共查询到19条相似文献,搜索用时 62 毫秒
1.
杂草的准确识别是田间杂草精准防控管理的前提,机器视觉技术是实现杂草准确识别的有效手段。该文以水稻苗期杂草为研究对象,采集稻田自然背景下和不同光照条件下的6种杂草图像共928幅,包括空心莲子草、丁香蓼、鳢肠、野慈姑、稗草和千金子。采用1.1G-R颜色因子将杂草RGB图像进行灰度化,选择自动阈值自动分割得到杂草前景二值图像,通过腐蚀膨胀形态学操作进行叶片内部孔洞填充,应用面积滤波去除其他干扰目标,最后将杂草二值图像与RGB图像进行掩膜运算得到去除背景的杂草图像;提取杂草图像的颜色特征、形状特征和纹理特征共101维特征,并对其进行归一化处理。在双隐含层和单隐含层的深度置信网络(deep belief networks,DBN)结构基础上,对DBN隐含层节点数选择方法进行研究。针对双隐含层DBN节点数,选择恒值型、升值型和降值型3种节点组合方式进行优化研究,当网络结构为101-210-55-6时杂草识别率为83.55%;通过对单隐含层节点参数优化得到网络结构为101-200-6时杂草识别率达到91.13%。以同一测试样本的运行时间值作为模型的测试时间对3种不同模型进行耗时测试,SVM模型、BP模型和DBN模型测试结果分别为0.029 7、0.030 6和0.034 1 s,试验结果表明基于多特征融合的DBN模型的识别精度最高,且耗时较其他2种模型相差不大,可满足实时检测的速度要求,所以在实际应用中应优先选择基于多特征融合的DBN模型。该研究可为稻田杂草识别与药剂选择性喷施提供参考。 相似文献
2.
为提高油茶果采摘机器人机器视觉的识别率,该文提出了基于偏好人工免疫网络识别的油茶果多特征融合识别方法。在对油茶果图像进行处理的基础上,提取待识别目标区域的颜色特征、形态特征、纹理特征进行聚类,并提取典型油茶果多特征作为偏好抗体,使多特征参数在偏好免疫算法中进行有效融合。仿真试验结果表明,多特征融合的识别方法对油茶果果实的识别率在晴天时达到了90.15%,阴天时达到了93.90%。而时间复杂度基本不变,取得了较好的识别效果,该研究可为下一步油茶果采摘机器人智能采摘提供参考。 相似文献
3.
为了实现天白花菇、白花菇、茶花菇和光面菇这4种类型香菇的分选,研究了多种菌盖纹理模型以及各个模型参量的融合,并设计了整个香菇类型自动分选系统。首先从香菇菌盖中截取合适大小的纹理区域,利用灰度直方图统计,灰度共生矩阵(grey level co-occurrence matrix),高斯马尔科夫随机场(Gauss Makov Random Field)模型和分形维数模型从该区域中共提取23个纹理特征参数。然后使用顺序前向搜索法对各个模型特征数据进行融合,从中得出6个简约特征。最后构建K近邻分类器作为香菇类别分类器并对提取后的简约特征进行分类。试验结果表明,香菇类型分选模型的分选正确率可达到93.57%,利用香菇菌盖纹理对香菇进行类型分类是可行的。 相似文献
4.
探讨了基于多进制小波变换与多维纹理特征融合相结合的遥感影像融合方法。在融合过程中,首先对高分辨率全色影像和多光谱影像进行多进制小波分解,再联合提取局部方差、局部梯度、局部能量和局部信息熵4维纹理特征,将高分辨率影像的高频分量分别与多光谱影像的高频分量以多维纹理特征进行多判据联合方法融合,形成新的高频分量,然后与多光谱影像的低频分量进行多进制小波逆变换,最后经 RGB合成为彩色影像。试验选取淮南矿区SPOT 10 m与TM 30 m空间分辨率影像,从目视判读(定性评价)、地物光谱曲线分析、定量评价指标三方面对融合方法进行了评价。结果表明,该方法既保留了原影像的光谱信息,同时也改善了影像的清晰度和分辨率,利用融合后的影像进行矿区土地利用变化监测,效果明显提高。 相似文献
5.
为更好地表述果蔬图像纹理特征,提高智能果蔬识别系统识别准确性,提出一种颜色完全局部二值模式纹理特征提取算法。果蔬识别系统模型利用颜色完全局部二值模式提取图像纹理特征,利用HSV颜色直方图、外点/内点颜色直方图提取图像颜色特征,采用匹配得分融合算法将颜色和纹理特征相融合,采用最近邻分类器实现果蔬农产品分类。通过不同光照条件下和不同数量训练样本条件下的试验得出:颜色完全局部二值模式的果蔬图像纹理表述能力明显优于和差直方图等果蔬图像纹理操作子,识别率提升最小在5%以上,更适合果蔬分类;对比其他纹理特征提取算法,采用颜色完全局部二值模式与颜色特征进行融合时,识别率最优,时间开销约为1.1 s。该方法能够应用到智能果蔬识别系统中,提升系统识别准确性。 相似文献
6.
为解决果园机器视觉导航中果树行识别易受果园复杂环境干扰的问题,该研究提出一种采用动态选取融合因子对彩色图像与深度图像进行图层融合并采用纹理-灰度梯度能量模型进行图像分割的果树行视觉识别算法。首先,通过搭建立体视觉系统获取果园彩色图像与对应的深度图像,并基于饱和度(S)通道图像的灰度值选取动态融合因子,实现对果园彩色图像与深度图像的图层融合;然后,分别计算融合图像的纹理特征图像与灰度梯度特征图像,并建立纹理-灰度梯度结合的能量模型,基于模型能量最小原则进行树干与背景的分割;最后,以树干与地面交点为果树行特征点进果树行直线拟合,完成果树行角度的识别。并对上述算法分别进行果树行识别试验与移动作业平台视觉对行导航试验。果树行识别试验结果表明,该研究算法果树行角度识别平均偏差为2.81°,与基于纹理、灰度梯度特征的果树行识别算法相比识别平均偏差分别降低2.37°和1.25°。移动作业平台视觉导航试验结果表明,在作业平台速度为0.6 m/s时,对行行驶最大偏差为12.2 cm,平均偏差为5.94 cm。该研究提出的视觉导航算法可以满足果园移动作业平台视觉对行导航需求,研究成果将为基于机器视觉的果园自动导航系统的研究与优化奠定基础。 相似文献
7.
传统牛肉品质的检测方法耗时长,效率低,破坏样品,已不能满足现代化生产的需要。为了实现对牛肉嫩度品质的快速无损检测和评价,该文利用高光谱成像系统,以西门塔尔牛多个胴体的背最长肌部位为研究对象,采集56个有效样本的高光谱立体图像,研究无损评价牛肉样品的嫩度分布。通过提取样本的反射光谱信息,并利用逐步回归算法结合遗传算法(GA,genetic algorithm)筛选出牛肉剪切力值(WBSF,warner-bratzler shear force)的特征波段。利用主成分分析(PCA,principle component analysis)提取样品的3个主成分。基于选出的特征波段图像和提取的主成分,通过计算图像灰度共生矩阵求取每幅图像8个主要纹理特征参数,分别建立了基于支持向量机(SVM,support vector machine)和线性判别(LDA,linear discriminant analysis)法的嫩度等级判别模型。经分析比较,基于主成分纹理特征优于基于特征波段图像建立的预测模型,并且,线性判别模型识别准确率相比支持向量机模型较高。基于主成分纹理特征建立的线性判别模型预测集判别精度为94.44%。研究结果证明,基于高光谱图像纹理特征分析,可以建立牛肉的嫩度判别模型,对牛肉嫩度快速无损检测技术研究提供理论参考。 相似文献
8.
9.
10.
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster- Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。 相似文献
11.
由于野外诱捕害虫的姿态存在多样性和不确定性,使得利用机器视觉进行害虫的自动识别与计数仍然是一个难题。该文提出一种基于颜色和纹理等与形态无关的特征相结合和利用多类支持向量机分类器的多姿态害虫分类方法。通过对目标害虫图像进行不同颜色空间特征、基于统计方法的纹理特征和基于小波的纹理特征的提取,构建了6组不同组合的特征向量。将10阶交叉验证的识别率作为适应度函数值,利用遗传算法对各组特征向量进行降维筛选。最后利用基于有向无环图多类支持向量机分类器对多姿态害虫进行识别和特征组选择。结果表明,遗传算法最多可以使特征向量维数降到原来的38.89%,基于HSV三通道颜色图像的小波纹理特征组在建模时间和平均准确率方面都表现最优,可以作为一种有效的多姿态害虫分类特征选择。 相似文献
12.
13.
土壤入渗性能对水资源转换利用、农业水管理等方面有着十分重要的作用。该文运用机器视觉及数字图像处理技术,开发了一套以线源入流方法为基础的土壤入渗性能自动测量系统。完成了对该系统的硬件设计、组集和系统软件的开发。利用数字摄像头对表征土壤入渗性能变化过程的线源水流在地表的推进过程进行实时采集截取图片,并对图片进行处理和分析,提取水流在地表推进过程中的湿润面积。根据测量土壤入渗性能的线源入流方法中的数学模型自动计算土壤水入渗率,并实时显示入渗性能曲线的变化过程。采用该系统进行了土壤入渗性能的室内验证试验,取得很好的效果,系统实现了实时测量、后台计算、实时显示土壤入渗性能曲线,结果表明测量误差为5.27%,说明了该测量系统的合理性和准确性。为土壤入渗性能的高效、自动化测量提供了工具。 相似文献
14.
为了准确、自动地提取蝗虫信息进行蝗灾测报,提出了一种基于机器视觉的草地蝗虫识别方法,用于超低空蝗灾预警系统所自动采集的视频中草地蝗虫头数信息的提取。该方法先根据跃起草地蝗虫的背景构成,把原始图像分为天空子图像和草地子图像;然后,采用帧间差分法检测两子图像中的运动区域;最后,运用蝗虫的形态特征因子对检测的运动区域进行再分类,识别跃起蝗虫。把自动识别的跃起蝗虫头数,带入建立的跃起蝗虫头数与和地面蝗虫头数之间的数学模型中,从而得到地面蝗虫的数量,进行地面上草地蝗虫的间接计数。试验结果表明:跃起草地蝗虫的识别率为80%~100%,由建立跃起蝗虫和地面蝗虫的之间模型计算的地面草地蝗虫的精度大于80%。因此,基于机器视觉的草地蝗虫识别方法能满足蝗虫精准测报的要求。 相似文献
15.
该文提出了一套在自动幼苗移钵作业中用于幼苗生长状况检测的机器视觉系统。穴盘中幼苗的图像被采集和处理,识别出适合进行移钵的单元,用于自动幼苗移钵机的移钵作业。相邻单元的幼苗边缘重叠和叶片挤压会造成识别错误,在该研究中以番茄幼苗作为试验样本,使用基于形态学的分水岭算法处理来完成叶片边缘分割,提取每个穴孔中幼苗的叶片面积和叶片周长来确定适合进行移钵的单元。试验结果表明该机器视觉系统识别准确率达到了98%,应用于自动幼苗移钵机器人中可以很好地判断不同生长状况的秧苗生长质量。 相似文献
16.
17.
为了后续加工便利,需要对打捞上来的淡水鱼进行分类,而且分类是淡水鱼加工前处理的重要工序之一。为了实现淡水鱼的自动分类,该研究通过收集常见的4种淡水鱼240条为试验样本,分别为鲢鱼、鲫鱼、鳊鱼和鲤鱼。通过运用机器视觉技术采集各种淡水鱼的图像,并运用数字图像处理技术对图像进行处理,提取其各个颜色分量及长短轴之比等特征值,最后运用该特征值建立有关淡水鱼的品种识别模型。研究表明,通过该识别模型可以完全实现对鲢鱼、鲫鱼、鳊鱼和鲤鱼这4种淡水鱼的品种的识别,准确率达到96.67%。机器视觉技术可以快速准确对常见的淡水鱼进行品种识别,具有较强的实际应用价值。 相似文献
18.
从复杂背景中识别成熟荔枝串中的荔枝果及结果母枝,获取结果母枝上的采摘点是机器人视觉定位与识别的难点,荔枝果、结果母枝与叶子各部位图像颜色特征分析与识别成为研究重点。首先针对荔枝果与结果母枝的特点、光照与环境的特殊性及不确定性,提出了探索性分析与荔枝图像识别的融合方法,对荔枝果与结果母枝进行了图像分类与统计的探索性分析,并给出了荔枝图像数据的探索性分析流程图;其次,根据荔枝不同部位颜色均值分布的特点,设计了荔枝果、结果母枝及叶子在6种色彩模型下的颜色均值分布箱线图,通过图形启示的数据分析与探索,给出了基于YCbCr色彩空间的Cr单通道图的荔枝各部位分类识别的视觉模型,分析表明Cr分量值在0.5~0.54能去除叶子和侧枝等复杂背景,实现荔枝串中的荔枝果与结果母枝的分割。最后,以60组不同光照条件的180幅自然环境下采集的荔枝图像为试验测试对象,用颜色特征的视觉模型结合阈值分割方法有效地识别了成熟荔枝串与荔枝果,荔枝串与荔枝果的平均识别率分别为91.67%和95.00%。用探索性分析与图像运算相结合的方法成功地提取了结果母枝(识别率为86.67%),并用计算出的采摘点进行视觉定位的仿真。试验和仿真结果表明视觉模型及其方法能对荔枝不同部位进行有效识别。 相似文献