面上草地蝗虫的间接计数。试验结果表明:跃起草地蝗虫的识别率为80%~100%,由建立跃起蝗虫和地面蝗虫的之间模型计算的地面草地蝗虫的精度大于80%。因此,基于机器视觉的草地蝗虫识别方法能满足蝗虫精准测报的要求。 相似文献
16.
提升作物水分表型诊断精度和时效性是当前智慧灌溉领域研究的难点和热点之一。该研究针对以上难点提出了一种改进机器视觉算法的冬小麦旱情智能诊断方法。在测坑试验系统中设置了适宜水分处理(CK)、中度干旱处理(T1)、重度干旱处理(T2),通过数码相机获取冬小麦早期RGB高清图像,利用HSV色彩空间改进的K-means聚类算法对小麦图像分割敏感区域,提取图像颜色和纹理特征数据并开展主成分分析,辨别出累计贡献率达到97.2%的前3维主成分。采用蝙蝠算法优化支持向量机(bat algorithm-support vector machine,BA-SVM)惩罚因子$ (c=5) $和核参数(σ=0.1),建立了基于蝙蝠算法优化的冬小麦旱情感知支持向量机模型,运用主成分分析降维后的识别精度优于其他特征组合,识别正确率为96.5%。明显高于GA-SVM(6.5%)和SVM(9.3%),运行时间分别缩短7、14 s。构建了冬小麦旱情智能诊断方法,可为实时诊断冬小麦旱情和智慧灌溉决策提供可靠方法。 相似文献
17.
为了后续加工便利,需要对打捞上来的淡水鱼进行分类,而且分类是淡水鱼加工前处理的重要工序之一。为了实现淡水鱼的自动分类,该研究通过收集常见的4种淡水鱼240条为试验样本,分别为鲢鱼、鲫鱼、鳊鱼和鲤鱼。通过运用机器视觉技术采集各种淡水鱼的图像,并运用数字图像处理技术对图像进行处理,提取其各个颜色分量及长短轴之比等特征值,最后运用该特征值建立有关淡水鱼的品种识别模型。研究表明,通过该识别模型可以完全实现对鲢鱼、鲫鱼、鳊鱼和鲤鱼这4种淡水鱼的品种的识别,准确率达到96.67%。机器视觉技术可以快速准确对常见的淡水鱼进行品种识别,具有较强的实际应用价值。 相似文献
18.
19.
基于改进K-means聚类算法的大田麦穗自动计数 总被引:2,自引:5,他引:2
单位种植面积的小麦麦穗数量是评估小麦产量和小麦种植密度的一个重要参量。为了实现高效、自动地麦穗计数,该文提出了基于改进K-means的小麦麦穗计数方法。该方法建立从图像低层颜色特征到图像中包含麦穗的一个直接分类关系,从而不需要再对图像进行分割或检测。以颜色特征聚类为基础的这种方法能够估计麦穗在空间局部区域中数量,并且在不需要训练的情况下更具有可扩展性。统计试验结果表明,该文算法能够适应不同光照环境,麦穗计数的准确率达到94.69%,超过了传统基于图像颜色特征和纹理特征分割的麦穗计数方法 93.1%的准确率。 相似文献