共查询到15条相似文献,搜索用时 69 毫秒
1.
预处理过程可以破坏木质纤维素生物质的致密结构、降低生物抗性,是木质纤维素生物质经酶解制备糖基平台化学的重要步骤。该研究以蔗渣为原料,在预处理温度为160 ℃、预处理时间为10 min时,选取0.025 mol/L 的不同金属盐FeCl3、CrCl3、AlCl3、CuCl2、FeCl2、ZnCl2、MnCl2、MgCl2、CaCl2、NaCl、LiCl、Na2CO3对蔗渣进行乙醇/水预处理,并对预处理后样品进行酶解,探究不同金属盐强化乙醇/水预处理对蔗渣酶解效率的影响和规律,并进一步通过扫描电镜(scanning electron microscopy, SEM)、X射线衍射(X-ray diffraction, XRD)、傅里叶变换红外光谱(fourier transform infrared spectroscopy, FT-IR)和热重(thermogravimetric, TG)对蔗渣原料和预处理后的固体进行表征,探究金属盐强化乙醇/水预处理后蔗渣表面形貌与结构变化对酶解效率的影响,分析作用机理。结果表明:与原料甘蔗渣相比,不同金属盐强化乙醇/水预处理后样品中葡聚糖的质量分数从45.5%增加到77.2%,预处理后样品酶解48h后的葡萄糖得率也由51.14%增加到最高93.08%。其中,三价金属盐(FeCl3、CrCl3和AlCl3)对蔗渣酶解效率的提升最为显著,这可归因于三价金属盐强化乙醇/水预处理可以更加有效的去除蔗渣中的半纤维素和木质素,增加酶对纤维素的可及性。后续表征分析也表明经过三价金属盐(FeCl3、CrCl3和AlCl3)强化乙醇/水预处理后的样品比经过二价金属盐(CuCl2、FeCl2、ZnCl2、MnCl2、MgCl2和CaCl2)和一价金属盐(NaCl、LiCl和Na2CO3)强化乙醇/水预处理表面结构破坏更为彻底,结晶度相对增加最大,木素和半纤维素去除率最多,热稳定性也相对最高。该研究结果将为后续木质纤维素生物质的高效转化与利用提供参考。 相似文献
2.
为了探究预处理和表面活性剂对纤维素酶水解效率的影响,该研究以杨木为研究对象,探究了温度对CrCl3预处理的影响,同时从表面活性剂种类、用量和酶添加量3个方面分析表面活性剂对CrCl3预处理后样品酶解的促进作用。结果表明:CrCl3预处理对杨木组分分离有良好的促进效果,经160 ℃预处理后葡萄糖得率达到65.9%。通过结构表征发现预处理后杨木结构完整度降低,提高了纤维素的可接触面,进而提高了酶解效率。在酶解段加入木质素磺酸钙可显著缩短酶解时间,提高酶解效率,同时有效降低纤维素酶用量,最终酶解72h后葡萄糖得率达85.5%,当酶用量为该研究为提升木质纤维原料预处理效率和降低酶解成本提供了一定的理论支持。 相似文献
3.
液氨和过氧化氢预处理对稻草酶解效果的影响机制 总被引:1,自引:1,他引:1
稻草是一种重要的木质纤维素资源,可以作为纤维素乙醇转化的原料。该试验通过高温过氧化氢(高温HP)、低温过氧化氢(低温HP)和液氨预处理(liquid ammonia treatment,LAT)3种预处理方式来克服生物质原料的酶解顽抗性,促进稻草酶解转化为可发酵单糖。对预处理后的稻草进行酶解试验,利用高效液相色谱法(highperformanceliquid chromatography,HPLC)定量测定了酶解液中的单糖含量,通过酶解转化率和单糖产量对预处理效果进行了分析比较。试验结果表明高温HP、低温HP和LAT 3种预处理方式均有效提升酶解率,其中LAT预处理的酶解促进作用效果最佳,高温HP预处理次之。稻草在120℃、预处理时间为60 min、30%H2O2水溶液与原料质量比为0.75∶1的高温HP预处理下,在纤维素酶添加量为15U/g时葡聚糖和木聚糖的酶解率分别为61.55%和47.82%,每千克干基稻草原料经144h酶解可生产单糖334.5 g。稻草在90℃、含水率60%、驻留时间为5 min、液氨与原料比例为1∶1的LAT预处理下,在纤维素酶添加量为15 U/g时,葡聚糖和木聚糖的72 h酶解率分别为88.62%和79.29%,每千克干基稻草原料经144 h酶解可生产单糖554.1 g,是未处理原料的2.9倍,总糖回收率达到90%。综上所述,LAT预处理稻草的酶解率显著高于其他单一预处理方法,该研究结果可为稻草制取燃料乙醇提供基础数据。 相似文献
4.
不同预处理方法对稻草秸秆固态酶解特性的影响 总被引:3,自引:0,他引:3
该文研究了自然堆积、超声波、NaOH溶液以及H2SO4溶液等不同方法预处理后的稻草秸秆基质固态酶解特性,结合SEM电镜扫描、傅里叶变换红外光谱(FTIR)及X射线衍射对预处理前后稻草秸秆基质的结构特性进行了观察和分析,获得了稻草秸秆固态酶解的最佳预处理条件。结果表明自然堆积9d、质量分数分别为1.0%的NaOH溶液和15%的H2SO4溶液、超声40min的预处理条件能有效除去包裹在纤维素基质外表面的木质素和半纤维素,提高基质的酶解糖化效率。该试验中质量分数为1.0%的NaOH溶液预处理后的稻草秸秆通过酶解作用获得的还原糖产率最高,为126.3mg/g。该研究可为探索提高纤维素基质酶解糖化效率的方法提供参考。 相似文献
5.
为了提高制生物质酒精时稻草酶解糖化率,该文采用常温常压乙醇-磷酸预处理稻草。研究了预处理温度、乙醇体积分数、预处理时间对稻草糖化率的影响以及最优条件下的回用乙醇-磷酸预处理稻草糖化效果。结果表明,在50℃、乙醇体积分数50%、处理时间60?min条件下,稻草酶解糖化率从10.03%提高到57.75%。回用乙醇-磷酸预处理后稻草糖化率达到56.89%,与乙醇-磷酸预处理后糖化率相接紧,可减少蒸馏回收乙醇次数,降低能量消耗,节省运行费用。对比预处理前后稻草物理和化学性质的变化表明,乙醇-磷酸预处理使稻草的晶状结构遭到破坏、孔隙度增加、比表面增大,易于被微生物或酶酶解。乙醇-磷酸预处理后的过滤液容易通过蒸馏、离心、过滤等方式分离得出乙醇、木质素、磷酸等有用原料。该研究提供了一种温和条件下可运用于循环生产的稻草预处理方法。 相似文献
6.
为提升杨木的酶解发酵效率,该研究探究了酸-碱两段组合预处理对半纤维素、木质素的降解、纤维素保留以及后续发酵的影响;通过扫描电镜(scanning electron microscopy,SEM)、X射线衍射(X-ray diffraction,XRD)和傅里叶变换红外光谱(fourier transform infrared spectroscopy,FT-IR)对杨木进行表征分析,探究预处理对杨木表面形貌、组成成分和热稳定性的影响。对杨木进行两段HAc-NaOH组合预处理,第一段是采用1% HAc作为酸性催化剂在不同预处理温度(160~200 ℃)下进行预处理,第二段预处理则是以第一段预处理后样品为底物进行不同NaOH质量分数(0.3%~1.2%)的碱预处理。结果表明酸-碱两段预处理的效果优于仅一段酸预处理,在200 ℃ HAc组合0.8% NaOH的两段预处理下获得的乙醇浓度为18.72 g/L,结合SEM、XRD和FT-IR分析发现预处理中半纤维素和木质素的脱除显著提升预处理杨木中纤维素含量,木质纤维致密结构被破坏,提高了酶对纤维素的可及性,也有助于提高后续乙醇发酵浓度。最后通过对葡聚糖、木聚糖、酸不溶性木素含量、木聚糖、酸不溶性木素去除率以及结构特性对乙醇得率的相关性进行分析,表明预处理样品中具有较低半纤维素/木质素含量和较高纤维素结晶度的预处理样品具有更强的发酵潜力。 相似文献
7.
在木质纤维素酶解研究领域,高浓度还原糖的获得是实现其能源转化的基础。以稀硫酸预处理后的稻草秸秆为原料,初始酶解物料条件为20%(重量/体积),木聚糖酶220U.g-(1底物),纤维素酶6FPU.g-(1底物),果胶酶50U.g-(1底物),选取吐温80(Tween80)、MgSO4、FeSO4、聚乙二醇(PEG)和牛血清白蛋白(BSA)作为酶解体系添加物,分别考察了其添加量对还原糖浓度的影响。试验结果表明:在稻草秸秆酶解体系中,Tween80、MgSO4、FeSO4、PEG和BSA5种化学物质各自最佳添加量分别为0.05、0.0005、0.02、0.01g和0.0005g.g-(1底物);助催化作用强度依次为MgSO4〉Tween80〉BSA〉FeSO4〉PEG。添加MgSO40.0005g.g-(1底物),48h糖化后,还原糖浓度达到72.45g.L-1,比对照提高了7.98%。试验结果表明添加适量化学物质可以有效提高还原糖浓度。 相似文献
8.
为提高纤维素酶解糖化的效率,该文采用超低浓度硫酸水解预处理废弃玉米秸秆。重点考察了不同酸浓度、反应温度、反应时间条件下超低浓度酸水解及后续酶解的总还原糖、葡萄糖及木糖的产率,详细叙述了总还原糖及各种单糖在酸水解及酶解过程中的转化规律,通过正交试验确定酸水解的最佳工况为酸浓度0.1%,反应温度160℃,反应时间55 min,搅拌180 r/min,固液比1∶10。酸水解后进行酶解(酶用量5%,pH值4.6,时间24 h,温度50℃)得到还原糖、葡萄糖、木糖产率分别为56.22%、16.97%、18.83%。通过红外光谱和纤维素分析仪对酸水解和酶解后的残渣进行分析可知,纤维素、半纤维素的转化率分别为88.52%、95.18%,进一步计算还原糖、葡萄糖、木糖的转化率为88.11%、44.86%、72.49%。该方法较大程度避免了还原糖在酸水解过程中的降解,保证了半纤维素还原糖的转化效率,进一步提高了总还原糖的产率,为超低酸水解在燃料乙醇领域提供了新的应用途径。 相似文献
9.
农作物秸秆的生物转化是木质纤维类生物质能源化利用的重要手段之一。为了探究室温条件下不同机械化学复合预处理对玉米秸秆酶解效果的影响,该研究以玉米秸秆为研究对象,以单独NaOH处理为对照,在不同NaOH质量分数(0、1%、2%和3%)条件下,分别进行了干法和湿法2种NaOH/球磨复合预处理。使用CellicCtec2(Novozymes,丹麦)进行了不同预处理玉米秸秆72 h酶解试验,系统表征了不同预处理玉米秸秆的粒径、结晶度、表面微观形貌、木质纤维组成和官能团变化,分析了不同预处理玉米秸秆理化性质对酶解影响及其相关性。结果表明:干法和湿法NaOH/球磨复合预处理均显著提高了玉米秸秆葡萄糖产率,且随NaOH质量分数增加(从1%提升至3%),不同NaOH/球磨复合预处理玉米秸秆葡萄糖产率显著提升(P<0.01),当NaOH质量分数为3%时,其葡萄糖产率分别达到71.0%和73.1%。无论干法和湿法NaOH/球磨复合预处理,其酶解葡萄糖产率均与纤维素质量分数和平均粒径D50显著正相关(P<0.01),与木质素质量分数显著负相关(P<0.01);干法NaOH/球磨复合预处理显著降低了玉米秸秆的结晶度,从而一定程度增强改善了玉米秸秆酶解葡萄糖产率。该研究为深入揭示和解析玉米秸秆机械化学复合预处理作用机理提供了数据支撑。 相似文献
10.
化学预处理提高酒糟生物质酶解糖化效果 总被引:1,自引:2,他引:1
为促进酒糟生物质的酶解糖化,筛选适宜的预处理方法,以脱除木质素,提高综纤维素(纤维素和半纤维素之和)保留率为目标,研究比较了酸-超声波耦合(ultrasound-assisted acid pretreatment,UAAP)、液氨(pretreatment by soaking in aqueous ammonia,PSAA)、碱性双氧水(alkaline hydrogen peroxide pretreatment,AHPP)和酸性亚硫酸氢盐(bisulfite pretreatment,BP)4种预处理法对酒糟化学组分、结构特性和酶解得率的影响。结果表明,与其余3种方法相比,BP法处理后酒糟的纤维素和半纤维素保留率最高,分别为84.59%和84.87%,即综纤维素保留率为84.68%。与未处理酒糟(unpretreatment,UP)相比,4种方法预处理后酒糟的综纤维素酶解得率分别提高了49.12%(酸-超声波,UAAP)、55.48%(液氨,PASS)、92.79%(碱性双氧水,AHPP)和99.15%(酸性亚硫酸氢盐,BP),其中BP法对酒糟酶解糖化的促进作用最有效。扫描电镜(scanning electron microscope,SEM)和X-衍射(X-ray differaction,XRD)结果显示,酒糟经不同方法预处理后表观结构发生了明显变化,木质纤维网络结构遭到破坏,表面呈现无规则或形状各异的膨松状态,沟壑明显,孔隙率增加,比表面积增大,有利于提高水解酶的可及性。化学组分和结构特性的变化说明酒糟的酶解得率与综纤维素的保留、木质素的去除、表面微观形貌变化以及纤维素结晶度等因素直接相关。总之,酸性亚硫酸氢盐(BP)法是适用于酒糟生物质糖化预处理的一种有效可行方法。 相似文献
11.
12.
竹子的生物量很高,可作为生物能源生产的重要原料.预处理是纤维素乙醇生产中的关键技术,该文以孝顺竹和大木竹为原料,采用蒸汽爆破法对竹子进行预处理,并进行酶解试验,用高效液相色谱法测定预处理滤液和酶解液中的可发酵单糖含量.结果表明,采用0.5%稀硫酸预浸泡能使总糖得率提高49%;汽爆强度对预处理效果有显著影响,汽爆强度指数为3.35时,预处理后固形物的酶解转化率最高;汽爆强度指数为3.65时总糖得率最高,每千克干基竹粉可得单糖289.5 9.汽爆法预处理存在聚糖分解后进入滤液、单糖分解等现象,通过质量平衡才能准确预测其单糖产率.汽爆预处理后竹子的酶解率不及玉米秸秆等生物质原料,可能与其木质化程度高、微观组织结构更为致密等因素有关. 相似文献
13.
生物—碱氧化预处理玉米秸秆酶解条件的优化 总被引:1,自引:0,他引:1
白腐菌生物—碱氧化预处理(BAO预处理)具有环境友好、低能耗的优势,是一项很有前景的生产纤维质乙醇预处理技术。为获得预处理后玉米秸秆的最优酶解条件,通过动力学研究评价了纤维素酶负荷、反应时间、基质浓度对还原糖产量的影响,并利用响应面分析法优化了酶解反应温度、pH值和转速。结果表明,最适的酶解糖化条件为:酶负荷30 FPU/g,基质浓度20 g/L,反应时间48 h,pH 4.8,转速200 r/min,反应温度49℃。在此条件下,秸秆的还原糖产量达到(0.479±0.012)g/g。 相似文献
14.
亚硫酸盐预处理对棉秆酶水解的影响 总被引:1,自引:0,他引:1
为了提高棉秆的酶水解效率,研究了棉秆亚硫酸盐预处理过程中亚硫酸氢钠用量、浓硫酸用量、预处理温度与时间对预处理效果的影响,同时比较了棉秆不同部位的亚硫酸盐预处理效果。结果表明:预处理时添加亚硫酸氢钠可提高棉秆酶水解效率,随着用量的增加,底物酶水解转化率升高,用量超过8%后基本不变;预处理液pH值可影响棉秆亚硫酸盐预处理效果,存在一个最佳pH值,研究中预处理液pH值为2.65时,底物的酶水解转化率最高;当预处理温度由100℃升高至170℃时,底物酶水解转化率升高较少,但当预处理温度继续升高时,底物酶水解转化率明显升高,在预处理温度180℃并保温20 min时底物酶水解转化率达到最高为70.10%,继续延长保温时间底物酶水解转化率无明显变化。亚硫酸盐预处理过程中,木素和戊聚糖不断从原料中溶出,有利于后续的酶水解,研究发现木素的溶出比戊聚糖的溶出对棉秆酶水解的影响更大。棉秆不同部位的亚硫酸盐预处理效果不同,酶水解从易到难的顺序是:棉秆皮>细枝>全棉秆>主干>棉秆芯。 相似文献
15.
稻草秸秆的碱性臭氧预处理效果 总被引:2,自引:0,他引:2
为了研究碱性臭氧预处理对稻草秸秆酶水解、表观结构及成分的影响,将稻草秸秆碱性臭氧预处理后进行酶水解,对处理前后的稻草秸秆进行了扫描电镜观察及成分分析,并对处理后溶液进行了紫外光谱分析。结果表明:碱性臭氧预处理能将稻草秸秆中的木质素氧化降解为小分子的有机酸,降低了稻草秸秆中木质素的含量,提高了纤维素的含量。扫描电镜观察显示经碱性臭氧预处理过的稻草秸秆,机械组织暴露,孔隙度大,酶解的有效比表面积大。在pH值5.0、每单位底物加酶量31.2 mg/g、45℃条件下,碱性臭氧预处理稻草秸秆酶水解120 h时还原糖达到了902 mg/g,糖化率为92.57%。在相同酶解条件下,碱性预处理与未处理稻草秸秆的糖化率分别为74.90%与53.53%。碱性臭氧预处理稻草秸秆的糖化率明显高于碱性预处理与未处理稻草秸秆的糖化率。 相似文献