首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正CO_2是植物光合作用的原料。通常大气中CO_2浓度约为340μmol/mol,仅相当于植物光合作用最适CO_2浓度的1/3~1/4。温室大棚的密闭性阻滞了设施内外气体交换,造成设施内部CO_2浓度大幅度波动,夜间由于土壤微生物分解有机物和作物呼吸,CO_2不断积累,日出前达到最高值,日出后随着植物光合作用的不断增强,CO_2浓度很快低于外部大气CO_2浓度水平呈现亏缺。叶面积系数大、光合旺盛的大棚黄瓜群体,通常日出2~3 h后CO_2浓度会降至100μmol/mol以  相似文献   

2.
近年来,美、英等国的不少科学家对大气CO_2浓度的变化及其影响进行了大量的模式试验工作。我国也在这方面作了不少工作。研究成果表明,大气CO_2浓度升高将对农业生产产生较大的影响。 1 大气CO_2浓度的上升趋势 大气中CO_2主要产生于矿物物质、生物物质的燃烧和生物的生命活动。目前,大气CO_2浓度上升主要原因是人类对矿物燃料(石油、煤、天然气等)、生物燃料利用的  相似文献   

3.
大气二氧化碳(CO_2)浓度升高是影响陆地生态系统碳氮循环的主要气候变化因子之一。大气CO_2浓度升高促进植被生长和光合产物积累,进而增加土壤碳库储量。同时,大气CO_2浓度升高引起土壤生物和非生物环境的改变会导致土壤温室气体排放的变化,形成对气候变化的反馈效应。目前,国际上有关大气CO_2浓度升高导致陆地生态系统碳汇效应的增加与其所引起的土壤温室气体排放之间的消长关系并不清楚。深入研究和了解陆地生态系统碳氮循环过程对大气CO_2浓度升高的响应和反馈机制对定量评估全球变化背景下陆地生态系统和土壤的固碳潜力具有十分重要的意义。本文综述了陆地生态系统碳氮循环过程对大气CO_2浓度升高的响应和反馈机制及主要驱动因子,发现大气CO_2浓度升高显著促进植被生物量碳的累积和土壤温室气体排放、增加土壤碳氮库储量,但却明显减少土壤活性氮源的供给。大气CO_2浓度升高可降低旱地CH4吸收汇的功能。大气CO_2浓度升高导致温室气体排放增加的源效应完全抵消土壤的碳汇效应,并且抵消近50%以上的陆地生态系统固碳潜力,且随其在大气中富集强度的增加呈减弱趋势。本文还提出大气CO_2浓度升高条件下影响土壤-大气温室气体交换的主要生物和环境控制因子,为气候变化背景下陆地生态系统的碳平衡估算研究提供重要理论基础。  相似文献   

4.
选取Scripps海洋研究所(SIO)的大气CO_2观测数据,对比使用三种方法滤去大气CO_2季节变化信号和人类活动对大气CO_2浓度的影响,从而得到其年际变化时间序列,结果表明:18世纪以来,大气CO_2浓度持续上涨,并表现出强烈的季节性震荡,北半球从4月开始大气CO_2浓度显著减小,8月开始逐渐增大。运用三种不同方法均能较好滤去季节变化信号和人类活动对大气CO_2浓度影响,方法一着重研究大气CO_2的年际增长率,但未将二氧化碳本身的季节变化和影响其年际变化的其他因素分离;方法二在先滤去大气CO_2的长期趋势后,着重研究大气CO_2的季节变化规律,在季节变化规律的基础上,得到其年际变化;方法三中认为大气CO_2长期的变化趋势表现为人类活动等引起的稳定三角函数增长,但对于大气CO_2的长期增长趋势,拟合效果较差。大气CO_2浓度增加对农业生产有利有弊,主要包括通过改变绿色植物的光合作用和新陈代谢所导致的直接效应和导致的气候变化所带来的间接效应。  相似文献   

5.
正核心提示二氧化碳(CO_2)是作物光合作用的重要元素,对作物生长发育起着重要作用,CO_2供给不足会直接影响作物正常的光合作用。然而,作物光合作用理想的CO_2浓度远大于大气中CO_2的浓度,由于温室的密闭性,温室设施内的CO_2浓度经常低于大气中CO_2的浓度,尤其是在初春、深秋以及冬季,作物经常处于CO_2"饥饿"状态,严重影响作物产量和品质。研究结果表明,当CO_2浓度由350μmol/mol增至700μmol/mol时,番茄增产大约25%,而从350μmol/mol降至  相似文献   

6.
研究升温和大气CO_2浓度升高对不同品种小麦养分吸收的影响,为未来气候变化下农田土壤养分管理与作物施肥提供科学参考。在田间开放条件下模拟升温和大气CO_2浓度升高,设置对照(CT)、大气CO_2浓度升高(C+T)、升温(CT+)以及两者同时升高(C+T+)4个处理。每个处理种植扬麦16、苏麦188、鑫农518和镇麦9号4个品种。收获时测定小麦籽粒和秸秆中N、P、K、Ca和Mg的浓度,并计算各养分在籽粒和秸秆间的分配比例。结果表明:大气CO_2浓度升高增加了N、K、Ca和Mg在小麦地上部分的总吸收量,其中N、K和Mg的总吸收量受到大气CO_2浓度升高和小麦品种的共同影响,但是大气CO_2浓度升高没有改变养分在小麦籽粒和秸秆间的分配。升温显著降低了各养分在地上部分的总吸收量,此外升温还提高了K、降低了Ca在籽粒中的分配比例。升温和大气CO_2浓度升高下,小麦养分吸收总量变化一方面与生物量有关,另一方面与各养分含量(浓度)相关。大气CO_2浓度升高显著降低了小麦籽粒和秸秆中P的含量,但是对籽粒N、Mg和秸秆N、P、K含量的影响都与品种有关。升温降低了小麦秸秆K和籽粒P、K、Ca、Mg的含量,其中只有P的吸收对升温的响应受品种的影响。升温和大气CO_2浓度升高改变了小麦养分吸收过程,而且大气CO_2浓度升高对小麦养分吸收过程的改变与养分类型和作物品种密切相关。因此,未来气候变化下有必要根据小麦品种选择合理的培肥和管理方式。  相似文献   

7.
近百年来,大气中CO_2含量正以令人不安的速度不断增加,由工业革命前的260—280ppm增至80年代初的340ppm,估计到21世纪中叶CO_2浓度可能较工业化前增加1倍。由于CO_2气体具有“温室”效应,其含量增加很有可能造成全球性的变暖,随之又引起气象水文条件的异常变化。植物需要直接从大气中吸收辐射和CO_2以进行光合作用,其生长发育及产量形成又无时不受气候条件的影响,因此大气中CO_2浓度增加及其引起的气候变化会直接影响到植物生长和农业生产。  相似文献   

8.
以高大气CO_2浓度和遮阴为处理手段,研究高大气CO_2浓度和遮阴对小麦叶片光合生理的影响。结果表明,与全光照相比,遮阴使小麦叶片的气孔长度增加了22.93%和10.23%,而气孔宽度减小了30.00%和30.22%,气孔面积降低了17.99%和18.11%,周长增加了16.80%和6.85%,气孔密度降低了6.61%和23.78%,气孔指数降低了5.99%和14.23%。与正常大气CO_2浓度相比,高大气CO_2浓度使小麦叶片的气孔面积增加了1.91%和1.95%,使全光照处理的小麦叶片的气孔密度降低了14.33%;使遮阴处理的小麦叶片的气孔密度增加了5.00%。与全光照相比,遮阴使小麦叶片的气孔导度和蒸腾速率降低了56.11%、53.21%和40.57%、49.27%,而光合速率没有得到提高,这可能是小麦叶片对高大气CO_2浓度发生了"光适应"。与正常大气CO_2浓度相比,高大气CO_2浓度降低了小麦叶片的气孔导度。小麦叶片的气孔长度和宽度与光合速率有显著相关性。  相似文献   

9.
【目的】阐明CO_2浓度增高与氮肥互作对冬小麦生理和产量的影响,为客观评估气候变化背景下冬小麦生产潜力提供理论依据。【方法】2011—2014年利用开放式CO_2富集系统(FACE)平台,采用盆栽方法,研究冬小麦"中麦175"在不同CO_2浓度及高低氮肥水平下(高浓度CO_2 550 mg·L~(-1)和大气浓度390 mg·L~(-1);高氮N1,0.16 g·kg~(-1)和低氮N0,0 g·kg~(-1))的生育进程、光合特征及产量变化。CO_2富集处理于每年返青-成熟期间进行,通气时间为每日6:30-18:30,夜间不通气。CO_2浓度通过计算机程序控制,并根据具体风向和风速控制释放管电磁阀的开合度,实现预定设置浓度。【结果】盆栽试验表明与大气CO_2浓度相比,高浓度CO_2加快了冬小麦生育进程,拔节期提前1d,开花期可提前1-2 d,全生育期可缩短3-5 d,高氮肥处理对生育进程具有延迟作用,开花期延长1-2 d,灌浆期可延长4-5 d,同步缓解高浓度CO_2对生育进程的加快作用;高浓度CO_2使叶片光合速率提高13.7%,产量平均提高16.0%,且在高氮肥下光合速率的增幅比低氮肥相对提高2.5%,蒸腾速率提高13.5%;试验中单独高氮较低氮的增产效果达到50%,高于单独高浓度CO_2较大气浓度的增产效果;高浓度CO_2对产量构成中穗粒数和千粒重提高明显,高浓度CO_2较大气浓度穗粒数增加3.69%,单独高氮处理较低氮处理平均穗粒数增加3.43%,即CO_2肥效起到了增加穗粒数的作用并略高于单独氮肥处理,高氮和高CO_2双重促进下的穗粒数最多,达到38.37粒/穗,低氮和低CO_2处理的穗粒数水平最低,可见CO_2和氮肥互作对穗粒数的促进相对更明显,各自单独施用的促进作用彼此差异不大,但低氮、大气CO_2浓度处理的穗粒数则相对较低;与大气CO_2浓度相比,高浓度CO_2的千粒重增加5.3%,高氮高浓度CO_2处理的千粒重大约提高7.3%,说明氮肥的施用促进了高浓度CO_2对千粒重的提升效果。【结论】高浓度CO_2可提高冬小麦产量,且与氮肥有明显的正向互作关系,高氮肥处理可降低CO_2浓度升高对生育期的加快作用,提高光合能力,促进CO_2肥效的发挥;CO_2对冬小麦产量的提高主要是缘于CO_2浓度升高有利于穗粒数和千粒重的增加,育种中可以做综合性考虑和应用。  相似文献   

10.
为探究大气CO_2浓度升高对海洋硅质生物的影响,以繁茂膜海绵Hymeniacidon perlevis为模式生物,在实验室条件下模拟大气CO_2浓度升高(500、750、1000 mg/L)对海绵硅酶基因相对表达的影响,以及胁迫48 h后在当前大气CO_2(390 mg/L)下恢复1 h时海绵滤食新月菱形藻Natzchia closterum能力的变化。结果表明:500 mg/L大气CO_2胁迫12、24、48 h时,海绵硅酶基因表达量分别比对照组(390 mg/L CO_2)提高24.8%、14.8%、19.2%,而750、1000 mg/L大气CO_2胁迫12、24、48 h时,海绵硅酶基因表达量分别比对照组降低40.0%、71.9%、82.3%(750 mg/L CO_2),55.2%、83.6%、80.8%(1000 mg/L CO_2);经高浓度大气CO_2胁迫48 h再恢复1 h时,24 h内对照组海绵块滤食微藻的平均效率和平均清除率分别为198.2×10~4cells/(h·g)和4.09 mL/(h·g),而500、750、1000 mg/L大气CO_2浓度组海绵滤食微藻的平均效率与平均清除率分别为对照组的104.8%、96.6%(500 mg/L CO_2),58.5%、65.3%(750 mg/L CO_2),30.8%、20.0%(1000 mg/L CO_2)。研究表明,大气CO_2浓度升高至750 mg/L以上时明显抑制了海绵硅酶基因表达,并导致海绵滤食微藻能力大幅下降。  相似文献   

11.
气候模型研究者预测,随着大气中CO_2浓度的升高,地球将迅速趋于温暖。研究大气变化专家Houshton等人认为,到下世纪末,如不采取措施限制CO_2的排放,其浓度将由现在的350μL/L(1μL/L=1微升CO_2/1升空气=1ppmV 1μmL/moL)增加到800μL/L。他们还预测,CO_2和温室释放的其它气候——甲烷,一氧化二氮、氟里昂、臭氧等的增加,大约能促使地球的平均温度上升4.2℃,但有些地区的温度可能会急剧升高,而有些地区则缓慢升高。  相似文献   

12.
植物生理学家和生态学家们认为,大气中CO_2浓度升高可能引致自然和农业生态系统的巨大变化。科学家们现已证实,两倍于现阶段大气中CO_2含量的CO_2浓度将对很多种植物有惊人的影响,可大幅度提高其光合效率和农作物的产量。美国农业部水土保持实验室的布鲁斯·金布尔博士(Bruce Kimball)对700项农学研究作了调查,得出的结论是:当空气中的CO_2浓度提高1倍时,作物的产量提高34%;树木等则表现为个体更高、分枝多而粗、花多果多、叶多且厚、根系变得密集,以吸收养分。实验还表明,高浓度的CO_2可使植物叶子表面的气孔稍为关闭,减少通过叶子蒸腾作用散发到大气中的水分损失,从而使得植物更为耐旱。  相似文献   

13.
研究大气CO_2浓度升高和水分胁迫对大豆的影响,有助于了解在未来气候条件下,大豆生产的变化,提前采取必要的应对措施。试验利用开顶式气室开展高CO_2浓度(大气CO_2浓度增加200μmol/mol)和干旱条件下大豆光合生理指标变化的研究。结果表明,开花期,大气CO_2浓度升高后,大豆的净光合速率、水分利用率显著增加,干旱条件下增幅明显小于湿润条件下增幅;干旱使大豆叶片PSⅡ有效光量子效率(Fv'/Fm')、电子传递速率(ETR)、光化学淬灭系数(qP)和PSⅡ光化学有效量子产率(ΦPSⅡ)显著降低,非光化学淬灭系数(NPQ)显著增加;CO_2浓度升高对大豆叶绿素荧光参数影响不显著。未来大气CO_2浓度升高会提高开花期大豆净光合速率和叶片水分利用效率,但对大豆抗旱能力提升效果有限。  相似文献   

14.
为了研究半夏在不同CO_2浓度下的光合特征,本研究利用Li-6400便携式光合仪测定了半夏的CO_2响应曲线,分析了净光合速率(Pn)、气孔导度(Cond)、胞间CO_2浓度(Ci)等随CO_2浓度变化趋势。结果显示,半夏在环境CO_2浓度为600μmol mol~(-1)以下时,会因为气孔关闭而使得Ci迅速下降;CO_2浓度超过600μmol mol-1时,净光合速率增加并不明显。本研究表明在半夏种植过程中,大气中的CO_2完全能满足半夏的光合作用需求,不必增加CO_2浓度。  相似文献   

15.
《山西农业科学》2017,(3):428-432
随着经济发展,人类活动导致大量温室气体排放,使大气CO_2浓度持续升高。小白菜因其富含多种营养元素已逐渐成为人们所青睐的绿色蔬菜之一。研究高CO_2浓度环境中小白菜的生长状况,将有助于了解未来气候变化后小白菜生长发育的变化,为未来气候变化背景下蔬菜生产提供理论依据。利用OTC(Open top chamber)系统对小白菜生长发育及光合受高CO_2浓度的影响进行了研究。结果表明,大气CO_2浓度升高后,小白菜的净光合速率在幼苗期和营养生长期均极显著增加,增幅分别为277.48%和58.76%;气孔导度和蒸腾速率在幼苗期显著增加,而在营养生长期无显著变化;水分利用率在幼苗期和营养生长期均显著增加;单株鲜质量、干质量、叶绿素和类胡萝卜素含量均显著增加,但叶片中的Vc含量显著下降。高CO_2浓度可以提高小白菜的产量,但同时会对其营养品质造成负面影响。  相似文献   

16.
为探明CO_2浓度升高对豌豆蚜体内糖含量的影响,本研究设置中等浓度550μL/L和高浓度750μL/L CO_2浓度,并以当前CO_2浓度380μL/L为对照,用熏气30 d以上的苜蓿叶片饲养豌豆蚜初产若蚜至成蚜后测定体内可溶性糖和糖原含量。结果表明:豌豆蚜取食高CO_2浓度培育下的紫花苜蓿后体内可溶性糖和糖原含量显著上升,随着世代数增加豌豆蚜体内可溶性糖和糖原含量也逐代增加,CO_2浓度和世代因子之间存在极显著的交互作用。表明大气CO_2浓度升高对豌豆蚜的发生规律及种群数量动态将产生重要影响。  相似文献   

17.
<正> 工业革命以来,化石燃料的增加,自然植被的毁坏,导致大气CO_2浓度逐渐升高;由于CO_2分子具有特殊性质,由此带来的变化是巨大深远的。CO_2增加,导致全球温度发生变化,并引起其它气候因子的变化。与此同时,CO_2浓度的变化还会对全球植被产生一系列深刻影响。本世纪七十年代以来,CO_2问题日益引起人们重视,并从多个角度开始作了一些研究。本文广泛综合国外有关CO_2的研究资料,就大气CO_2浓度的变化对陆地植被的间接和直接影响作一初步概述。  相似文献   

18.
1.CO_2浓度上升 地球大气中的温室效应气体有CO_2、1890年产业革命开始时为280—290ppm,1958年上升到315ppm,现在已达350ppm,并继续以每年1.3—1.4ppm的速度上升。 ①CO_2动态及耕地生态系统机能的研究。现在每年消耗50亿t标准煤的化石燃料。再加上森林破坏进入大气中的CO_2估计每年增加3.1ppm。为采取有效对策抑制CO_2浓度上升,消除破坏地球环境  相似文献   

19.
本研究指出,农林复合系统中由于林木的存在,其固定 CO_2的能力是单一的农业系统的1.6~2.1倍,与同面积的农作物比,林木 CO_2年固定量是农作物的2.2倍。与之相应的野外实测结果也表明,农林复合系统大气中 CO_2浓度平均比单一的农业系统低5.5~9.5mL·m~(-3)。研究认为,在农区积极发展农林业,因地制宜地建立农林复合系统,重视林木在固定 CO_2中的作用,是抑制大气中 CO_2过快增长,调控大气中 CO_2含量,保护碳循环稳定、平衡的一项有效措施。  相似文献   

20.
覆膜玉米不同生育期土壤酶活性对大气CO2浓度升高的响应   总被引:1,自引:1,他引:0  
为探讨旱区覆膜玉米农田土壤酶活性对未来气候变化的响应,在田间条件下通过改进的开顶式气室(OTC)系统自动控制大气CO_2浓度,设置自然大气CO_2浓度(CK)、OTC对照(OTC)、OTC系统自动控制CO_2浓度(700μmol·mol~(-1),OTC+CO_2)3个处理,研究了旱区覆膜高产栽培春玉米播前、六叶期(V6)、十二叶期(V12)、吐丝期(R1)、乳熟期(R3)及完熟期(R6)土壤脲酶、碱性磷酸酶、蔗糖酶及过氧化氢酶活性对大气CO_2浓度升高的响应特征。研究发现:OTC处理条件下,土壤碱性磷酸酶活性相比CK在V12期降低8.80%(P0.05),而在R6期提高8.95%(P0.05);蔗糖酶活性在播前、V6、R1期降低12.65%~21.43%(P0.05),R3期升高17.50%(P0.05);过氧化氢酶活性在V12、R1、R6期均显著降低。大气CO_2浓度升高对玉米各生育期土壤脲酶活性均无显著影响;使R1、R6期碱性磷酸酶活性降低8.74%和6.39%(P0.05);使V6、R3期蔗糖酶活性升高30.18%和18.37%(P0.05);此外,增加了V12期过氧化氢酶活性,而降低了R3期过氧化氢酶活性。结果表明:当前旱作覆膜高产栽培模式下,大气CO_2浓度升高对春玉米农田土壤酶活性的影响因作物生育期和酶种类不同而异;土壤酶活性对OTC及大气CO_2浓度升高的响应程度不一,在当前试验条件下,OTC对土壤酶活性的影响较大气CO_2浓度升高更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号