首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
<正>旨在克隆牛结蛋白基因不同长度的启动子片段,并对其进行功能分析。本研究采用PCR法扩增牛结蛋白基因不同长度的启动子缺失序列,构建p GL3-desminpro双荧光素酶表达载体,使其转染牛骨骼肌卫星细胞和胎儿成纤维细胞,进行活性检测。同时转染牛Myo G和βα-actin基因启动子的表达载体,以比较结蛋白启动子和Myo G及α-actin启动子的表达活性。结果表明,牛结蛋白基  相似文献   

2.
牛骨骼肌特异性启动子的筛选   总被引:1,自引:0,他引:1  
分别构建含有牛骨骼肌α-肌动蛋白(α-actin)启动子、牛骨骼肌肌球蛋白轻链2(mylpf)启动子及牛肌酸激酶(ckm)启动子的荧光素酶报告基因表达质粒。将3种荧光素酶表达质粒分别与含有海肾荧光素酶的质粒共转染牛成肌细胞和牛成纤维细胞。经双荧光素酶检测得到转染成肌细胞,72 h后,α-actin启动子的表达量显著高于mylpf启动子和ckm启动子,转染成纤维细胞72 h后,这3种启动子的表达量和空载体相近。结果表明,α-actin启动子在成肌细胞中的表达效率高于mylpf启动子和ckm启动子;3种启动子在成纤维细胞中的表达量与空载体相近,证明了这3种启动子的骨骼肌特异性。通过对骨骼肌特异性启动子的研究,为外源基因在骨骼肌组织的特异性表达提供了试验依据,为进一步研究转基因肉牛奠定了基础。  相似文献   

3.
旨在筛选调控山羊毛色基因PMEL的启动子活性区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为彩色山羊的育种和改良提供思路。以山羊基因组DNA为模板,PCR扩增PMEL基因不同长度的启动子缺失片段,定向克隆至pGL3-basic载体,将重组质粒转染到293T和A375细胞,通过双荧光素酶检测系统测定相对荧光素酶活性值;利用生物信息学方法对PMEL基因核心启动子区的转录因子结合位点进行预测,随后利用重叠延伸PCR分别对pGL3-327质粒上预测的转录因子结合位点进行点突变并构建突变载体,利用双荧光素酶检测系统进行活性验证。结果显示,本研究成功构建了7个不同长度的启动子片段,其中6个片段具有明显的启动子活性。经过双荧光素酶活性检测发现山羊PMEL基因-251/+76区域为核心启动子区域。通过不同长度的启动子片段的活性比较发现,-251/-62区域的缺失造成启动子活性从最高到消失,表明该区域对山羊PMEL基因转录调控有重要影响,生物信息学分析发现该区域存在5个转录因子结合位点,利用点突变构建了5个突变载体,经过双荧光素酶检测发现5个突变载体的活性均显著下降。提示这5个转录因子是山羊PMEL基因转录的正调控元件。本研究确定了山羊PMEL基因启动子核心区域为-251/+76,NF-1(-206/-197)、Sp1(-186/-174)、Sp1(-151/-139)、CREB(-91/-82)和Sp1(-82/-71)结合位点为山羊PMEL基因转录的正调控元件。  相似文献   

4.
通过分析调控北极狐毛色基因TYRP1启动子核心区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为狐狸毛皮品质分子育种和彩色毛皮新材料的创制提供思路。通过基因组测序技术获得了北极狐TYRP1基因启动子序列,并利用生物信息学方法对北极狐TYRP1基因核心启动子区域和转录因子结合位点进行预测;以北极狐基因组DNA为模板,PCR扩增北极狐TYRP1基因不同长度的启动子缺失片段克隆至pGL3-Basic载体,将重组质粒瞬时转染到A375和293T细胞,利用双荧光素酶基因检测仪进行活性验证。结果表明,成功构建了9个含有不同长度启动子片段的重组质粒,经双荧光素酶活性检测发现北极狐TYRP1基因-699/+35区域为核心启动子区域,-699/-93区域存在着TYRP1基因正调控元件。生物信息学预测分析发现该区域存在4个转录因子结合位点;利用重叠延伸PCR技术成功构建了4个突变载体,经双荧光素酶活性检测发现4个突变载体活性均显著下降(P0.05),表明这4个转录因子是北极狐TYRP1基因转录调控的正调控元件。本研究确定了北极狐TYRP1基因启动子核心区域-699/+35,Sp1(-656/-646)、CREB(-598/-589)、Sp1(-539/-530)和Sp1(-163/-154)为北极狐TYRP1基因转录的正调控元件。  相似文献   

5.
为解析鸡内皮素3(EDN3)基因启动子区序列的结构特征及其转录调控机制,本研究基于NCBI数据库中鸡EDN3基因5′侧翼区与外显子1共计2 052 bp核苷酸序列,利用不同在线软件对其核心启动子区域、顺式作用元件、转录因子结合位点及CpG岛等结构进行生物信息学预测分析,并通过DNASTAR Lasergene 17.3和MEGA 5.0软件进行不同物种EDN3基因启动子区序列相似性比对及系统进化树构建。结果表明:鸡EDN3基因起始密码子上游592~2 000 bp为可能的候选核心启动子区;5′侧翼区633 bp和1 547 bp存在2个潜在的转录起始位点T和A;该基因启动子区存在2个CAAT-box、3个GC-box、6个TATA-box、9个E-box和3个CpG岛结构域。综合多种在线软件预测,鸡EDN3基因启动子区存在Sp1、C/EBPα和NF-1等转录因子结合位点。鸡EDN3基因启动子区序列与环颈雉、鹌鹑、岩雷鸟、棕硬尾鸭、凤头潜鸭、山羊、绵羊、牛、猪和人的相似性为38.8%~90.3%;系统进化树表明,鸡与鹌鹑亲缘关系最近,与猪亲缘关系最远。研究结果为进一步探明鸡色素沉积关联E...  相似文献   

6.
旨在筛选牛CART基因核心启动子区并鉴定调控CART表达的转录因子,探究其转录调控机制。本研究采集3头健康母牛下丘脑组织,提取基因组DNA,通过PCR扩增、测序获得牛CART启动子序列,EMBOSS、MethPrimer、New PLACE数据库分析启动子结构特征;构建4个包含不同截短长度的CART启动子报告基因载体,双荧光素酶报告基因活性检测鉴定核心启动子区;应用DNA pull down结合质谱分析(n=3),功能聚类及结合位点预测分析筛选核心启动子区候选转录因子;构建转录因子过表达载体,转染至293T细胞,分析转录因子对牛CART核心启动子区的转录调控功能(n=3)。结果表明,牛CART基因-1 200 bp~+22 bp区域存在CpG岛和TATA box、CAAT box等顺式作用元件;构建的4个截短启动子报告基因载体均具有转录起始活性,-292 bp~+22 bp片段转录起始活性最强,为牛CART基因核心启动子区;转录因子RFX5、CREB、RFX1、JUND、TEAD4、TFAP2D、RELA可与牛CART基因核心启动子区特异性结合;进一步研究证实RFX5、RFX1、TEA...  相似文献   

7.
本试验先后进行2轮载体构建及转染试验,对牛乳铁蛋白基因启动子元件调控效应进行了分析。首先进行第1轮载体构建及转染试验:采用PCR方法,利用4对引物从牛乳铁蛋白基因5′调控区-1 799向3′端依次缺失500bp进行调控序列扩增,将获得的扩增片段替换pEGFP-N1的CMV启动子,构建了4个重组载体,将重组载体转染牛乳腺上皮细胞(BMEC),经筛选获得稳定的单克隆细胞,测定并比较各组细胞的荧光强度。在以上试验基础上,为进一步精确确定牛乳铁蛋白基因启动子顺式调控元件序列,进行第2轮载体构建及转染试验,方法同第1轮。结果表明,牛乳铁蛋白基因上游调控序列-1 323~-1 372存在负调控元件,-1 372~-1 560存在正调控元件。  相似文献   

8.
为了深入研究紫花苜蓿(Medicago sativaMsLEA4基因的功能,本试验采用染色体步移技术从紫花苜蓿基因组中扩增出MsLEA4启动子序列,构建GUS植物超表达载体,并根据序列分析结果对紫花苜蓿进行相应逆境胁迫。结果表明:紫花苜蓿MsLEA4启动子含有响应脱落酸(abscisic acid,ABA)调控的顺式作用元件ABRE,响应赤霉素(gibberellin,GA)调控的顺式作用元件P-box,参与胚乳合成的顺式作用元件GCN4和Skn-1,以及涉及光调控和光周期的顺式作用元件;外源ABA、GA、持续光照以及黑暗均能诱导MsLEA4基因的表达;GUS基因只在拟南芥花和荚果中表达。因此,MsLEA4基因能参与紫花苜蓿的逆境调控,与该基因启动子序列中所含的一系列顺式作用元件相关。本研究为进一步探索MsLEA4基因在紫花苜蓿逆境胁迫、光调控以及组织特异性表达中的作用奠定了基础。  相似文献   

9.
用PCR方法从家蚕基因组DNA扩增了家蚕胰凝乳蛋白酶抑制剂b1基因(CIb1)4个不同长度的启动子片段,构建由其驱动的萤火虫荧光素酶基因报告质粒,在脂质体介导下转染家蚕BmN细胞,体外分析了该基因启动子的活性。结果表明,家蚕CIb1基因启动子在BmN细胞中有微弱的转录活性;野生型BmNPV感染能增强启动子活性;hr3增强的不同长度CIb1基因启动子片段的活性有显著差异,提示转录起始位点上游-74~-1nt包含了启动子的基本元件,而在-687~-465nt、-465~-317nt和-317~-74nt存在着主要的顺式元件。试验结果有助于阐明CIb1的表达调控机理和对家蚕天然性免疫的理解。  相似文献   

10.
山羊脂肪酸合酶基因(FASN)启动子结构与功能的初步分析   总被引:1,自引:0,他引:1  
本研究旨在对山羊脂肪酸合酶基因(Fatty acid synthase,FASN)启动子进行结构与功能的初步分析,进而对其转录调控机制进行探讨。采用PCR技术从西农萨能羊基因组DNA中克隆FASN基因启动子,通过缺失分析,构建7个包含不同缺失片段的荧光素酶报告基因载体,转染山羊乳腺上皮细胞和MCF-7细胞,利用双荧光素酶系统检测不同片段的启动活性。结果表明,克隆得到FASN基因的启动调控序列2 589bp,生物信息学分析发现,该启动子序列含有典型的启动转录元件TATA-box和E-box,分别位于转录起始位点(+1)上游-41和-74bp处。报告基因分析表明,启动子核心区域定位在-293~-79bp,在线软件预测发现,该区域含有Sp1、NF-Y、USF和SREBP等转录因子结合位点。结果显示,FASN基因启动子前端存在负调控元件,Sp1、NF-Y、USF和SREBP等转录因子可能参与FASN基因的转录调控。  相似文献   

11.
以同源性较高的雪貂TYRP1基因序列(GenBank:NW_004569257.1)为模板,通过PCR扩增7个不同长度的启动子缺失片段,定向克隆至pGL3-Basic载体中,利用脂质体转染到A375和293T细胞,通过双荧光素酶检测系统检测活性,利用多个在线软件分别分析启动子区活性及转录因子结合位点,并构建突变体进行活性验证。结果显示:成功构建7个不同长度的启动子缺失片段重组质粒,其中6个片段具有明显的启动子活性。-367/+70区域为水貂TYRP1基因核心启动子区域,-367/-144区域的缺失,启动子活性无明显变化,-144/-37区域的缺失使启动子活性明显下降,表明该区域可能存在正调控元件。通过生物信息学方法预测可能存在Sp1转录因子结合位点,构建的Mut-Sp1-2突变体活性明显低于野生型pGL3-215,差异极显著(P0.01)。结果表明:成功筛选了水貂TYRP1基因核心启动子区域(-367/+70),确定Sp1(-56/-45)结合位点为转录的正调控区域。  相似文献   

12.
本研究旨在确定徐淮山羊c-Myc基因启动子区域,找出该基因启动子的核心调控区,初步探讨c-Myc基因的表达调控机制。根据UCSC基因组数据库已公布的绵羊c-Myc基因的启动子序列,设计特异性PCR引物扩增c-Myc基因的一系列启动子缺失片段,定向克隆至pEGFP-N1和PGL3-c-Myc,分别转染gFF、COS7及P19细胞,并进行TSA和NFAT1诱导,同时对-402~-249bp区域的转录因子SP1结合位点进行定点突变,最后进行双荧光报告基因活性检测。结果表明,徐淮山羊c-Myc基因5′侧翼区-1 334~+1bp区域的启动子活性最强,-402~+1bp区域为c-Myc基因启动子基本活性区域。进一步研究发现,-1 334~-971bp、-587~-147bp区域存在正调控元件,-1 976~-1 334bp、-971~-587bp区域存在负调控元件。TSA和NFAT1均能增强cMyc启动子的活性,SP1结合位点定点突变后,启动子活性降低。本试验通过构建包含c-Myc基因启动子不同片段的重组报告基因载体并比较其转录活性,确定了c-Myc基因启动子的核心区域,发现转录因子SP1是c-Myc基因启动子核心区域的调控元件,为进一步研究c-Myc基因的表达调控机制奠定了基础。  相似文献   

13.
旨在确定鸡Stra8基因启动子的主要调控区域,预测调控元件结合位点,探索用他米巴洛丁(Am80)或曲古抑菌素(TSA)诱导对Stra8启动子活性的调控作用。将鸡Stra8基因5′侧翼系列缺失片段插入到pGL3-basic载体构建重组质粒,并转染DF-1和GC-1,通过检测荧光素酶活性和预测启动子区域调控元件的结合位点,选取合适的启动子片段并构建其重组质粒Stra8-EGFP;将Am80和TSA分别按一定的浓度梯度诱导转染细胞,进行荧光素酶活性检测以筛选最佳诱导浓度;用最适剂量的Am80和TSA分别单独或联合诱导转染重组质粒Stra8-EGFP的P19,并检测各诱导组的绿色荧光表达程度。结果表明,鸡Stra8基因启动子-1 055~+54bp片段的活性较强,且含有RARα、RXRα和RARβ的结合位点;分别单独或联合使用Am80和TSA对转染的细胞进行诱导,结果显示,Am80和TSA协同作用的荧光素酶活性最高;重组质粒Stra8-EGFP转染细胞后,用Am80(10-5 mol·L-1)和TSA(10-6 mol·L-1)联合诱导可见绿色荧光强度最强。本研究成功分析了鸡Stra8基因启动子的活性和调控元件的结合位点,确定Am80和TSA共同诱导可显著提高Stra8基因启动子调控活性。  相似文献   

14.
试验旨在筛选水牛HSD17B1基因启动子活性区域及影响因素,并预测其转录结合因子,为探究该基因在水牛繁殖性能中的调控机理提供理论依据。以水牛血液基因组DNA为模板,PCR扩增得到3个HSD17B1基因启动子活性区域序列,并定向克隆至pGL3-promoter载体;将重组质粒转染到水牛卵泡颗粒细胞,通过双荧光素酶检测系统测定相对荧光素酶活性,并探究其与促黄体素(luteinizing hormone,LH)和促卵泡素(follicle stimulating hormone,FSH)的关系;利用生物信息学方法对HSD17B1基因启动子区进行转录结合因子预测。结果显示,本试验成功克隆了3个不同长度的HSD17B1基因启动子片段,并成功构建了双荧光素酶报告载体。经不同长度启动子片段的活性检测发现,pGL-pro-HSD17B1-1500活性最强,证实-866/-1 500 bp为HSD17B1基因核心启动子区域,表明该区域对HSD17B1基因转录调控有重要作用。荧光素酶活性检测结果显示,添加LH可增强HSD17B1基因启动子活性。生物信息学分析发现,HSD17B1基因启动子区存在6个转录因子结合位点:Sp1(-2 327/-2 317 bp)、HOXA4(-2 162/-2 146 bp)、Sp1(-1 409/-1 395 bp)、Sp1(-1 391/-1 380 bp)、Sp1(-1 345/-1 319 bp)和GATA1(-812/-801 bp),但无CpG岛,有1个TATA-box和2个CAAT-box。本研究成功构建了HSD17B1基因启动子荧光素酶报告载体,确定了HSD17B1基因启动子核心区域,并证明LH可增强启动子活性。  相似文献   

15.
本研究旨在筛选出关岭牛MyoDI基因启动子上的转录因子结合位点。根据GenBank已公布的牛MyoDI基因的启动子序列,设计特异性PCR引物,扩增贵州关岭牛MyoDI基因的启动子区,构建重组克隆载体pUCM-TMyoDI-pro,并对阳性质粒进行测序鉴定。再利用筛选试验和生物信息学分析筛选出关岭牛MyoDI基因启动子上的转录因子结合位点。结果,筛选出关岭牛MyoDI基因启动子上含有的转录因子结合位点有SATB1、Xbp、MEF2、Pax-3、Pbx1、PPAR、TFⅡD、COUP-TF、Gfi-1、HNF-1、HOX4C、NRF2(ARE)、MEF1、RXR、SMUC、Snail、MyoD、VDR。结合在线软件分析和文献,最终筛选出关岭牛MyoDI基因启动子上含有MyoD、TFIID、Pax3、MEF1、VDR和MEF2转录因子结合位点,这些转录因子对启动子活性起着重要的调控作用。结果显示,关岭牛MyoDI基因启动子上含有MyoD、TFIID、Pax3、MEF1、VDR和MEF2转录因子结合位点。  相似文献   

16.
本研究旨在检测前期构建的牛ATP5B基因启动子双荧光素酶报告基因重组质粒在3T3L-1细胞系中的表达活性,检测ATP5B基因在不同组织中的差异表达情况。经脂质体法转染3T3L-1细胞系后,检测7个重组质粒的荧光素酶相对活性,结合生物信息学软件进一步确认牛ATP5B基因可能的核心启动子;利用试剂盒从秦川牛的16个不同组织提取RNA,反转录后,先检测cDNA,再设计ATP5B基因定量引物和1对β-actin内参引物,进行实时荧光定量反应,最后,结合软件比对不同物种的ATP5B基因近端启动子和氨基酸序列。结果,通过转染细胞和荧光素酶活性分析,统计学分析证实重组质粒pATP5B-462荧光素酶活性最高,软件分析所对应的启动子区域-547~-230bp存在TATA盒、CAAT盒、GATA盒、v-Myb、deltaE这些重要转录调控元件。牛的ATP5B基因组织表达谱结果分析显示,该基因在后腿肌和背最长肌中相对高水平表达,在睾脂、心、瓣胃、皱胃、大肠、小肠、背脂、肾和肝中相对中度表达,在脾、肺、盲肠、瘤胃和网胃中相对微量表达。氨基酸序列比对结果显示,牛ATP5B基因与山羊、绵羊、小鼠、猪和人的ATP5B基因的相似性较高,牛ATP5B基因编码的氨基酸序列与山羊和绵羊的相似性分别高达99%、98%,与人和小鼠的相似性均为96%,与猪的相似性为91%。本研究初步确认了牛ATP5B基因可能的核心启动子,并得到了牛ATP5B基因在16个组织的表达谱结果,软件比对基因序列的结果进一步表明,ATP5B基因是一个较为保守的基因,这为进一步研究牛ATP5B基因的转录调控机制及功能都奠定了基础。  相似文献   

17.
FT(flowering locus T)是高等植物开花过程中关键的信号整合因子,主要在叶片维管束中合成,通过运输抵达茎顶端分生组织发挥作用。为了研究桑树FT基因的转录调控机制,以白桑种(Morus alba Linn.)品种新一之幼嫩叶片的基因组DNA为模板,根据NCBI数据库公布川桑(Morus notabilis)全基因组中FT同源序列的上游序列设计引物,PCR扩增获得FT基因的启动子片段,其长度为921 bp,命名为MaF TP。通过PLACE和PlantC ARE在线启动子预测工具分析,该序列中除含有TATA-box、CAAT-box等真核生物启动子的核心元件外,还存在脱落酸的响应元件ABRE,生长素响应元件AuxRR-core,水杨酸响应元件TCA-element,生理节律相关顺式作用元件circadian,光响应元件I-box、G-box、MNF1等,以及胚乳表达必需的顺式作用元件Skn-1-motif和抗逆性相关的顺式作用元件W-box、MBS、TC-rich repeats,表明FT基因的转录表达可能受光照、干旱、节律性、脱落酸、生长素、水杨酸等因素的调控,并参与胚乳的形成。将5'端缺失的5段FT启动子序列(从大到小依次为MaF TP903、MaF TP762、MaF TP542、MaF TP289、MaF TP162)分别与报告基因GUS融合构建表达载体,利用农杆菌转化烟草(Nicotiana benthamiana)植株,通过GUS染色对不同长度的启动子活性进行分析,结果表明:除了MaF TP903的活性较弱外,其余启动子缺失片段均能驱动GUS基因高效表达,且表达量相近。依据研究结果推测:MaF TP启动子的762~903 bp区段可能存在MaF T基因转录表达的负调控元件。  相似文献   

18.
利用染色体步移(Genome walking)技术,克隆柠条锦鸡儿CkNCED1基因上游启动子序列。经顺式元件预测分析,该序列除基本的启动元件之外,还含有2个脱落酸诱导响应元件ABRE、此外还含有多个逆境相关的元件。将CkNCED1基因启动子区连接到pGWB533植物表达载体上,构建Promoter::GUS载体,GUS组织化学染色结果表明,CkNCED1基因在植物的叶、根、茎、花和角果的维管组织中均有表达,且在叶片中表达强度最高。以上研究确定了柠条锦鸡儿CkNCED1基因的表达部位和强度。进一步说明CkNCED1基因在ABA合成调控中发挥重要作用,为深入研究基因功能奠定基础。  相似文献   

19.
旨在分析探讨TLR5基因启动子区甲基化修饰对断奶仔猪F18大肠杆菌抗性的调控作用。本研究首先利用qPCR和Western blot检测分析了TLR5基因在F18大肠杆菌抗性型和敏感型苏太断奶仔猪小肠组织(十二指肠和空肠)中的差异表达,然后利用生物信息学分析和双荧光素酶报告系统检测确定TLR5基因核心启动子区、CpG岛及其作用元件,进而检测并分析TLR5基因启动子区甲基化修饰与TLR5基因在F18大肠杆菌抗型和敏感型断奶仔猪小肠组织中表达水平的相关性。结果表明,TLR5基因在敏感型断奶仔猪十二指肠和空肠组织中的mRNA表达水平分别显著(P0.05)和极显著(P0.01)高于在抗性型个体中的表达,且十二指肠和空肠组织中敏感组蛋白表达水平均显著高于抗性组(P0.05)。TLR5基因启动子区包含2个CpG岛和16个作用元件,启动子区第2个CpG岛第6个CG位点甲基化水平对TLR5基因的表达具有一定的调控作用,该位点位于转录因子Sp1结合的核心启动子区域。本研究结果表明,猪TLR5基因的表达水平和F18大肠杆菌的抗性有关,其低表达可能有利于F18大肠杆菌抗性;TLR5基因启动子区第2个CpG岛第6个CG位点甲基化能够显著抑制TLR5基因的表达,并最终影响断奶仔猪对大肠杆菌的抗性。  相似文献   

20.
旨在鉴定胱硫醚β合酶(Cystathionine beta synthase,CBS)基因5′调控区和核心启动子特征,为研究蛋鸡骨骼中该基因的表达调控机制提供依据。采集68周龄罗曼蛋鸡胫骨组织,利用酚-氯仿法提取基因组DNA,以UCSC数据库中CBS基因序列为模板设计5′调控区扩增引物,利用生物信息方法分析5′调控区序列特征并进行转录因子结合位点预测,并构建双荧光素酶报告基因重组载体,通过转染DF-1细胞系后检测双荧光素酶活性,进行CBS基因的核心启动子区鉴定。结果表明,蛋鸡CBS基因5′调控区含有潜在的核心启动子区、典型的CpG岛和多个转录因子Sp1结合位点;不同长度片段均具有启动子活性,但不同片段活性存在显著差异,其中F4片段(-155~+131bp)具有最高的转录活性,确定该片段为核心启动子区。蛋鸡CBS基因5′调控区结构特征与核心启动子的鉴定和转录因子结合位点的发现为研究该基因在骨骼中的表达调控机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号