首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boar exposure has been used for estrus induction of prepubertal gilts, but has limited effect on estrus synchronization within 7 d of introduction. In contrast, PG600 (400 IU of PMSG and 200 IU of hCG; Intervet, Millsboro, DE) is effective for induction of synchronized estrus, but the response is often variable. It is unknown whether boar exposure before PG600 administration might improve the efficiency of estrus induction of prepubertal gilts. In Exp. 1, physical or fence-line boar contact for 19 d was evaluated for inducing puberty in gilts before administration of i.m. PG600. Exp. 2 investigated whether 4-d boar exposure and gilt age influenced response to PG600. In Exp. 1, 150-d-old prepubertal gilts were randomly allotted to receive fence-line (n = 27, FBE) or physical (n = 29, PBE) boar exposure. Gilts were provided exposure to a mature boar for 30 min daily. All gilts received PG600 at 169 d of age. Estrous detection continued for 20 d after injection. In Exp. 2, prepubertal gilts were allotted by age group (160 or 180 d) to receive no boar exposure (NBE) or 4 d of fence-line boar exposure (BE) for 30 min daily before receiving PG600 either i.m. or s.c. Following PG600 administration, detection for estrus occurred twice-daily using fence-line boar exposure for 7 d. Results of Exp. 1 indicated no differences between FBE and PBE on estrus (77%), age at puberty (170 d), interval from PG600 to estrus (4 d), gilts ovulating (67%), or ovulation rate (12 corpora lutea, CL). Results from Exp. 2 indicated no effect of age group on estrus (55%) and days from PG600 to estrus (4 d). A greater (P < 0.05) proportion of BE gilts expressed estrus (65 vs. 47%), had a shorter (P < 0.05) interval from PG600 to estrus (3.6 vs. 4.3 d), and had decreased (P < 0.05) age at estrus (174 vs. 189 d) compared with NBE. Ovulation rate was greater (P < 0.05) in the BE group for the 180-d-old gilts (12.7 vs. 11.9 CL) compared with the NBE group. However, age group had no effect on ovulation (77%) or ovulation rate (12 CL). Collectively, these results indicate that physical boar contact may not be necessary when used in conjunction with PG600 to induce early puberty. The administration of PG600 to 180-d-old gilts in conjunction with 4 d prior fence-line boar exposure may improve induction of estrus, ovulation, and decrease age at puberty.  相似文献   

2.
Two experiments were conducted to determine whether oral administration of melatonin alters the onset of puberty in gilts during naturally increasing or decreasing daylength. In Exp. 1, 20 crossbred prepubertal gilts weighing 77.5 +/- .5 kg at 171.8 +/- 1.0 d of age were assigned randomly to receive either a daily oral dose of 3 mg of melatonin (MEL) or ethanol vehicle (ETH) at 1530 from August 31 to December 1, 1987 (decreasing daylength). Gilts were exposed to mature boars for 20 min thrice weekly and blood samples were collected twice weekly. Serum concentrations of progesterone were used to establish age at puberty and length of estrous cycle. In Exp. 2, 20 crossbred prepubertal gilts weighing 67.7 +/- .7 kg at 143.8 +/- 1.1 d of age received either MEL or ETH treatment from February 1 to May 15, 1988 (increasing daylength). Age of puberty was less in gilts that received MEL than in gilts that received ETH in both Exp. 1 (198 +/- 3 vs 228 +/- 7 d; P less than .01) and Exp. 2 (183.8 +/- 2.7 d vs 194.3 +/- 3.3 d; P less than .05). Gilts that received MEL reached puberty at a lighter weight than gilts that received ETH in Exp. 1 (95.6 +/- 2.1 vs 112.4 +/- 3.9 kg; P less than .01) and Exp. 2 (88.1 +/- 1.5 vs 96.0 +/- 1.8 kg; P less than .01). Serum concentrations of LH and FSH, length of estrous cycles, and percentage of muscle of carcasses were similar between MEL and ETH gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Forty gilts (mean wt = 72 kg) were administered daily either vehicle (C = control) or 70 micrograms porcine growth hormone (pGH)/kg BW. After 30 d of treatment, eight gilts per group (Exp. 1) were slaughtered and blood, uteri and ovaries were collected. Follicular fluid (FFl) was collected and granulosa cells (GC) were cultured. The remaining gilts (Exp. 2) were treated for up to 35 additional days and examined twice daily for estrus. Estrusal gilts were removed from the experiment. Noncyclic gilts (n = 9 of 12 pGH; n = 4 of 12 C) were slaughtered on d 66 and their ovaries were examined. Ovarian weights were not different for pGH and C gilts in either Exp. 1 (P greater than .1) or Exp. 2 (P = .09). Uterine weights were greater for pGH-treated than for C gilts (P less than .007) in Exp. 1, but not in Exp. 2. Concentrations of estradiol (E2) in plasma and FF1 and of progesterone (P) in plasma and FF1 were not different for pGH and C gilts. Concentrations of insulin-like growth factor-I (IGF-I) in FF1 and in serum were greater for pGH than for C gilts (P less than .01). Concentration of P in serum-free medium of cultured GC was lower for GH than for C (P less than .05) in the presence or absence of gonadotropins in Exp. 1. The FSH-stimulated secretion of P was also lower for GC of pGH-treated gilts in Exp. 2, indicating a failure of GC to differentiate in culture. Only one pGH gilts in Exp. 2 manifested estrus, compared with seven C gilts (P less than .025). In Exp. 1, ADG was higher (P less than .03) and feed/gain lower (P less than .07) for pGH gilts. Longissimus muscle area (LMA) was not different (P = .19) between groups. Backfat thickness (BF) was lower (P less than .005) in pGH than in C in both Exp. 1 and 2. We conclude that exogenous pGH increased growth rate, improved feed efficiency and altered carcass traits in gilts. However, these effects were associated with impaired ovarian development of prepubertal gilts and a low incidence of estrus.  相似文献   

4.
The objective of this study was to determine the effects of recombinant porcine somatotropin (rpST) treatment during the finishing phase on subsequent reproductive function in crossbred gilts. Forty gilts weighing 50 kg and housed in a swine finishing facility were randomly assigned to control or rpST treatment. Four control and four rpST-treated gilts were allotted per pen. Twenty rpST-treated gilts received 6 mg of rpST.gilt-1.d-1 in 1 ml of buffered carrier and 20 control gilts received 1 ml of buffered carrier.gilt-1.d-1. Injections were administered daily at 1400 in the extensor muscle of the neck. All gilts received an 18% CP diet containing 1.2% lysine. Treatment was terminated when the average weight in each pen reached 110 kg. Gilts treated with rpST gained more weight (P less than .05) than control gilts (59.8 +/- 1.0 vs 53.5 +/- 1.0 kg). Age at puberty was not different (rpST, 182.2 +/- 3.3; control 181.4 +/- 3.1 d). Prior treatment with rpST did not significantly affect length of estrus (rpST, 1.9 +/- .1; control, 1.8 +/- .1 d) or estrous cycle length (rpST, 20.6 +/- .4; control, 20.4 +/- .4 d). Ovulation rates at second estrus were similar for rpST gilts (15.1 +/- .5) and control gilts (14.4 +/- .5). More embryos (P = .10) were recovered on d 9 to 12 of gestation from rpST-treated gilts than from control gilts (13.1 +/- .9 vs 10.7 +/- .9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Growth, carcass traits, and selected reproductive characteristics were evaluated in prepubertal gilts treated with either a constant mass of pGH or a mass of pGH adjusted periodically for changes in BW. Gilts (64 kg, n = 24) were given 24 daily injections of either vehicle (C; control) or one of two doses of pGH: 70 micrograms/kg of BW, with dose adjusted every 5th d for changes in BW (A; adjusted), or 70 micrograms/kg of initial BW (U; unadjusted). Gilts were slaughtered on d 25. Gilts treated with pGH had higher ADG (P less than .002) and improved feed efficiency (kg of feed/kg of gain; P = .0003) compared with controls. Weights of adrenal glands, liver, heart, and kidney were higher (all P less than .01) for Groups A and U than for Group C gilts. Average backfat thickness was less (P less than .004) for A and U gilts than for C gilts and less for Group A than for Group U (P less than .02). Furthermore, growth and carcass traits were similar (P greater than .05) for Groups A and U, except for measurements of first rib backfat, last rib backfat, and average backfat depth (P less than .05). Culture of granulosa cells (GC) was employed to assess ovarian function. Addition of FSH to the culture media enhanced secretion of progesterone (P4) by cultured GC from all in vivo treatments compared with unsupplemented cultures of GC (P less than .05). Addition of LH to the culture media enhanced secretion of P4 by cultured GC from pGH-treated gilts only (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

7.
The effect of adrenal function and flumethasone (FM, a synthetic glucocorticoid) on induction of puberty in crossbred gilts raised in confinement was examined in two experiments. In Exp. 1, gilts were adrenalectomized (Adx) or subjected to sham adrenalectomy (Sham) between 140 and 160 d of age. Twenty days later indwelling jugular catheters were implanted in Adx, Sham and another group of intact gilts designated as Controls, and the gilts were moved from confinement to outdoor pens and checked daily for estrus with a mature boar. Fewer (P less than .05) Adx (1/11) than Sham (9/14) gilts showed estrus and ovulated by 205 d of age. Response of Control gilts (6/14) was not different from the other groups. Although Adx gilts received 40 mg cortisone acetate and 10 mg deoxycorticosterone acetate daily throughout the experiment, mean plasma glucocorticoids were lower (P less than .05) in Adx (24 +/- 4.7 ng/ml) than in either Sham (47 +/- 8.1 ng/ml) or Control (44 +/- 6.1 ng/ml) gilts. Experiment 2 was conducted to determine whether FM given to Adx gilts immediately after surgery could have inhibited estrus and ovulation. Intact gilts received a total of 27.5 (FM1) or 17.5 (FM2) mg FM over 4 d between 150 and 160 d of age before relocation and boar exposure 20 d later. Control gilts received no injections. Nine of 13 FM-treated but none of the Control gilts showed estrus. It is concluded from these results that the adrenal glands may facilitate the onset of puberty in gilts through increases in glucocorticoid production, but that this is not required for puberty to occur.  相似文献   

8.
Our objective was to determine whether priming with the progestogen norgestomet for 9 d would enhance estrual and ovulatory responses of prepubertal gilts to PG600 (400 IU eCG + 200 IU hCG). Gilts (140 to 190 d old) were assigned by litter, age, and weight to one of three treatments: 1) 9 d of norgestomet implant with an injection of PG600 after implant removal on d 9 (N+PG; n = 43); 2) no implant and an injection of PG600 on d 9 (PG; n = 36); or 3) neither implant nor PG600 (control; n = 29). Beginning on d 0, gilts were exposed once daily to a boar and checked until estrus was observed or until d 45 after the start of the experiment. Ovaries were examined for number of corpora lutea (CL) after estrus or at 45 d. Greater proportions of N+PG (63%, P < .05) and PG (69%, P < .01) gilts expressed estrus than did controls (34%), but proportions did not differ between N+PG and PG (P > .10). Among gilts in estrus following treatment with N+PG or PG, 100% showed estrus within 6 d after PG600 injection. For gilts that expressed estrus within 45 d, the average age at estrus was reduced (P < .05) by PG to 172 +/- 2 d compared with 182 +/- 4 d for controls. Average age at estrus did not differ (P > . 10) between PG and N+PG (177 +/- 2 d). Greater proportions of N+PG (82%; P < .001) and PG (65%; P < .001) gilts ovulated than controls (13%), but proportions did not differ between N+PG and PG (P > .10). The number of CL (20 +/- 2) was not affected by treatment and ranged from 2 to 71. There was no increase in ovarian cysts in response to treatment. Results indicated that norgestomet before PG600 did not enhance estrus expression or ovulation compared with PG600 alone, but use of PG600 increased the proportions of gilts that expressed estrus and ovulated compared with controls.  相似文献   

9.
Two experiments were conducted to determine if confinement-induced delayed puberty in gilts was due to chronic physiological stress imposed by confinement housing. In both experiments, crossbred gilts, raised in total confinement, were moved to an outside dirt lot (nonconfined) or to a single pen in a confinement finishing unit (confined) at 100 to 110 d of age. Beginning at 150 d of age, estrus was checked daily with a boar to determine age at first estrus. Gilts were necropsied at 270 d of age. In Exp. I, 19 confined and 19 nonconfined gilts were cannulated by jugular puncture at 185 d of age. The day after cannulation, blood samples were collected for 4 h, 200 IU porcine adrenocorticoptropic hormone (ACTH) was injected via the cannulae and blood samples were collected for an additional 8 h. Serum cortisol, progesterone, luteinizing hormone (LH) and prolactin (PRL) concentrations were determined. In Exp. II, both jugular veins of six confined and six nonconfined gilts were cannulated at 204 d of age. The day after cannulation, blood samples were collected for 4 h and cortisol was continuously infused for the last 2 h of the blood collection period. Cortisol metabolic clearance rate (MCR) and secretion rate (SR) were determined. By 270 d of age, 21 of 28 (75%) nonconfined gilts and 11 of 31 (35.5%) confined gilts (P less than .01) in Exp. I and 18 of 25 (72%) nonconfined gilts and 12 of 25 (48%) confined gilts (P less than .06) in Exp. II had exhibited estrus and ovulated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objective of this study was to evaluate the effect of development diet on first-parity reproductive performance across different genetic types of females. Gilts (n = 708) 8 to 15 d of age from five genetic lines were assembled using a segregated early weaning protocol. Genetic types represented industry variation for reproductive capacity and lean growth potential. Sampling procedures were not designed to evaluate performance differences among the genetic lines. When the gilts weighed approximately 20 kg, they were moved from the nursery facilities to a slotted-floor, environmentally controlled facility, and seven to eight animals within a genetic type were penned together. When the gilts weighed approximately 40 kg, they were moved to a modified open-front facility. Nineteen gilts were allotted to each pen (.92 m2 per pig). Gilts were assigned to one of three development diets at 120 d of age. Diet 1 (high energy, 18% CP) and Diet 2 (high energy, 13% CP) were provided for ad libitum consumption to the assigned gilts until they weighed approximately 113 kg. Gilts receiving Diet 3 (23% CP) were fed 1.8 kg/d from 82 kg until they reached 180 d of age (approximately 100 kg). Gilts were fed 2 kg daily of a gestation diet from 180 d to 200 d of age and 2.7 kg daily from 200 d until mating. To stimulate the estrus cycle, gilts were commingled and exposed to vasectomized boars beginning at 180 d of age. Gilts that were in estrus and 210 d of age or older were artificially inseminated with commercial semen. Gilts not detected in estrus within the first 50 d of observation were injected with PG600 and estrus detection continued for 30 additional days. Of the 657 gilts entering breeding pens, 422 farrowed. Bred gilts were distributed to 10 cooperator facilities before farrowing. Mixed model procedures were used to analyze the data. Significant (P < .05) genetic type x gilt development diet interactions were found for number of pigs born, number of pigs born alive, total litter birth weight, and litter birth weight of pigs born alive. Significant interactions consistently involved one genetic line and gilt development Diets 1 and 2. Gilts from this genetic line-diet subclass had poorer farrowing performance (P < .05) than gilts from the same line fed development Diet 3. Only two other significant genetic line x gilt development diet interactions were found. Gilt development diet had little influence on first-parity reproductive performance.  相似文献   

11.
Three experiments assessed the onset of estrus and ovulation rate in gilts treated with gonadotropins after the withdrawal of an orally active progestin. In Exp. 1, all cycling gilts received the progestin (Regu-mate; Intervet America Inc., Millsboro, DE) at a rate of 15 mg/d for 18 d. Twenty-four hours after the last feeding of Regu-mate, 32 gilts received an i.m. injection of 400 I.U. PMSG and 200 I.U. hCG (P.G. 600, Intervet America, Inc.), and 32 gilts received an i.m. injection of deionized water. The percentage of gilts displaying estrus < or = 7 d (P = 0.64) and the injection-to-estrus interval (P = 0.37) were similar for P.G. 600-treated gilts (93.8% and 4.1 +/- 0.1 d) and controls (90.6% and 4.3 +/- 0.1 d). Ovulation rate was greater (P < 0.01) in P.G. 600-treated gilts (28.8 +/- 1.1) compared with controls (17.4 +/- 1.1). In Exp. 2, 58 cycling gilts received Regu-mate (15 mg/d) for 18 d. Twenty-four hours after Regu-mate withdrawal, gilts received i.m. P.G. 600 or water (n = 29/treatment). Gilts were bred via AI 12 and 24 h after first detection of estrus. The percentage of gilts displaying estrus < or = 7 d (P = 0.45) and the injection-to-estrus interval (P = 0.27) were similar for P.G. 600-treated gilts (82.7% and 4.0 +/- 0.1 d) and controls (89.7% and 4.2 +/- 0.1 d). Ovulation rate was greater (P < 0.01) in P.G. 600-treated gilts (26.2 +/- 1.8) compared with controls (18.1 +/- 1.7). Pregnancy rate (P = 0.71) and the number of live embryos at d 30 postmating (P = 0.40) were similar for P.G. 600-treated gilts (91.7% and 15.6 +/- 1.2) and controls (88.5% and 14.1 +/- 1.2). In Exp. 3, prepubertal gilts (142.6 +/- 0.7 d of age) received Regumate (15 mg/d) (n = 20) or a control diet not including Regu-mate (n = 20) for 18 d. Twenty-four hours after Regu-mate withdrawal, all gilts received i.m. P.G. 600. The percentage of gilts displaying estrus < or = 7 d (P = 0.49) and the P.G. 600-to-estrus interval (P = 0.69) were similar for Regu-mate-fed gilts (95% and 4.3 +/- 0.2 d) and controls (88.9% and 4.2 +/- 0.2 d). Ovulation rate was similar (P = 0.38) for Regu-mate fed gilts (16.6 +/-1.6) and controls (14.4 +/- 1.8). In cycling gilts, administration of P.G. 600 after withdrawal of Regu-mate increased ovulation rate, but not litter size at d 30 postmating. There was no beneficial effect of Regu-mate pretreatment on the response to P.G. 600 in prepubertal gilts.  相似文献   

12.
Effects of an increased level of dietary energy (flushing) on plasma concentrations of FSH, LH, insulin, progesterone and estradiol-17 beta and ovulation rate were studied in 16 gilts. Gilts received 5,400 kcal ME/d for one estrous cycle and the first 7 d of a second. On d 8 of the second estrous cycle, gilts received either 5,400 kcal ME/d (control [C], n = 8) or 11,000 kcal ME/d (flushed [F], n = 8) for the remainder of the estrous cycle. Blood was collected daily at 15-min intervals for 6 h from d 8 through estrus. Gilts were examined by laparotomy 6 d after estrus. Ovulation rate was greater (P less than .05) in F than C gilts (16.0 vs 9.4). Mean daily concentrations of FSH were greater (P less than .05) in F gilts at 5 d, 4 d and 3 d prior to estrus compared with C females. In both C and F gilts, FSH decreased (P less than .05) prior to estrus. Mean daily concentrations of LH and LH pulse amplitude were not different (P greater than .05) between treatments. Mean number of LH pulses/6 h at 4 d, 3 d and 2 d prior to estrus were greater (P less than .05) in F than in C gilts. In both treatments, LH pulse amplitude decreased (P less than .05) and pulse frequency increased (P less than .07) prior to estrus. Mean plasma concentrations of insulin tended to be higher (P less than .07) in F than in C females during the 7-d period before estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Ten trials involving 678 presumed prepuberal gilts (5.5 to 7.5 mo old) were conducted in North Carolina, Illinois and Missouri to evaluate the reproductive performance of gilts given a combination of 400 IU of pregnant mare's serum gonadotropin and 200 IU of human chorionic gonadotropin (P. G. 600). Gilts that were presumed to be prepuberal received P. G. 600 or no treatment (control) on the day of movement from finishing facilities to pens for breeding. Detection of estrus, with the aid of mature boars, was conducted daily for 28 d; gilts in estrus were mated naturally. Treatment with P. G. 600 increased the percentage in estrus within 7 (57.5 vs 40.9%) or 28 d (72.9 vs 59.5%); average interval to estrus was reduced (P less than .05) from 10.4 to 7.5 d. Farrowing rate (78.5 +/- 3.1%), number of pigs born alive (8.6 +/- .2) or dead (.26 +/- .06) and number of pigs weaned (8.0 +/- .2) were unaffected by treatment. Gilts that were heavier than the median for each farm were in heat sooner and more were detected in heat, but no other reproductive traits differed between heavy and light gilts. Overall, the results reveal that P. G. 600 was useful for induction of fertile estrus in prepuberal gilts.  相似文献   

14.
Two experiments were conducted to determine if the secretory patterns of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) and serum concentrations of progesterone change immediately preceding induced puberty in gilts. To help predict when prepubertal gilts would attain puberty, gilts were induced into puberty by relocation from confinement housing to an outdoor lot and exposure to mature boars. In Exp. 1, 17 prepubertal gilts were bled on two successive days from 0800 to 1200 h before relocation and boar exposure and until the second day of estrus or for 8 d in gilts that failed to exhibit estrus. Blood samples were collected from indwelling cannulas at 20-min intervals for 4 h. In Exp. 2, blood samples were collected from 20 prepubertal gilts at 20-min intervals from 0800 to 1200 h and from 2000 to 2400 h until the second day of estrus or for 6 d if the gilt failed to exhibit estrus. In each experiment, 11 gilts exhibited pubertal estrus 3 to 6 d after relocation and boar exposure. When the frequency of LH spikes in each gilt was normalized to the day of her preovulatory surge of LH (d 0), a decline in the frequency of LH secretory spikes was observed as gilts approached puberty. However, neither the average magnitude of LH spikes nor mean LH concentrations were different among these days. Mean serum concentrations, frequency of spikes or average magnitude of secretory spikes of FSH or PRL did not change on the days preceding the preovulatory peak of LH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Forty-eight prepubertal gilts (178.7 +/- 4.1 d; 94.2 +/- 4.1 kg), 16 in each of three trials, were assigned randomly to receive 0 (C) or 10 ppm zearalenone (Z) daily in 2.5 kg of a 14% protein finishing ration for 2 wk. Blood samples were collected at 20-min intervals for 4 h 1 wk after the start of the experiment and 1 wk after Z was withdrawn. Two weeks after Z was withdrawn, gilts were exposed to mature boars 15 min per day for 3 wk. Gilts in estrus were mated to two different boars 12 h apart. Twice each week, blood was sampled and analyzed for progesterone to establish age of puberty. Age at puberty differed (P = .008) among replicates but was similar (P = .13) between Z and C gilts within each replicate. Mean serum concentrations of LH were suppressed (P = .025) during consumption of Z (.25 vs .42 ng/ml) but were similar (P = .16) to concentrations in C gilts 1 wk after Z was withdrawn (.35 vs .45 ng/ml). Frequency and amplitude of LH secretory spikes did not differ (P greater than .50) between Z and C gilts during either sampling period. Mean serum concentrations of FSH were similar (P = .25) between Z and C gilts. Number of corpora lutea and live fetuses were similar (P = .29 and P = .94, respectively) between Z and C gilts. Fetal weights were greater (P = .025) and crown to rump length tended to be greater (P = .10) in fetuses from Z gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effect of lean growth rate on puberty attainment in gilts   总被引:1,自引:0,他引:1  
Two hundred sixteen prepubertal Genex Manor hybrid F1 gilts were used to determine the impact of lean growth rate on sexual development of gilts. This study was composed of two experiments (Exp. 1 and Exp. 2). In Exp. 1, at approximately 96 d of age and 54 kg weight, gilts were allocated with respect to growth rate and litter origin to one of two dietary treatments: 1) a diet formulated to maximize lean growth potential (LP; n = 84) or 2) a diet formulated to produce a lower lean growth rate (LL; n = 84). In Exp. 2, at approximately 88 d of age and 50 kg weight, gilts were allocated with respect to growth rate and litter origin to one of two dietary treatments: 1) a diet formulated to maximize lean growth potential (LP; n = 24) or 2) a diet formulated to restrict lean growth further than was achieved in LL in Exp. 1 (RL; n = 24). All gilts were fed treatment diets for ad libitum consumption and housed in groups of six. Weight, backfat depth and loin depth, and feed intake were measured weekly. Starting at 135 d of age, gilts received 20 min of direct daily exposure to a boar as a pen group for pubertal stimulation. Puberty attainment was determined as the day gilts first exhibited the standing reflex in response to contact with a boar. At pubertal estrus, body weight, backfat depth, and loin depths were recorded. Diet affected (P < or = 0.05) estimated fat-free lean gain (LP, 424 vs LL, 347 g/d, Exp. 1; LP, 397 vs RL, 376 g/d, Exp. 2) during the growth period (start to stimulation). However, age at puberty was not affected by diet (LP, 157.3 vs LL, 157.6, Exp. 1; LP, 166.7 vs RL, 167.3, Exp. 2) or overall lean growth at stimulation (P > or = 0.05 in both experiments), confirming that innate variability in sexual development of commercial genotypes, rather than growth performance, determines onset of sexual maturity. A negative correlation between age at puberty and growth rate from 50 kg until puberty (P < or = 0.05) (LP, r = -0.40, LL, r = -0.36, Exp. 1; LP, r = -0.64, RL, r = -0.48, Exp. 2) was a consequence of reduced lean tissue growth during the stimulation period in later-maturing gilts.  相似文献   

17.
This study evaluated the influence of exogenous estradiol-17 beta (E2) administration on LH concentrations and the number of animals returning to estrus after the termination of pregnancy or pseudopregnancy in gilts. Gilts were mated (pregnant; n = 11) on the 1st d of estrus or received 5 mg of estradiol valerate i.m. at d 11 to 15 after the onset of estrus (pseudopregnant; n = 9). Gilts were treated with prostaglandin F2 alpha (PGF2 alpha, 15 and 10 mg) at 12-h intervals on d 44 of pregnancy or pseudopregnancy. The day of abortion or luteolysis (progesterone less than .2 ng/mL) was considered d 0. Six pregnant and four pseudopregnant gilts received s.c. an E2 capsule (24 mg of E2) on d -20 and additional E2 capsules on d -13 and -6. The E2 capsules were removed on the day after PGF2 alpha administration. Blood samples were collected at 12-h intervals from d -21 to -3, at 6-h intervals from d -2 to 21 or the onset of estrus, and at 15-min intervals for 8 h on d -2, 1, 4, 7, 10, 14, and 18. After each 8-h sampling period, gilts were treated i.v. with GnRH at .5 micrograms/kg of BW and blood samples collected at 10-min intervals for 3 h. A greater (P less than .05) proportion of sham-treated gilts than of E2-treated gilts exhibited a preovulatory-like LH surge after abortion/luteolysis. It was evident that E2 supplementation before luteolysis reduced the ability of pregnant and pseudopregnant gilts to return to estrus.  相似文献   

18.
Two experiments were conducted to examine influences of dietary energy and insulin on ovulation rate and patterns of luteinizing hormone (LH), follicle stimulating hormone (FSH), glucose, insulin and estradiol in gilts during 6 d before estrus. In Exp. 1, 36 gilts were given altrenogest for 14 d to synchronize estrus. In a factorial arrangement, gilts were fed one of two levels of dietary energy (5,771 or 9,960 kcal metabolizable energy (ME)/d), and given one of two levels of porcine insulin (0 or .1 IU/kg body weight iv every 6 h). Dietary treatments began 4 d before and insulin treatments began 1 d after the last day of altrenogest, respectively, and lasted until 24 h after estrus. Main effect means for number of corpora lutea were 14.0 +/- 1.3 and 17.6 +/- .9 for 5,771 and 9,960 kcal ME (P less than .05), and 14.6 +/- 1.0 and 17.0 +/- .9 for 0 and .1 IU insulin (P less than .05). Number of LH peaks on d 3 was greater for gilts that received 9,960 kcal than 5,771 kcal (3.3 +/- .2 vs 2.7 +/- .2; P less than .05), and for .1 than 0 IU insulin (3.2 +/- .2 vs 2.7 +/- .2; P less than .05). During the first 24 h of sampling, concentrations of LH and FSH were greater (P less than .05) in gilts receiving 9,960 kcal ME plus insulin than for other treatment combinations. Concentrations of estradiol were not affected by treatments. In Exp. 2, two formulations of insulin were evaluated for influence on ovulation rate. All gilts received altrenogest and 9,960 kcal ME/d as in Exp. 1. Then on the first day after altrenogest, seven gilts each received short-acting insulin (as in Exp. 1), long-acting insulin (zinc suspension, 1.0 IU/kg body weight every 18 to 24 h), or served as controls. Ovulation rates were increased (P less than .05) by both insulin preparations (15.6, control; 19.1, short-acting; 18.5, long-acting; SE = 1.2). Concentrations of LH tended to be greater after short-acting insulin, but differences were not significant (P = .13). We conclude that increases in ovulation rate produced by dietary energy and insulin are not necessarily accompanied by changes in gonadotropins or estradiol.  相似文献   

19.
The effect of boar exposure during artificial insemination (AI) on semen backflow, fertilization, and embryo quality was evaluated. Gilts (approximately 170 d) were induced into estrus with PG600, and ovulation was synchronized using hCG 72 h later. Estrus detection was initiated after PG600 and continued at 12-h intervals. At estrus, gilts were allotted to receive boar exposure (BE, n = 20) or no boar exposure (NBE, n = 20) during AI. Gilts receiving NBE were identified to be in estrus prior to AI and the boar was then removed for 1 h, whereas gilts in the BE group received 15 min of exposure during AI. Insemination occurred in crates at 12 and 24 h after onset of estrus with 3 x 10(9) sperm/80 mL. Backflow was collected continuously with samples taken at time 0, (during AI), and at 0.25, 0.5, 0.75, 1, 2, 4, and 8 h after first and second AI. The effect of treatment was evaluated for time of insemination (min), backflow (mL), and sperm in backflow samples. Oviducts were flushed 2 d after first AI to evaluate the effect oftreatment on fertilization rate, accessory sperm numbers on embryos (scored 1 to 5), and embryo quality. There was no effect of first or second AI; therefore, data were pooled. Average duration of AI was 3.7 +/- 0.2 min and was not influenced by BE (P < 0.10). However, during the initial stage of AI, BE reduced the volume of semen (18.6 vs 32.4 +/- 3 mL) and the number of sperm lost (0.8 vs 1.3 +/- 0.15 x 10(9) sperm) compared to NBE (P < 0.05). There was a treatment x time effect (P < 0.05) for volume of backflow. By 45 min, the BE gilts lost more volume (9.0 vs 3.6 mL) compared to the NBE group, but sperm loss did not differ. Between 1 and 8 h after AI, neither volume nor sperm loss was influenced by treatment. By 8 h, total leakage (65 vs 63 mL) and total sperm loss (1.6 x 10(9) vs 1.8 x 10(9) sperm) were not influenced by BE (P > 0.10). However, more accessory sperm (P < 0.01) were found on embryos for the NBE (> or = 11 sperm/embryo) compared to BE embryos (< or = 10 sperm/embryo). Despite this observation, percentages of fertilized embryos (99.5 +/- 0.5 %) and number of embryos (11.5 +/- 0.1) were not different (P > 0.10). In conclusion, AI in the presence of a mature boar did not affect total semen leakage, sperm loss, fertilized embryos, or embryo quality. The importance of boar exposure during insemination was evident from less leakage during insemination, but had no effect on fertility; this suggests that the elimination of boar exposure during AI may not be deleterious to reproductive performance.  相似文献   

20.
The effects of feeding level on body weight (BW), lifetime growth rate, backfat thickness (BF), fatness (BF/BW) and ovulation rate at first (puberty) and second estrus were examined in 145 gilts. From 47.2 kg until puberty, gilts were fed 2.0 kg/d (L) or had ad libitum access to feed (H). From puberty to second estrus, the feed allowance of one-half of the L gilts was increased to 2.8 kg/d. Flush-feeding only normalized ovulation rate (OR) to that observed in gilts with ad libitum access to feed. At puberty, a quadratic negative relationship between lifetime growth rate and age indicated that age at puberty was minimum at a growth rate of less than or equal to .60 kg/d. Thereafter, age at puberty became independent of, or possibly positively related to, lifetime growth rate. Gilts with higher lifetime growth rate also were heavier and fatter at puberty. It was concluded that puberty may have been attained when a certain BF or fatness was achieved, because growth rate of restricted-fed gilts and quickly growing gilts with ad libitum access to feed may have been associated with reduced fat deposition. Hence, maximizing growth rate in replacement gilts does not hasten the attainment of puberty. Growth rate may be manipulated by feed restriction, in order to attain a target BW at boar stimulation (approximately 90 kg), which would coincide with a minimum age (approximately 155 d) and BW at puberty (approximately 97 kg). Nutritional flushing during the first estrous cycle then could be used to normalize OR at mating at second estrus of gilts that were restricted-fed when prepubertal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号