首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
按土重的3%和5%向采自海南和广西的3种可变电荷土壤中添加由稻草制备的生物质炭,混合培养30 d后用一次平衡法研究了生物质炭对土壤吸附Cd(Ⅱ)的影响及其与土壤表面电化学性质的关系,旨在阐明生物质炭促进可变电荷土壤吸附和固定Cd(Ⅱ)的机制。结果表明,添加稻草炭显著提高了3种土壤的阳离子交换量(CEC)和土壤pH,并使土壤胶体Zeta电位向负值方向位移。因此,添加稻草炭增加了土壤表面的负电荷量,土壤表面对Cd(Ⅱ)的吸附容量增强,使3种可变电荷土壤对Cd(Ⅱ)的吸附量增加,且Cd(Ⅱ)吸附量的增幅随稻草炭添加水平的提高而增加。Freundlich方程和Langmuir方程可以拟合3种土壤对Cd(Ⅱ)的吸附等温线,但Freundlich方程拟合效果更好,该方程表征吸附容量的常数k也随着稻草炭添加水平提高而增大。研究表明在pH3.0~5.0范围内,稻草炭均增加土壤对Cd(Ⅱ)的吸附量。添加稻草炭提高土壤pH,促进Cd(Ⅱ)的吸附,因为Cd(Ⅱ)的吸附量随pH升高而增加。解吸实验表明,添加稻草炭处理Cd(Ⅱ)的解吸量高于对照处理,说明生物质炭提高了土壤对Cd(Ⅱ)的静电吸附量。  相似文献   

2.
按土重的3%和5%向采自海南和广西的3种可变电荷土壤中添加由稻草制备的生物质炭,混合培养30 d后用一次平衡法研究了生物质炭对土壤吸附Cd(Ⅱ)的影响及其与土壤表面电化学性质的关系,旨在阐明生物质炭促进可变电荷土壤吸附和固定Cd(Ⅱ)的机制。结果表明,添加稻草炭显著提高了3种土壤的阳离子交换量(CEC)和土壤pH,并使土壤胶体Zeta电位向负值方向位移。因此,添加稻草炭增加了土壤表面的负电荷量,土壤表面对Cd(Ⅱ)的吸附容量增强,使3种可变电荷土壤对Cd(Ⅱ)的吸附量增加,且Cd(Ⅱ)吸附量的增幅随稻草炭添加水平的提高而增加。Freundlich方程和Langmuir方程可以拟合3种土壤对Cd(Ⅱ)的吸附等温线,但Freundlich方程拟合效果更好,该方程表征吸附容量的常数k也随着稻草炭添加水平提高而增大。研究表明在pH3.0~5.0范围内,稻草炭均增加土壤对Cd(Ⅱ)的吸附量。添加稻草炭提高土壤pH,促进Cd(Ⅱ)的吸附,因为Cd(Ⅱ)的吸附量随pH升高而增加。解吸实验表明,添加稻草炭处理Cd(Ⅱ)的解吸量高于对照处理,说明生物质炭提高了土壤对Cd(Ⅱ)的静电吸附量。  相似文献   

3.
秸秆还田对土壤Cd(Ⅱ)吸附-解吸的影响   总被引:1,自引:0,他引:1  
[目的]探讨不同秸秆还田类型及还田水平(水稻、油菜秸秆全量、1/2量)对3种土壤类型﹝沈桥红壤(SQ)、朝山红壤(CS)、新桥水稻土(XQ)﹞Cd(Ⅱ)吸附-解吸行为的影响,为控制土壤中Cd(Ⅱ)环境行为及其调控提供依据。[方法]采用室内模拟培养试验和等温吸附相结合的方式。[结果](1)秸秆还田促进了土壤对Cd(Ⅱ)的吸附,在3种土壤的各处理间差异显著(p0.05)。在XQ上,秸秆还田处理提升Cd(Ⅱ)吸附量的效果较2种红壤显著,其中,油菜秸秆1/2量还田处理(RP1)、油菜秸秆全量还田处理(RP2)土壤Cd(Ⅱ)吸附量与对照相比分别增加了9.30%和10.47%。对SQ,CS而言,以Langmuir模型的拟合度最佳,相关系数均大于0.990 9,而在XQ中,适用于描述不规则表面吸附的Temkin方程的模拟效果较好。(2)3种土壤Cd(Ⅱ)的解吸量、解吸率都随着土壤中Cd(Ⅱ)吸附量的增加而增加,秸秆还田处理的土壤Cd(Ⅱ)的解吸量明显低于对照,尤其以油菜秸秆全量还田处理土壤Cd(Ⅱ)解吸量最小。[结论]秸秆还田对不同土壤Cd(Ⅱ)吸附-解吸行为的影响具有显著差异,油菜秸秆还田增强了土壤Cd(Ⅱ)专性吸附,较水稻秸秆有更好地降低Cd(Ⅱ)风险的效果。  相似文献   

4.
水洗处理在不影响生物质炭性质的前提下,可以去除附着在其表面的热解副产物,从而保证对重金属离子的去除能力。以小麦和玉米秸秆为原料,比较两种秸秆类生物质炭对溶液Cd2+和Pb2+的吸附解吸特点及其水溶性盐分含量的影响。结果表明,小麦和玉米秸秆生物质炭对Cd2+和Pb2+的吸附过程均更好地符合准二级动力学方程和Langmuir方程。小麦秸秆生物质炭对Cd2+和Pb2+的最大吸附量达12.82 mg g?1和9.91 mg g?1,为玉米秸秆吸附量的1.31 ~ 1.76倍和1.06 ~ 1.53倍。洗脱水溶性盐分可以降低生物质炭对Cd2+和Pb2+的吸附,水洗后小麦秸秆和玉米秸秆生物质炭对Cd2+的最大吸附量分别降低42.36%和60.13%,对Pb2+的最大吸附量分别降低29.47%和62.72%。水洗处理提高了两种秸秆生物质炭对Cd2+和Pb2+的解吸率,其中小麦秸秆生物质炭提高幅度较大,由原来对Cd2+的解吸率为1.84% ~ 13.05%提高到7.88% ~ 20.19%,对Pb2+的解吸率为1.57% ~ 11.82%提高到6.34% ~ 16.94%。因此,可溶性盐分在秸秆生物质炭吸附Cd2+和Pb2+的过程中具有重要作用,该研究结果将为制备高效修复重金属污染土壤的生物质材料提供技术支撑。  相似文献   

5.
通过吸附解吸实验研究了添加海泡石后典型水稻土对Cd的吸附解吸特性及其对吸附溶液pH值变化的响应。结果表明,Freundlich方程可以较好地拟合红黄泥、黄泥田和红沙泥3种典型水稻土对Cd的等温吸附过程(R2〉0.962)。在溶液初始Cd浓度相同的情况下,添加海泡石可使3种水稻土对Cd的吸附量增加20%以上,增强土壤对Cd的吸附强度,有效降低吸附Cd的解吸率,其效果随海泡石添加量的增大而增强。3种水稻土吸附Cd的解吸率均高于70%,而且都随吸附量的增加而上升。溶液的pH值是影响土壤吸附Cd的一个重要因素,在低pH值的条件下(pH〈4),随着溶液pH值的降低,土壤对Cd的吸附量迅速降低,当溶液pH值高于5时,pH值的变化对吸附量的影响较小。在溶液初始pH值2-8范围内,添加海泡石均能有效提高3种水稻土对Cd的吸附能力。  相似文献   

6.
以黄秋葵秸秆炭(HQK)、茭白秸秆炭(JB)、水稻秸秆炭(SD)、废弃食用菌基质炭(JZ)、无花果秸秆炭(WHG)、猪粪炭(SM)和稻壳炭(DK)为供试原料,设置0.5%、1%、2%和5%4个添加浓度,研究不同生物炭及添加量对土壤pH值和保水保氮性能的影响。结果发现,所有生物炭添加量在2%时,均能显著提高土壤pH值,但不同生物炭调酸能力不同,JB和SD作用最强;生物炭能提高土壤持水能力,添加量在2%时,所有处理均极显著(P0.01)的提高了土壤持水量,增幅分布在2.87%~12.30%之间,SD效果最明显;生物炭能够吸附土壤溶液中NH_4~+-N,但吸附能力与生物炭的添加量无相关性,WHG吸附能力最强,JZ和HQK吸附能力最弱;添加生物炭对土壤溶液中的NO_3~--N则基本无吸附作用。  相似文献   

7.
磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用   总被引:1,自引:3,他引:1  
以农田生态系统废弃农作物秸秆资源化利用为前提,以生物炭去除水体重金属镉(Cd)污染及其回收利用为目的,该文以500℃裂解的原始玉米秸秆生物炭(MSB,maize straw biochar)和磁性玉米秸秆生物炭(MMSB,magnetic maize straw biochar)试验材料,在2种生物炭的表面性状进行表征的基础上,探究了不同吸附条件下生物炭对污染水体中Cd(Ⅱ)的吸附去除作用及其回收利用的可能性。结果表明:MSB和MMSB对Cd(Ⅱ)的吸附量在pH值为5时达到最大,其最大吸附量分别为27.52和33.45 mg/g;当MSB和MMSB添加量为1.4和0.8 g/L时,对Cd(Ⅱ)的去除率分别可达85.15%和95.48%;Langmuir方程能更好地模拟等温吸附行为,MSB和MMSB达到平衡时的最大吸附容量分别为26.03和43.45 mg/g,趋近实际值;动力学数据与二级动力学方程拟合度更高,MSB和MMSB的平衡吸附量Qe理论值分别为13.42和24.31 mg/g;MMSB对其表面吸附Cd(Ⅱ)的解吸率均显著低于MSB。磁性生物炭对Cd(Ⅱ)的吸附效率和固着能力增强可能与其较高的pH值、更大的比表面积、更多的极性含氧官能团有关。此外,在外部存在磁场的情况下,磁性生物炭可以通过磁力作用加以回收再利用。研究成果对促进农业废弃物的资源化利用以及水体环境中重金属净化技术的进步均有重要意义。  相似文献   

8.
为探讨小麦秸秆生物质炭对镉(Cd)污染碱性土壤的修复效果,采用序批式吸附试验和Cd污染土壤盆栽试验,研究了小麦秸秆生物质炭施用(1%,m/m)对碱性土壤吸附Cd的影响,以及对Cd污染土壤中油菜生长和Cd吸收的影响。结果表明:Cd在生物质炭上的吸附等温线非线性较强,生物质炭对Cd的表面吸附起主导作用,Cd在生物质炭上的分配系数(a)是在土壤上的1.5~3.0倍。生物质炭施用可促进土壤对低浓度Cd的吸附,0.1 mg·L~(-1)平衡浓度下K_d值提高了19.5%;生物质炭施用可抑制土壤对高浓度Cd的吸附,在10 mg·L~(-1)条件下K_d值降低了37.2%。生物质炭施用对土壤pH值影响不显著,但缓解了Cd污染对油菜生长的抑制作用,油菜生物量最高提高了45.0%,也抑制了油菜对Cd的富集,油菜富集Cd的量最高降低了40.6%;CaCl_2、Mg(NO_3)_2、NH_4OAC、HCl、DTPA和BCR1作为提取剂提取出土壤中Cd的量与油菜地上部分吸收Cd的量相关性较强(线性回归方程决定系数R~20.8),而Mg(NO_3)_2萃取出土壤中Cd的量更能预测油菜地上部分吸收Cd的量。研究表明,小麦秸秆生物质炭有利于降低碱性土壤中Cd的生物有效性,但并非通过提高土壤pH值和吸附能力来实现。  相似文献   

9.
梁晶  徐仁扣  蒋新  卞永荣  谭文峰 《土壤》2007,39(6):992-995
对两种可变电荷土壤的研宄表明,土壤对Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)的吸附量均随pH的增加而增加,但Cu(Ⅱ)与Pb(Ⅱ)吸附量之间的差值随pH增加而减小,Cu(Ⅱ)和Pb(Ⅱ)与Cd(Ⅱ)吸附量之间的差值随pH增大呈增大趋势.土壤吸附的Cd(Ⅱ)的解吸量随吸附平衡液pH的增加而增加;但Cu(Ⅱ)和Pb(Ⅱ)的解吸量先随pH增加而增加,在某一pH时达最大,随后再逐渐减小.3种重金属离子在可变电荷土壤中吸附和解吸行为的不同特征是pH导致的土壤表面电荷的变化和离子水解程度的变化共同作用的结果.本文的研究结果对可变电荷土壤中重金属的控制和污染土壤的修复具有一定的指导意义.  相似文献   

10.
刘慧  张伟康  李蒋戈野  王青青  承睿  张少斌 《土壤》2023,55(6):1198-1206
为了减少土壤磷素流失,提高磷肥利用效率,探究不同生物炭对棕壤中磷素吸附解吸行为的影响规律,以水稻秸秆、玉米秸秆和花生壳为原材料,利用限氧升温炭化法制备生物炭,通过批量吸附实验研究了生物炭种类和生物炭添加量对棕壤磷吸附解吸的影响。结果表明:水稻秸秆生物炭在添加量为0.4%时显著提高棕壤对磷的吸附量,花生壳生物炭和玉米秸秆生物炭则显著降低棕壤对磷的吸附量;等温吸附曲线表明,不同生物炭均未改变等温吸附曲线的变化趋势,均可用Langmuir方程和 Freundlich 方程进行描述(R2>0.93),其中 Langmuir 方程拟合效果更好,不同处理对磷的理论吸附量大小顺序为:水稻秸秆生物炭+棕壤>棕壤>花生壳生物炭+棕壤>玉米秸秆生物炭+棕壤;吸附动力学实验表明,不同生物炭均未改变磷吸附动力学曲线的变化趋势,在所有动力学模型中,准二级动力学模型最适合描述土壤对磷的吸附行为(R2>0.99),其次为准一级动力模型(R2>0.99)和Elovich动力学模型(R2>0.88);三种生物炭均显著促进棕壤对磷的解吸,当生物炭添加量为≥0.2%时,水稻秸秆生物炭、玉米秸秆生物炭和花生壳生物炭,分别可提高棕壤对磷的解析率50%、70%和90%以上。由此可见,不同生物炭可提高棕壤对磷素的供应和利用,水稻秸秆生物炭在减少棕壤磷素流失、保护生态环境方面具有更大的应用价值。  相似文献   

11.
不同来源生物炭对土壤磷吸附解吸的影响   总被引:6,自引:1,他引:5  
《土壤通报》2017,(6):1398-1403
主要研究了水稻秸秆、小麦秸秆、玉米秸秆、花生壳四种来源的生物炭对土壤磷吸附解吸的影响。研究结果表明:生物炭对土壤磷吸附的影响取决于土壤溶液中磷的浓度,与对照相比,在中低磷浓度(0~90 mg L-1)时,四种生物炭对土壤磷的吸附影响较小,而在较高磷浓度时,小麦秸秆生物炭和花生壳生物炭均抑制了土壤磷的吸附,而水稻秸秆生物炭和玉米秸秆生物炭均能促进土壤磷的吸附。吸附动力学试验表明,在反应开始的4小时内,土壤对磷的吸附较快,吸附量基本达到平衡吸附量的50%;到达吸附平衡时,添加生物炭能够降低土壤对磷的吸附量,四种生物炭对土壤磷的吸附量依次为:小麦秸秆玉米秸秆花生壳水稻秸秆。此外四种生物炭都能促进土壤中磷的解吸,其中玉米秸秆的促进效果最为显著,解吸量比对照高1.76倍。Langmuir方程和Freundlich方程都能很好地拟合生物炭存在下土壤磷的吸附等温线(P0.01),Freundlich拟合程度要比Langmuir方程的高。准一级动力学方程和准二级动力学方程都能很好地描述生物炭存在下土壤磷的吸附动力学(P0.01)。  相似文献   

12.
对黄棕壤在pH2 7不同浓度下Cd2 的吸附与解吸进行了测定。结果表明,Cd2 吸附量随平衡液中Cd2 浓度增加而增大,两者关系较好地符合Langmuir吸附方程。根据吸附等温线参数与pH的相关方程,得到镉吸附等温线的pH依存模式,如Langmuir方程为:C/X=69 334e-1 7183pH (5 5793pH-3 0383)·C。式中,X为土壤Cd2 吸附量(mg/kg),C为平衡液中Cd2 之浓度(mg/L)。解吸Cd2 的数量随pH升高和吸附Cd2 的数量增加而增加,但解吸Cd2 占吸附Cd2 的比例随pH升高而降低,在pH3 7下,黄棕壤解吸Cd2 的比例为42%~95%,平均为75%,说明黄棕壤Cd2 以非专性吸附为主,吸附Cd2 的有效性高。  相似文献   

13.
何娴  徐仁扣 《土壤》2022,54(5):1016-1023
选择稻草、玉米秸秆和油菜秸秆作为制备生物质炭的原料,分别用H2O2和HNO3/H2SO4对生物质炭进行改性处理,以未改性的生物质炭和HCl处理的生物质炭作为对照。按土重3%的比例向采自安徽郎溪的酸性水稻土中添加上述生物质炭,在经历一个干湿交替周期后,进行Cd(Ⅱ)吸附/解吸实验,研究添加生物质炭对水稻土吸附Cd(Ⅱ)的影响及其机制。结果表明,两种改性方法均有效增加了生物质炭表面的质子结合位点数,且HNO3/H2SO4改性对生物质炭表面羧基官能团的扩增效果更显著。官能团的增加使得添加了HNO3/H2SO4改性生物质炭的水稻土对Cd(Ⅱ)的专性吸附能力显著增强。因此,添加HNO3/H2SO4改性生物质炭可以作为酸性水稻土吸附固定重金属Cd的一种新型方法。  相似文献   

14.
生物炭与沸石混施对土壤Cd形态转化的影响   总被引:1,自引:0,他引:1  
通过实验室模拟污染土壤添加生物炭和沸石,探究其对酸性污染土壤中Cd的形态转化的影响。结果表明,以土壤重量的0.2%,1%,5%的量分别单个施入生物炭和沸石以及生物炭、沸石1∶1以0.4%,2%,10%的土壤重量混合施入土壤对土壤pH均有影响,培养60d后,生物炭、沸石添加量为0.2%的处理以及混合施入量为0.4%的处理并没有提高土壤的pH,其他处理土壤pH均有升高,生物炭、沸石添加量为5%的处理以及添加量为10%的混合处理效果明显,土壤pH提升9.89%,3.59%,11.41%。培养60d后,生物炭添加量为1%,5%,沸石添加量为5%,混合施入添加量为2%,10%共5个处理同对照CK相比土壤有效态Cd含量相应降低18.30%,43.87%,21.77%,20.40%,41.89%。生物炭各处理土壤交换态Cd含量差异显著依次降低32.01%,32.57%,34.50%,添加量为0.2%和1%的处理残渣态Cd含量所占比例为14.71%,11.99%。沸石添加量为5%的处理交换态Cd含量差异显著降低26.50%。混合施入生物炭和沸石的各处理添加量为10%的处理交换态Cd含量差异显著减少31.76%,残渣态Cd含量所占比例为7.32%。  相似文献   

15.
以水稻、小麦、玉米和猪粪为原料,比较秸秆类生物质炭和畜禽粪便类生物质炭对溶液重金属Cd~(2+)的吸附解吸特点及其水溶性盐分含量的影响。结果表明,生物质炭对Cd~(2+)的吸附结果均很好地符合准二级动力学方程和Langmuir方程,猪粪炭的Cd~(2+)最大吸附量达20.7 mg g~(-1),为秸秆炭吸附量的1.37~1.72倍。洗脱去除可溶性盐分显著降低生物质炭对Cd~(2+)的吸附。水洗后秸秆炭对Cd~(2+)的最大吸附量为猪粪炭的2~4.3倍,水稻、小麦、玉米和猪粪炭对Cd~(2+)的最大吸附量分别降低52.6%、72.7%、72.8%和91.9%。洗脱作用提高了生物质炭对Cd~(2+)的解吸率,其中猪粪炭提高幅度最大,由原来的1.76%~7.96%提高到12.00%~27.49%。因此,可溶性盐分在生物质炭吸附Cd~(2+)过程中具有重要作用。所以,在污染土壤治理中需要考虑不同原料的组分差异,以制备高效修复土壤重金属污染的生物质材料。  相似文献   

16.
通过室内培养和吸附-解吸试验,研究玉米秸秆腐解后石灰性褐土对Cu2+、Cd2+吸附-解吸的影响。结果表明,玉米秸秆腐解量随培养时间的延长而增加,到第7周时,腐解总量可达45%,添加常规量秸秆处理(S1)与加倍量处理(S2)的腐解量差别不明显;常规量秸秆处理(S1)的腐解速率大于加倍量处理(S2),但均随培养时间的延长而减少。土壤对Cu2+的吸附量随秸秆培养时间的延长表现为先升高后降低,吸附量在第21天时达到最大值;Cu2+浓度为1 000mg/L时土壤对Cu2+吸附量显著高于Cu2+浓度为600mg/L处理;而Cu2+的解吸量在秸秆腐解前期变化不明显,到培养第21天后迅速降低。在相同的Cu2+浓度下,Cu2+的吸附量和解吸量受Cd2+浓度影响均不明显。Cd2+浓度为1mg/L时,土壤对Cd2+的吸附量随秸秆培养时间的延长变化不明显,但随Cu2+浓度的增加而减小;而Cd2+浓度为10mg/L时,在Cu0处理和Cu1000处理时,不同培养时间土壤对Cd2+吸附量影响不明显,但Cu600处理下,在培养的第21天后,土壤对Cd2+的吸附量显著增加。土壤Cd2+的解吸量均随秸秆培养时间的延长表现为先升高后降低,在第21天时达最小值,而Cd2+的解吸量随共存Cu2+浓度的增加而先增加后降低。  相似文献   

17.
生物质炭对土壤-水稻系统中Cd迁移累积的影响   总被引:3,自引:2,他引:1  
探究生物质炭添加对Cd污染土壤中Cd形态、植株对Cd的吸收分配及土壤肥力的影响,为污染稻田粮食安全提供科学依据。在湖南省长沙市Cd污染稻田进行田间定位试验,设置5个生物质炭添加量处理(0,10,20,30,40t/hm^2),分析生物质炭对Cd在土壤中形态转化和水稻器官中分配的影响。结果表明:生物质炭通过将土壤中酸溶态Cd钝化为可还原态Cd以减少在水稻器官中的累积,钝化量随着生物质炭增加而增加,土壤酸溶态Cd较CK降低3.83%~19.08%;且茎对根和糙米对茎的转运系数随生物质炭的添加分别降低4.23%~9.30%和1.39%~8.33%;土壤酸溶态Cd含量直接影响糙米中Cd含量,且受土壤pH和土壤有机碳的调控。Cd污染稻田添加生物质炭可以提高土壤肥力,降低土壤Cd生物有效性,20t/hm^2生物质炭添加量可以作为研究区周边Cd污染稻田修复的参考标准。  相似文献   

18.
《土壤通报》2017,(6):1493-1498
通过水稻盆栽实验,研究了不同添加量的组配改良剂谷壳生物炭和石灰石(TS)对Cd污染土壤的修复效果及水稻对Cd吸收累积的影响。结果表明:(1)添加TS(2~4 g kg~(-1))能显著提高土壤pH值,与对照相比,Cd含量为0.5 mg kg~(-1)和5.0 mg kg~(-1)土壤pH值分别增加了0.69~1.38和0.70~1.12个单位;(2)TS能显著降低土壤中Cd的生物有效性,在Cd含量为0.5 mg kg~(-1)和5.0 mg kg~(-1)土壤中,添加量为2~4 g kg~(-1)时,能使Cd的Ca Cl2提取态含量分别降低13.3%~86.7%和12.2%~73.6%,使Cd的TCLP提取态含量分别降低52.9%~76.5%和37.1%~76.8%;(3)添加TS(2~4 g kg~(-1))能显著降低水稻根系、秸秆、糙米对Cd的吸收累积,在2种不同Cd含量的土壤中(0.5 mg kg~(-1)和5.0 mg kg~(-1)),使糙米Cd含量分别降低了40.8%~60.0%和49.9%~86.6%,糙米Cd含量低于国家食品卫生标准0.2 mg kg~(-1)的限制。  相似文献   

19.
采用室内培养的方法,通过人为添加不同量的玉米秸秆和磷,研究不同含量磷和作物秸秆对土壤锌吸附—解吸的影响,以探讨磷—锌在土壤中的交互作用机制。结果表明:低锌(Zn10:添加Zn2+浓度为10 mg L-1)条件下,土壤对Zn2+的吸附量随土壤速效磷含量的增加而逐渐降低,表明在石灰性土壤中,随磷含量的增加提高了土壤锌的有效性;而Zn2+的解吸量随土壤中磷含量的增加先升高后降低,添加Zn2+浓度为80 mg L-1(Zn80)条件下,土壤对Zn2+的吸附量明显大于Zn10条件下。土壤中添加不同秸秆量对不同浓度Zn2+吸附时,低锌(Zn10)处理下,在相同磷含量情况下,土壤对Zn2+的吸附量随秸秆添加量的增加而减少,而土壤对Zn2+的解吸量随秸秆量的增加而增加。在不同磷水平下,不同秸秆添加量对Zn2+的吸附趋势差异较大。高锌(Zn80)处理下,土壤对Zn2+的吸附量在不同秸秆量处理下趋势大致相同,且Zn2+吸附量随磷含量的提高先升高后降低;在同一磷水平下,土壤对Zn2+的吸附趋势和Zn10时相似。利用KNO3进行解吸Zn2+时,不添加秸秆和低量秸秆处理变化趋势相同,均在添加磷量为360 mg kg-1时解吸量达到最大,分别为363.5 mg kg-1、424 mg kg-1,而高量秸秆处理下,Zn2+解吸量随磷含量的增加先升高后降低。  相似文献   

20.
秸秆生物炭对棕壤中Cu(Ⅱ)的吸附效应及影响因素   总被引:3,自引:2,他引:3  
以棉花、花生秸秆为原料,采用限氧热裂解法分别于350℃、500℃、650℃下制备生物炭,通过等温吸附和吸附动力学实验,研究两种秸秆生物炭对棕壤中Cu(Ⅱ)的吸附特性和修复效应。结果表明:随裂解温度上升,秸秆生物炭的碳化程度和BET比表面积增加,而含氧官能团、H/C和O/C的比值则减少,且花生秸秆生物炭的芳香化程度、碳化程度和比表面积均高于棉花秸秆生物炭;不同温度梯度制备的生物炭在吸附效果及机制方面存在差异,秸秆生物炭对Cu(Ⅱ)的吸附效果与Lagergren动力学方程的二级动力学方程、Langmuir等温方程可以较好拟合;随着pH的升高,吸附量均增加,吸附量在6.5时达到最大,且花生生物炭的吸附量大于棉花生物炭;SEM电镜扫描图展示了花生秸秆生物炭的表面特征和孔隙结构比棉花明显;FTIR谱图分析表明秸秆生物炭含氧官能团含量随裂解温度的升高而减少。综上,花生秸秆生物炭对山东棕壤重金属污染的修复效果更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号