首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bursaphelenchus mucronatus is a parasitic nematode of pine that is widely distributed in the natural pine forests of Asia and Europe. It has a very similar morphology and biology to that of Bursaphelenchus xylophilus, the causal agent of pine wilt disease, but has generally been considered to be non‐pathogenic to pine. However, in some provinces of China, B. mucronatus has been isolated from dead pine trees rather than B. xylophilus. Previous studies have shown that B. mucronatus can induce the death of pine seedlings under glasshouse conditions. To investigate the virulence of B. mucronatus, 2‐year‐old seedlings of Pinus massoniana and Pinus elliottii were inoculated with one of six isolates of B. mucronatus under field conditions in April 2014 and their condition was monitored over a year. The virulence of the six B. mucronatus isolates differed on the three host species: P. elliottii seedling mortality ranged from zero to six of the 18 inoculated seedlings, whereas P. massoniana seedling mortality ranged from four to 12 of the 18 inoculated seedlings. Three B. mucronatus isolates that appeared to cause different levels of mortality among the seedlings were used to inoculate 12‐year‐old Pinus thunbergii trees in August 2014. The trees were monitored for a year, during which time between 4 and 12 of the 18 inoculated trees in each treatment wilted and died. The average monthly temperature during the test period appeared to be similar to that of the historical average in the test areas; however, both study sites experienced above‐average rainfall. This study demonstrated that B. mucronatus has potential virulence on pine trees and provided experimental evidence that high temperatures or drought stress is not essential for the virulence of B. mucronatus.  相似文献   

2.
H. Zhao  C. Chen  S. Liu  P. Liu  Q. Liu  H. Jian 《Forest Pathology》2013,43(6):444-454
To assess the role of bacteria in pine wilt disease (PWD), aseptic M form (with a mucronated tail) and R form (with a round tail) of Bursaphelenchus xylophilus and B. mucronatus were obtained and compared, in terms of reproduction and pathogenicity, with non‐aseptic nematode. In addition, bacteria isolated from non‐aseptic nematodes and pine trees inoculated with non‐aseptic nematodes were identified. The results indicated that the bacteria associated with nematodes significantly lowered the reproduction of R form of B. xylophilus and B. mucronatus. Both the non‐aseptic and aseptic R forms of B. xylophilus induced death in all infected 7‐ to 8‐year‐old pine trees, while the non‐aseptic and aseptic M forms of B. xylophilus and B. mucronatus caused almost no plant mortality. High numbers of the non‐aseptic and aseptic R forms of B. xylophilus were distributed throughout the inoculated trees, while B. mucronatus and M form of B. xylophilus nematodes were lower in number and their distribution in stems limited within the inoculation site. Bacteria isolated from non‐aseptic nematodes were not recovered from the pine trees inoculated with these same kinds of nematodes. Two species of bacteria were both isolated from non‐aseptic B. mucronatus and from R form of B. xylophilus. Microbacterium trichotecenolyticum was common to both the control and inoculated pine trees. These results suggest that R form of B. xylophilus is the causal agent of PWD and that bacteria cannot increase the virulence of B. xylophilus and B. mucronatus.  相似文献   

3.
The internal transcribed spacer (ITS) regions of rDNA have been routinely employed for identification and phylogenetic analysis of many nematode species. In this study, the intra‐ and interspecies ITS genetic diversity of Bursaphelenchus xylophilus and Bursaphelenchus mucronatus was evaluated. Ninety‐one isolates of the two nematode species collected from 14 Chinese provinces, Japan and Korea were used for ITS‐PCR and sequencing. An unweighted pair group cluster analysis dendrogram clustered them as two B. mucronatus and one B. xylophilus independent clades. Principal component analysis showed the phylogenetic relationship of the two nematode species more clearly; B. mucronatus isolates were separated into more than four groups, whereas B. xylophilus isolates still clustered into a group. The results of the Mantel test indicated the correlation of genetic distance matrices and geographic distance matrices was significant for both nematode species. The genetic differentiation coefficient (Gst) and gene flow (Nm) of B. mucronatus were 0.341 and 1.091, respectively, suggesting the importance of landscape heterogeneity and considerable obstacles for genetic exchange among B. mucronatus isolates in China. However, Gst and Nm of B. xylophilus were 0.188 and 2.151, respectively, very different compared to B. mucronatus. This could be owing to the short‐term introduction of B. xylophilus into China and a rapid spread through anthropogenic pathways. Our work adds to the understanding of the genetic diversity and genetic relationship of the two pine‐parasitic nematode species, and will aid in controlling them in the future.  相似文献   

4.
Bursaphelenchus mucronatus is closely related to the pinewood nematode Bursaphelenchus xylophilus, the causative agent of pine wilt disease. B. xylophilus became a devastating pest when it was introduced in the Far East; however, B. mucronatus is considered to have low virulence. Morphological similarities between Bxylophilus and Bmucronatus make the accurate morphological identification of both species difficult. Thus, it has become important to pay attention towards B. mucronatus impact and the need of discrimination of these two species. To distinguish among the two species, a B. mucronatus‐specific sequence‐characterized amplified region (SCAR) marker has been developed. The specific Random amplified polymorphic DNA (RAPD) fragment of B. mucronatus, OPY01‐M850 was excised from agarose gels and purified. The gel‐purified fragment was cloned into the pGEM®‐T Vector and subjected to sequencing. Based on the sequenced RAPD fragments, a number of SCAR primers were designed. It is demonstrated that OPY01‐M850 through primers Y01F/R can be transformed into a B. mucronatus‐specific SCAR‐Y01‐M609 marker. Primers set Y01F/R had high specificity that could be used for the discriminative identification of B. mucronatus versus B. xylophilus.  相似文献   

5.
The pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, J. Agric Res. 48, 1934, 949), Nickle (J. Nematol. 2, 1970, 375), is the causative agent of the pine wilt disease and causes serious damage to pine forests around the world. During a survey for the pinewood nematode, four other Bursaphelenchus species (Bursaphelenchus mucronatus, B. sexdentati, B. anamurius and B. vallesianus) were isolated from wilted pine trees in Turkey. To understand the effects of these Bursaphelenchus species on wilting of pine trees, a study was conducted under greenhouse conditions. Two‐year‐old seedlings of three pine species (Pinus nigra, P. brutia and P. pinea) and one cedar species (Cedrus libani) were used. Fifteen seedlings of each species were inoculated with nematodes and 10 seedlings of each species served as controls. The inoculum densities used for each seedling contained approximately 1000 (±100) nematodes of all life stages in 0.25 ml of distilled water. The first wilting symptoms were observed in the fifth week in all pine species but not in the cedar seedlings. All seeding mortality occurred between the 5th and 13th weeks of the study; no mortality was observed outside of this period. The most pathogenic nematode species was B. mucronatus, closely followed by the other species. The most susceptible seedling species was P. nigra, and C. libani was the most resistant species.  相似文献   

6.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD), which is a major problem in East Asia and West Europe. Quick identification of PWN is needed to prevent the dispersal of PWD to healthy forests. Various detection methods of PWN have been developed using anatomical characters and molecular markers. These methods are not suitable for rapid diagnosis because it is difficult to distinguish B. xylophilus from the non‐pathogenic species Bursaphelenchus mucronatus based on morphological characters without expertise in nematode taxonomy and most PCR or isothermal amplification detection methods require time‐consuming processes. In this study, we developed an on‐site PWN detection method using a recombinase polymerase amplification (RPA) assay with a novel extraction buffer (DAP buffer). This new PWN detection method is able to extract genomic DNA from PWN in pinewood by simple buffer consisting of sodium hydrate, polyethylene glycol 200 and dimethyl sulfoxide in 10 min without using the experimental devices and able to distinguish between B. xylophilus and other Bursaphelenchus spp. by amplifying the species‐specific 5S rDNA fragment of B. xylophilus in 10 min. Taken together, our protocol can obtain the result for the detection of PWN in pine tree samples within 30 min. This result suggests that RPA/DAP assay is much faster, easier and cheaper than the conventional methods for detecting PWN.  相似文献   

7.
To clarify the pathogenicity of Bursaphelenchus nematodes to adult pine trees, inoculation experiments using six species of B. xylophilus group nematodes and ca. 10‐year‐old trees of Pinus thunbergii were conducted. Trees inoculated with an avirulent isolate (C14‐5) of B. xylophilus did not die during the survey, but showed a decline in oleoresin exudation compared with the controls. Fifteen months after the inoculation, a small number of B. xylophilus survived in a tree inoculated with B. xylophilus C14‐5. Trees inoculated with B. mucronatus, B. doui, B. luxuriosae, B. conicaudatus and Bursaphelenchus sp. NK224 (undescribed) showed no decline in oleoresin exudation and no external symptoms of wilt. However, 9 months after the inoculation, a small number of B. luxuriosae survived in a tree inoculated with the nematodes, although four other nematode species were not isolated from trees inoculated with them. These results were approximately consistent with our previous results (Kanzaki, N.; Aikawa, T.; Maehara, N.; Ichihara, Y., 2010, J. For. Res.; in press), in which an avirulent isolate (OKD‐1) of B. xylophilus and B. luxuriosae caused water flow inhibition without external symptoms in 3‐year‐old seedlings. Therefore, to examine the pathogenicity of the nematodes to pines, it is useful to use 3‐year‐old seedlings in inoculation experiments when adult trees cannot be used.  相似文献   

8.
Fusarium species can cause damping‐off and root rot of young conifer seedlings, resulting in severe crop and economic losses in forest nurseries. Disease control within tree nurseries is difficult because of the inability to characterize and quantify Fusarium spp. populations with regard to disease potential because of high variability in isolate virulence. Fusarium isolates were collected from healthy and diseased seedlings of Douglas‐fir (Pseudotsuga menziesii) and western white pine (Pinus monticola) from a nursery in Idaho, USA. Molecular markers such as DNA sequences (mitochondrial small subunit and nuclear translation elongation factor 1‐alpha) and amplified fragment length polymorphism were used to identify isolates as either F. oxysporum or F. commune. In addition, diagnostic primers were developed to detect and distinguish F. commune from F. oxysporum. In vitro and greenhouse virulence tests were completed on Douglas‐fir germinants and seedlings. For Douglas‐fir germinants and seedlings, F. oxysporum isolates generally caused less severe symptoms, whereas most Fcommune isolates caused mortality through damping‐off. This is the first report of direct evidence that F. commune can cause damping‐off disease on Douglas‐fir seedlings under greenhouse conditions.  相似文献   

9.
10.
The pinewood nematode (PWN) Bursaphelenchus xylophilus is an invasive pathogen that was introduced from North America to Asian countries and Portugal and is devastating native pine forests. Some native European and Asian Bursaphelenchus nematodes also have weak to moderate pathogenicity to native pine species. To evaluate the potential risk of native Bursaphelenchus species, we inoculated ten Japanese Bursaphelenchus species into native pine species (the dominant forest species) in Japan, and evaluated their pathogenicity using mortality and tracheal tissue damage as indices. Inoculation was conducted on August 3, 2007, and the symptoms were observed every 2 weeks until February 1, 2008. None of the inoculated trees, excluding the pathogenic PWN inoculated control, showed external disease symptoms; however, four species [a less pathogenic PWN isolate, B. luxuriosae, Bursaphelenchus sp. NK215 (undescribed), and NK224 (undescribed)] caused tracheal tissue damage in inoculated seedlings and showed weak pathogenicity. Therefore, we conclude that there are some potentially pathogenic native species of nematodes distributed in Japan. Interestingly, two of these weakly pathogenic species, B. luxuriosae and NK215, are not associated with Pinaceae trees, suggesting that nematode pathogenicity may be a pre-adaptive character. More experimental studies under different conditions are necessary to accurately evaluate the potential risk of these pathogens.  相似文献   

11.
For diagnosis of pine wilt disease, a simple PCR‐RFLP method was developed to identify and to differentiate two similar nematode species, based on a living or preserved single specimen. Pinewood nematodes, Bursaphelenchus xylophilus, and Bursaphelenchus mucronatus were examined. A single nematode in 1 µl of distilled water was put on a glass slide. When the water had almost dried the nematode was crushed with a filter paper chip, 1.5 mm × 1.5 mm, with the aid of forceps. The filter paper chip containing nematode remains was immediately placed into PCR buffer as the DNA template. The primer set used was to amplify ribosomal DNA containing the inter‐transcribed spacer (ITS) 1, 5.8S and ITS2 regions. The PCR product was consistently obtained from a single nematode, and digesting the product with restriction endonuclease, Hinf I, enabled discrimination between B. xylophilus and B. mucronatus. This method was simple, convenient and definitive, and could successfully determine the pathogen in the diagnosis of pine wilt disease. This method was applicable also to nematode specimens preserved under various conditions except in the case of those preserved in aldehyde‐containing fixatives.  相似文献   

12.
Seed and root rot of pine and cypress seedlings cause heavy annual losses to forest nurseries in Fars Province. Root and crown samples of various species of conifers, such as Tehran pine (Pinus eldarica), brutia pine (Pinus brutia), Arizona cypress (Cupressus arizonica), Shirazian cypress (Cupressus sempervirens var. fastigiata), common cypress (C. sempervirens var. horizontalis) and oriental arborvitae (Thuja orientalis), showing chlorosis, necrosis, stunted growth, defoliation and root and crown rot symptoms were collected from pine and cypress nurseries across Fars province at various time intervals. Infected tissues were washed and cultured on acidified potato dextrose agar (PDA) and corn meal agar (CMA) amended with Delvocide and ampicillin, with and without surface sterilization, respectively, and incubated at 25°C for 3–5 days. Decaying seeds of all plant species were also collected from nursery seed stocks and cultured on PDA. Hyphal tip isolates were used for further studies. Species of Phytophthora, Pythium, Rhizoctonia and Fusarium were isolated from symptomatic seedlings of pine and cypress at different times during the growing season. Pathogenicity of isolates of Phytophthora, Pythium and Rhizoctonia was confirmed on seedlings of all plant species, whereas Fusarium sp. isolated from the seeds of Tehran pine was only pathogenic on seedlings of Tehran pine and Arizona cypress. Virulent isolates identified as Phytophthora nicotiana var. parasitica, Pythium ultimum, Pythium paroecandrum, Rhizoctonia solani and binucleate Rhizoctonia‐like fungus caused root and crown rot of pine and cypress seedlings. Pathogenic isolates of Fusarium identified as Fusarium proliferatum also caused pre‐emergence seed decay of pine and cypress. Isolates of Phytophthora and Pythium were the most virulent of these fungal isolates.  相似文献   

13.
Die‐back of Schizolobium parahyba var. amazonicum is a serious problem in plantations of these trees in Ecuador. Similar symptoms have also been observed on trees of this species in various parts of South Africa. The most common fungi isolated from disease symptoms on S. parahyba var. amazonicum in both locations were species of the Botryosphaeriaceae. The aim of this study was to identify these fungi from both Ecuador and South Africa, and to test their pathogenicity in greenhouse and field trials. Isolates obtained were grouped based on culture morphology and identified using comparisons of DNA sequence data for the internal transcribed spacer (ITS) and translation elongation factor 1α (TEF‐1α) gene regions. The β‐tubulin‐2 (BT2) locus was also sequenced for some isolates where identification was difficult. Three greenhouse trials were conducted in South Africa along with a field trial in Ecuador. Neofusicoccum parvum was obtained from trees in both areas and was the dominant taxon in South Africa. Lasiodiplodia theobromae was the dominant taxon in Ecuador, probably due to the subtropical climate in the area. Isolates of Neofusicoccum vitifusiforme (from South Africa only), Neofusicoccum umdonicola and Lasiodiplodia pseudotheobromae (from Ecuador only) were also obtained. All isolates used in the pathogenicity trials produced lesions on inoculated plants, suggesting that the Botryosphaeriaceae contribute to the die‐back of S. parahyba trees. While the disease is clearly not caused by a single species of the Botryosphaeriaceae in either region, N. parvum has been introduced into at least one of the regions. This species has a broad host range and could have been introduced on other hosts.  相似文献   

14.
Fungal virulence may be studied using tissues cultures of host plants in dual cultures in vitro, enabling analyses of interactions with undifferentiated cells of their host plants. Three genotypes of Pinus sylvestris callus, initiated by somatic embryogenesis, were used for establishing dual cultures with fungi pathogenic, endophytic or saprotrophic on pine needles or shoots. Fungal growth towards the plant callus tissue differed, depending on the life strategy of the fungus. The pathogen Gremmeniella abietina proved the slowest colonizer of callus whereas the saprotrophic Phacidium lacerum was the fastest. Gremmeniella abietina partially overgrew the callus, causing extensive necrosis and death within 10 days after inoculation. Anthostomella formosa, an endophyte of pines, did not cause evident symptoms of callus degradation: after 10 days of dual culture, the callus cells remained greenish and at least 50% of cells were alive. In dual cultures Ph. lacerum, callus remained alive until the end of the experiment, maintaining a white‐creamy colour with a loose cell structure. Electrophoresis of protein extracts from the callus showed the presence of additional bands of 25–35 kDa only in host tissues challenged with the pathogen G. abietina, possibly indicating the production of pathogenesis‐related proteins. This work has shown that pine callus does not respond equally to challenge with different fungal isolates. In general, one‐third of the isolates of each fungus examined showed greater virulence compared to other isolates.  相似文献   

15.
Forty wildtype isolates of Sphaeropsis sapinea were grouped into the morphotypes A and B based on previously defined differences in cultural and morphological criteria as well as restriction sites for Dde I and Bst UI endonucleases in nuclear ribosomal DNA amplicons. Thirteen of 20 type A isolates and nine of 20 type B isolates contained detectable dsRNA (55%) of different molecular weight and size. dsRNA was transmitted into conidia at a frequency of 71–100%. By selecting single conidia, dsRNA‐free subcultures were obtained from six of 22 isolates containing dsRNA. Pathogenicity tests on expanding buds of landscape trees of three species of Pinus showed highly significant statistical interactions between isolate virulence, Pinus species, and year. Pine species‐year had a profound impact on virulence. The pattern in the interactions was revealed by principal component analysis of the interaction sums of squares of the anova (Additive Main Effects and Multiplicative Interaction; AMMI). Pinus sylvestris was highly interactive in its susceptibility to S. sapinea with seasonal effects. P. nigra and P. resinosa were more stable. The interactivity analysis was used to apportion interaction to specific isolates to improve the accuracy of the estimates of virulence. Estimates of the relative virulence of isolates were predicted over five different Pinus species‐years. Isolates were ranked in virulence and interactivity using the AMMI model. This model permitted mean separation tests of the relative virulence among isolates over the combined Pinus species‐years. One isolate was identified as potentially having dsRNA‐mediated hypovirulence based on the significantly greater virulence of its isogenic, dsRNA‐free subculture, as expressed over the three Pinus species and 2 years. Type A isolates containing dsRNA ranged from stable to highly interactive and from low to high in virulence. Type B isolates containing dsRNA were similar in interactivity but virulence ranged from avirulent to moderate, seldom exceeding the mean for S. sapinea. dsRNA‐free isogenic subcultures tended not to express higher virulence than their dsRNA‐containing parent strains but often changed in interactivity. Therefore, in one year a dsRNA‐free subculture might be more virulent than its dsRNA‐containing parent. In another year the dsRNA‐free subculture might be less virulent.  相似文献   

16.
Armillaria species have a global distribution and play variable ecological roles, including causing root disease of diverse forest, ornamental and horticultural trees. Accurate identification of Armillaria species is critical to understand their distribution and ecological roles. This work focused on characterizing an unidentified Armillaria isolate from a Serbian forest using pairing, sequencing of the partial large subunit and intergenic spacer‐1 regions of rDNA (LSU‐IGS1) and the translation elongation factor‐1 alpha gene (tef‐1α) genes, and phylogenetic analyses. Despite previously obtained LSU‐IGS1 RFLP patterns that matched the newly described North American Armillaria altimontana, pairing tests and phylogenetic analyses of LSU‐IGS1 and tef‐1α sequences clearly demonstrate that the unidentified isolate is not A. altimontana. Based on LSU‐IGS1, Armillaria gallica isolates were polyphyletic, and the Serbian isolate clustered with a subset of European Agallica isolates within a well‐supported clade (99%). Based on tef‐1α, the Serbian isolate appeared as a separate, well‐supported clade (97%) that was basal to other poorly resolved, polyphyletic clades containing European Agallica isolates. It is speculated that the unidentified Armillaria isolate from Serbia could represent an evolutionary ancestral state because of its separate, basal position compared with other clades comprising polyphyletic European Agallica isolates. Alternatively, this unidentified Serbian isolate could represent an unusual hybrid because of its high‐level sequence heterogeneity, represented by multiple two‐nucleotide codes, within tef‐1α. Further characterization is needed to confirm the taxonomic status and ecological/evolutionary significance of this unique, unknown Armillaria isolate from Serbia.  相似文献   

17.
Thirty‐eight isolates of Rhizoctonia spp. were isolated from Scots pine (Pinus sylvestris) seedlings with damping‐off symptoms, originating from two forest nurseries in central‐west Poland (Wronczyn and Jarocin) and from diseased seedlings grown in soil from Wronczyn nursery. Majority of these isolates (79%) had multinucleate cells and were identified as Rhizoctonia solani. The remaining isolates were recognized as binucleate Rhizoctonia spp. R. solani isolates were characterized using hyphal anastomosis and were divided into five anastomosis groups (AG). The most prevalent was AG5 (37% of isolates), followed by AG2‐1 (30%) and 27% of the isolates were identified as AG4. Groups AG1‐IB and AG2‐2 were only represented by single isolates. The virulence recorded as mortality (in percentage) was comparatively high for binucleate and multinucleate isolates of Rhizoctonia spp. Sequence analysis of the polymerase chain reaction (PCR)‐amplified internal transcribed spacer (ITS) rDNA region was used for phylogenetic analysis. The dendrogram showed that isolates were distinctly separated based on their AG types and there was no relationship between pathogenicity on Scots pine seedlings and the AG to which the isolates belong to. The results are discussed with respect to pathogenic potential of the various AG groups.  相似文献   

18.
In addition to Hymenoscyphus fraxineus, two fungi identified as Diaporthe eres aff. and Fusarium sambucinum aff. were also isolated from necrotic bark lesions on declining one‐year‐old Fraxinus excelsior in a forest stand in Montenegro. To examine their involvement in ash decline, a pathogenicity test was performed using under bark inoculations on one‐year‐old Fraxinus excelsior. Hymenoscyphus fraxineus was included as comparison. All three fungal species proved highly pathogenic towards one‐year‐old seedlings although lesion sizes differed significantly between the different species. Hymenoscyphus fraxineus was most aggressive, followed by F. sambucinum aff., while D. eres aff. caused the smallest lesions. This study demonstrates for the first time the ability of isolates in the D. eres and F. sambucinum species complexes to cause decline on one‐year‐old common ash seedlings.  相似文献   

19.
Mortality of Nothofagus trees in the southern‐central Chile region has been observed for over 30 years. A field survey conducted in 2013 detected partial defoliation and bleeding cankers on Nothofagus obliqua in a pure stand in the Nahuelbuta coastal ranges of the Biobío region. A Phytophthora sp. was isolated from stem cankers and soil samples around symptomatic N. obliqua trees: All isolates were identified as Phytophthora pseudosyringae. These isolates were pathogenic on 1‐year‐old N. obliqua and Nothofagus alpina, and on detached twigs of adult N. obliqua and Nothofagus dombeyi trees. This paper is the first to report association and pathogenicity of P. pseudosyringae with N. obliqua, N. alpina and N. dombeyi native to the Biobío region of Chile. The potential of P. pseudosyringae to cause damage in natural Nothofagus stands in Chile must be determined.  相似文献   

20.
The overall aim of this study was to develop a new, reliable and rapid diagnostic assay for differentiating six European Armillaria species based on variation in their elongation factor‐1 alpha (EF‐1 α) gene sequences and to verify a set of species‐specific primers on 61 Armillaria isolates from Europe. Partial sequences of the EF‐1 α gene obtained in Armillaria borealis, Armillaria cepistipes, Armillaria gallica, Armillaria mellea, Armillaria ostoyae and Armillaria tabescens revealed sufficient interspecific variation to distinguish among species using nested primers. These primers gave unambiguous bands when tested on representative isolates of five of these species. However, the EF‐1 α sequences of European A. borealis isolates clustered into two distinct clades, termed here AbX and AbY. Specific primers were subsequently designed and tested successfully on both AbX‐type and AbY‐type A. borealis isolates. The taxonomy of A. borealis needs to be elucidated to determine whether a new, as yet unnamed Armillaria taxon exists in Europe. Three A. borealis isolates were also found to have heterozygous sites in their EF‐1 α sequences, which suggests that the gene could exist in more than one copy or that these isolates contain hybrid sequences. A pyrosequencing method was also developed, targeting a small region of EF‐1 α intron 4, which was able to differentiate European Armillaria isolates to the species level and additionally could distinguish AbX‐type and AbY‐type A. borealis isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号