首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Terrestrial invertebrates falling from the riparian canopy are a major energy source for fishes in headwater streams. Because quantity and quality of such allochthonous resources can vary depending on riparian conditions, conversion of riparian forests to conifer plantations may affect stream productivity. We compared falling and drifting invertebrate abundances and the diet of masu salmon (Oncorhynchus masou) among stream reaches bordered by deciduous broadleaved forests, conifer plantations (Cryptomeria japonica), and clear‐cut sites in southwestern Japan. We also examined whether among‐reach variation in salmon abundance was related to the riparian vegetation types. The results indicated that, on an annual basis, falling inputs of terrestrial invertebrates at the broadleaved reaches were 2–4 times higher than those at the plantation and clear‐cut reaches. In nonwinter seasons, terrestrial invertebrates made up 40–60% and 30–90% of drift and masu salmon diets, respectively, and drifting invertebrate abundance was higher in the broadleaved reaches than in the plantation reaches. Furthermore, a multivariate analysis of salmon abundance showed that variation in salmon biomass was explained primarily by riparian vegetation type, with broadleaved and clear‐cut reaches having higher biomass than the plantation reaches. These results indicate that terrestrial invertebrates are an important resource for masu salmon, and suggest that streams bordered by conifer plantations receive lower terrestrial prey inputs, which results in lower salmon abundance. In regions where natural forests have been extensively converted to conifer plantations, forest management that allows and facilitates recovery of natural riparian stands is important.  相似文献   

2.
The dietary breadth of invaders can influence their success, and having a wide dietary niche can facilitate the spread and survival of invaders under a variety of resource scenarios. The western mosquitofish (Gambusia affinis) is a globally distributed freshwater invasive fish. The spread of G. affinis is associated with agricultural land use, although the trophic role it plays in degraded systems is not well understood. We analysed the invertebrate community in 11 stream reaches in the North Island of New Zealand, in catchments spanning a range (45%–90%) of agricultural land use to determine how prey availability changes with land use. We then analysed the gut contents of 400 G. affinis from the 11 sites to determine how diet varied with prey availability and ontogeny. Invertebrate communities varied along the agricultural land‐use gradient, both in regard to taxonomic richness and community composition. G. affinis consumed a wide variety of food items with invertebrates being the most dominant, in particular Culicidae, Copepods and amphipods were the most commonly consumed invertebrates. There was also an ontogenetic diet shift from microinvertebrates (Cladocera, Copepods and diatoms) to larger invertebrates, including Culicidae, amphipods and terrestrial invertebrates. G. affinis are capable of consuming a wide variety of prey in agricultural streams; their preferred prey are generally pollution‐tolerant taxa commonly found in degraded streams. Having a large level of dietary plasticity coupled with preferring prey that are often associated with degraded systems likely facilitates to the spread of one of the most widely distributed freshwater invasive fish.  相似文献   

3.
Mackerel (Scomber scombrus) is one of the ecologically and economically most important fish species in the Atlantic. Its recruitment has, for unknown reasons, been exceptional from 1998 to 2012. The majority (75%) of the survivors in the first winter were found north of an oceanographic division at approximately 52°N, despite the fact that mackerel spawns over a wide range of latitudes. Multivariate time series modelling of survivor abundance in the north revealed a significant correlation with the abundance of copepodites (stage I–IV) of Calanus sp. in the spawning season (April to June). The copepodites were a mix of C. helgolandicus (dominating) and C. finmarchicus. The growth of mackerel larvae is known to be positively related to the availability of nauplii and copopodites of preferred prey species, namely, large calanoid copepod species such as Calanus. The statistical relationship between mackerel survivors and abundance of Calanus, therefore, most likely, reflected a causal relationship: high availability of Calanus probably reduced starvation, stage‐specific predation and cannibalism (owing to prey switching). The effects of other abundant, but less preferred zooplankton taxa, (Acartia sp., Branchiopoda spp. and Echinodermata spp. larvae), as well as stock size, temperature and wind‐induced turbulence were not found to be significant. However, stock size was retained in the final model because of a significant interaction with Calanus in oceanic areas west of the North European continental shelf. This was suggested to be a consequence of a density driven expansion of the spawning area that increased the overlap between early life stages of mackerel and food (Calanus) in new areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号