首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physically-based dual-porosity model of water and solute transport under transient field conditions was used to simulate3H transport in seven undisturbed monoliths of a coarse-textured sand under bare soil conditions over a period of 15 months. A double-tracer application of3H and36Cl was performed to test whether sidewall flow occurred in this experimental set-up. The objectives of this study were: to identify any impacts of preferential flow in this type of soil, to quantify3H losses from the soil due to evaporation, and to assess the suitability and relative behavior of3H and36Cl as tracers of water. The model input parameter values were obtained by a combination of direct measurements and model calibration. One domain flow simulations of water flow and tracer concentrations in seepage agreed fairly well with those observed, indicating convective-dispersive behavior in this sandy soil. From the observed tracer and water balance for the entire observation period, the recovery of3H and36Cl in seepage was 33 and 91% respectively, with 67% of the applied H lost by evaporation. Both3H and36Cl broke through in seepage simultaneously, showing that36Cl is equally suitable as a tracer of water as3H. The double-tracer test showed that sidewall flow did not occur.  相似文献   

2.
The transport parameters were determined for the 18O isotope (in the form of H2 18O), the Br? ion, and atrazine in intact columns of allophanic Andosol (Mexico State, Mexico). A one-dimensional model for the convective-dispersive transport of chemicals with account for the decomposition and equilibrium adsorption (HYDRUS-1D), which is widely applied for assessing the risk of the chemical and bacterial contamination of natural waters, was used. The model parameters were obtained by solving the inverse problem on the basis of laboratory experiments on the transport of the 18O isotope, the Br? ion, and atrazine in intact soil columns at a fixed filtration velocity. The hydrodynamic dispersion parameters determined for the 18O and Br? ions in one column were of the same order of magnitude, and those for atrazine were higher by 3?C4 times. The obtained parameters were used to calculate the transport of these substances in another column with different values of the water content and filtration velocity. The transport process was adequately described only for the 18O isotope. In the case of the Br? ion, the model significantly underestimated the transport velocity; for atrazine, its peak concentration in the column was overestimated. The column study of the transport of the three chemical compounds showed that transport parameters could not be reliably predicted from the results of a single experiment, even when several compounds were used in this experiment.  相似文献   

3.
为探明间歇喷灌和连续喷灌条件下的土壤水分运动规律,建立喷灌随时间变化的非均匀灌水边界下的土壤水分二维运动模型,借助COMSOL数值模拟软件,实现模型的求解,并通过土箱试验对模型进行验证,分析不同喷灌模式下土壤水分运动特征,评估喷灌均匀性和喷灌模式对土壤含水率均匀性的影响。结果表明,土壤含水率和土壤湿润峰模拟值与实测值之间的一致性较好。喷灌模式对土壤水分运动过程和含水率均匀度影响不大。随着间歇次数和间歇时长的增加,喷灌结束时表层土壤含水率减小、水分入渗深度增加。喷灌条件下,土壤含水率均匀度高于地表测得的喷灌均匀度。当喷灌均匀度为39.77%~80.15%时,土壤含水率均匀度为88.57%~94.47%。当喷灌均匀度较低、点喷灌强度较高、总灌水量较大时,采用间歇喷灌、增加间隙次数和总间歇时长,可以一定程度降低地表径流和深层渗漏风险、改善土壤含水率均匀性。研究可为喷灌系统设计均匀度合理取值和高效运行提供理论基础。  相似文献   

4.
Chemical immobilization is one of the most effective technologies for remediating sites with heavy metals,but the selection of proper immobilization material and determination of its dose ratio is a challenge that limits the remediation efficiency.In this study,we conducted a meta-analysis of 489 independent observations on the immobilization of heavy metals,in which the immobilization materials were divided into biochar,phosphate,lime,metal oxides,and clay minerals.The statistical analysis of t...  相似文献   

5.
Phosphate in solutions of model esters and polyphosphates (glucose phosphate, inositol hexaphosphate, pyrophosphate, ribonucleic acid, tripolyphosphate and trimetaphosphate) was quantitatively released in <6 h by acid phosphatase or phytase at pH 5.0. Interference from insoluble, ion association complexes formed between protein in the enzymes and the phosphomolybdenum blue during the colorimetric determination of the molybdate reactive phosphorus released was removed by adding dimethyl sulphoxide. Filtered (0.45 μm) soil solution from a peaty soil contained 590 μg dm–3 total dissolved phosphorus (TDP), of which 13% was molybdate reactive phosphorus (MRP), 26% dissolved organic phosphorus (DOP) and 61% dissolved condensed phosphorus (DCP). When acid phosphatase was added to the soil solution under the conditions used to hydrolyse the model compounds, MRP increased to 54% of the TDP in about 10 h and then remained constant. From a mass balance, at least 25% of the DCP was hydrolysed. Incubation of the soil solution at 35°C without enzyme increased MRP to 44% of the TDP, reflecting native enzyme activity. Soil solution containing a higher concentration of TDP (1.27 mg dm–3) was also obtained. The distribution of MRP, DOP and DCP fractions was similar but acid phosphatase hydrolysed a greater proportion of the P and MRP increased to 64% of the TDP and at least 40% of the DCP was hydrolysed. The results of hydrolysis with phytase were similar to those with acid phosphatase. The protection of part of the DOP or DCP fraction from hydrolysis was likely caused by occlusion within colloids or the existence of P compounds unlike those of the model substrates. Received: 7 January 1996  相似文献   

6.
A study was conducted to develop an improved method for measuring organic N (net) mineralization in which chemical extraction takes place in combination with suspension incubation in ammonia-absorbing membrane bottles. To obtain direct evidence of the extent to which extracted organic N is mineralizable, the extraction suspension was further incubated immediately after the extraction procedure with mild and selective extractants. In this ‘extraction incubation’ method, extraction continues during the incubation but only relatively easily mineralizable organic matter is released. Standard incubation is usually carried out in sealed N2-flushed bottles. However, when phosphate or pyrophosphate soil suspensions are incubated, mineralization is much higher than in soil water suspensions. Further, accumulation of ammonia+(ammonium) and other gases, i.e. CO2, can affect the reaction rate and final reaction equilibrium in the sealed incubation flask. It was to avoid these effects that the membrane method was developed. With this procedure, the flask is closed with an ammonia-absorbing membrane permeable to other gases. Water, phosphate and pyrophosphate suspensions were incubated at 37 °C in sealed bottles (SB), in sealed N2 gas-flushed bottles (SBN2), and in bottles with ammonia-trapping filters (MB). The maximum amount of released during 10 days' incubation was 133.0 mg kg−1 in the water, 208.0 mg kg−1 in the phosphate and 454.1 mg kg−1 in the pyrophosphate suspension (soil total C content 6.2% and N 0.25%). During incubation in phosphate and pyrophosphate suspensions, the mobilization was nearly linear in membrane bottles. The variation between replicates was also smallest in these bottles. It was concluded that membrane bottles were best suited to incubation when mobilization reactions were accelerated with phosphate or pyrophosphate extractants. The method was easy to perform and gave results with good replicability.  相似文献   

7.
Robust and reliable laboratory methods are required to assess the rate of release of pollutants from contaminated materials. A widely used approach to determine release parameters are soil column experiments. Release rates are thereby obtained by the analysis of the concentration time profile measured at the column outlet, the so called breakthrough curve. Insufficient experimental information as a consequence of simple experimental designs, however, results in the non‐unique identification of the release processes. This is due to the equifinality, i.e., different processes result in the same breakthrough behavior. We analyzed column outflow experiments for their suitability for the identification of non‐equilibrium conditions by means of numerical simulations. Results show that non‐equilibrium conditions can be detected only in a small range of release time scale to transport time scale. Most frequently, non‐equilibrium remains undetected due to unmatched experimental conditions. Flow interruptions and modulation of the flow velocity are an important means to allow for better detection of possible non‐equilibrium release processes. The efficiency of flow interruptions sensitively depends on the experimental conditions, such as point of time and duration of the interruption and the imposed flow velocity. Column experiments are a suitable experimental tool to investigate non‐equilibrium. However, the course of the experiment has to be designed very carefully.  相似文献   

8.
Technogenic soils in underground gas storage areas are formed under the combined impact of natural and technogenic soil-forming factors (pipelining, gas well drilling and exploitation). New layers and horizons appear in the soil profiles. Technogenic layers (drilling technogenic layer (TSd), a chemically polluted loamy layer formed during the period of gas well drilling and exploitation; technogenic layer (TS..), a periodically restoring chemically polluted sandy layer formed during the period of gas well exploitation); technogenic horizons (mixed drilling horizon (TURd), a natural-technogenic horizon formed during the drilling period because of mixing of natural soil material); and modification horizons (mixed organic horizon (TURAY), an organic horizon formed by soil restoration or organic matter transformation), were distinguished.  相似文献   

9.
The arylsulfatase activity of soil and humic arylsulfatase complexes extracted from soil were measured using the substrates p-nitrophenyl sulfate and low molecular weight (500–10000) soil ester sulfate compounds. Soil samples from the Aphorizon of a Podzol from S-amended wheat plots and a Regosol from dykeland hayfield plots were investigated. Soil arylsulfatase activity (assayed with p-nitrophenyl sulfate) in the fall was significantly higher than spring samples; however, no seasonal differences were observed when humic-arylsulfatase complexes were assayed with p-nitrophenyl sulfate. The discrepancy between arylsulfatase activity in soil and soil extracts was probably due to inhibitors which were found in soil materials. These results appear to support the theory that abiotic arylsulfatase is a relatively stable and persistent component of soil. There was a marked difference in the response by humic-arylsulfatase complexes to the artificial substrate p-nitrophenyl sulfate and natural low molecular weight soil substrates. Humic-arylsulfatase complexes hydrolysed 35–80% of added low molecular weight substrates depending on the treatment. The molecular size, concentration, and chemical composition of the low molecular weight ester sulfate compounds affected hydrolysis of the low molecular weight substrates. The response by humic-arylsulfatase complexes to the chromogenic ester sulfate, p-nitrophenyl sulfate did not reflect the ability of these complexes to hydrolyse natural soil substrates. In an experiments we examined arylsulfatase activity and soil S status in relation to the total S in plant tissue and grain from wheat plants grown in the Podzol. Tissue S was more strongly associated with soil S than the wheat grain. Hydriodic acid-S, Ca(H2PO4)2-extractable sulfate, and hydrolysable ester sulfates in the high molecular weight (>10000) and low molecular weight (500–10000) fractions of soil organic matter extracts were strongly positively correlated with tissue S. Arylsulfatase activity in soil and humic-arylsulfatase extracts assayed with p-nitrophenyl sulfate were also strongly correlated with tissue S, while humic-arylsulfatase activity assayed with the low molecular weight substrate was negatively correlated with tissue S.  相似文献   

10.
Laboratory test systems are frequently used to assess the release of pollutants from contaminated sites. To infer behaviour in the field, all factors that control the release of such pollutants should be considered in the experiment. We carried out column experiments with varying boundary conditions under saturated flow to identify the processes governing the release and to evaluate the effect of environmental conditions on several polycyclic aromatic hydrocarbons (PAHs). We compared the results with groundwater concentrations monitored in the field. The contaminated soil material originated from a former tar‐processing site. The effluent was analysed in response to forced variations in flow velocity, residence time, ionic strength and temperature. Interruptions to the flow had no effect on concentrations, which were close to those predicted by Raoult’s law. We conclude that release of PAHs is controlled by equilibrium dissolution according to Raoult’s law at moderate ionic strength. Diminishing the ionic strength by a pulse of pure water, however, results in a marked increase in the concentrations of exported PAHs. We attribute this to PAHs being bound to mobile particles. The effect was larger in the column percolated with fast flow, suggesting that the release of carriers is controlled by shear stress. An increase of temperature by 10 K resulted in marked increases in concentrations of the PAHs in the outflow between 6 and 160%. Concentrations in the groundwater correlate well with those in the outflow from the columns with similar ionic strength and temperature. We were able to identify the processes governing the release of PAHs under various conditions and to explain the concentrations observed in the field. The study illustrates that column outflow experiments, which support decisions in risk assessment, must be designed appropriately.  相似文献   

11.
Lead (Pb) from the traffic accumulates in roadside soils, which are usually vegetated to control erosion. Plants release soluble organic substances that bind Pb. Root macropores also create preferential pathways through which water can flow. Both these processes may enhance Pb mobility. We used large lysimeters to investigate the transport of Pb in a contaminated (445 mg Pb kg?1) soil under vegetation (Phacelia tanacetifolia). Despite the high soil pH (7.2), Pb leached into the drainage water during the 5‐month experiment. The fast response of the system to intense rainfall events indicated the presence of preferential flow. By comparing Pb concentrations in filtered and unfiltered leachates, we found that Pb was leaching primarily on suspended material. An increase in Pb concentration in the leachate at the end of the experiment indicated the remobilization of Pb, possibly by decaying vegetation. We parameterized the dual‐porosity MACRO model using the experimental results. The simple parameterization of MACRO used to simulate the Pb concentrations in the drainage water produced an overall model efficiency of 0.81: MACRO simulated the Pb concentrations well, but it failed to predict the observed increase of Pb in the leachate at the end of the experiment. The model gave the best prediction of Pb concentrations with a small partition coefficient (kd= 150 cm3 g?1). Long‐term simulations of Pb mobility showed that for our specific conditions preferential flow was the main process determining the fate of Pb.  相似文献   

12.
Zero-tension lysimeters are widely applied to study the fate of chemicals in the subsurface environment. However, conditions in lysimeters differ from the field situation, because local saturation is required at the lower boundary to collect leachate. The objective was to characterize the influence of the lower boundary on the flow and transport behaviour of bromide observed in six 1.2-m-long lysimeters and in the field by 30 suction plates installed at 1.2-m depth, which were operated with a time-variable suction equal to the ambient soil water potential. A bromide pulse was applied at the bare surface of a silty soil in autumn 1997 and monitored for 2.5 years. The mean leachate flux was 0.98 mm day−1 for the lysimeters versus 0.66 mm day−1 for the suction plates. The lysimeters had a slightly slower effective mean pore-water velocity, expressed as transport distance per unit of leaching depth, and exhibited more solute spreading than the suction plates. Numerical simulations revealed that the amount of water collected with the suction plates was sensitive to the hydraulic conductivity of the plates. The spatial variability in hydraulic properties in the model explained the observed variability in cumulative leachate, at least qualitatively. The arrival time and spreading of the breakthrough curves (BTCs) were well described by the simulations in the lysimeters, but were underestimated in the suction plates. Preferential flow through macropores, which is not an effective carrier for bromide, might be the reason for this discrepancy. Molecular diffusion contributed significantly to solute spreading and enhanced lateral mixing. Both the experiments and the simulations revealed that the dispersivity derived from BTCs is significantly influenced by the observation method and experimental conditions.  相似文献   

13.
Preferential flow and transport in soil: progress and prognosis   总被引:3,自引:0,他引:3  
Soil is the first filter of the world’s water; its buffering and filtering determine the quality and quantity of our reserves of subterranean and surface water. Preferential flow can either enhance, or curtail, the capacity of the soil to buffer and filter, and it can compromise, or boost, other ecosystem services. We ask ‘when do preferential flow and transport matter?’ We identify 12 of 17 ecosystem services that benefit from preferential flow and three that are affected detrimentally. We estimate by simple arithmetic the value of preferential flow to ecosystem services to be globally some US$304 billion (109) per year. We review the 1989 Monte Verità meeting on preferential flow processes and summarize the 2006 presentations, some of which are published in this issue of the Journal. New technologies and innovative experiments have increased our understanding of the conditions that initiate and sustain preferential flows. We identify contemporary exigencies, and suggest avenues for their resolution. We are progressing through observation‐led discovery. Our prognosis is that new data will enable us to develop better models, and more aptly to parameterize existing models, and thereby predict the impact, benefits and detriments of preferential flow in soil.  相似文献   

14.
地下水浅埋条件下包气带水和溶质运移数值模拟研究述评   总被引:10,自引:2,他引:8  
地下水浅埋条件下包气带水和溶质运移规律是解决土壤盐渍化、地下水污染等环境与生态问题的基本理论基础,基于多孔介质水和溶质运移基本方程的数值模型是研究包气带物质运移的重要手段。通过深入分析土壤水和地下水之间的相互关系,强调在地下水埋深小于其极限埋深的情况下应把地下水作用耦合到包气带水和溶质运移模型中。该文概括总结了现有研究把地下水作用与土壤水模型相耦合的方法,并分析了各种方法的优缺点。在回顾现有土壤水分运动参数和溶质运移参数确定方法的基础上,归纳了包气带水和溶质运移模型从“点”尺度向“田块”尺度扩展的途径,随机方法仍将是今后的研究热点,并有望应用于实践。  相似文献   

15.
Flumioxazin is an herbicide registered for use in soybean and peanut. However, few published papers concerning the soil persistence of flumioxazin are available. Therefore, laboratory studies were initiated to determine the half-life (t(1/2)) of flumioxazin in Greenville sandy clay loam and Tifton loamy sand soils when incubated at 15 and 25 degrees C. Results indicated that temperature had little effect on flumioxazin persistence. The t(1/2) for the Greenville soil was 17.9 and 16.0 days while the Tifton soil was 13.6 and 12.9 days, at 15 and 25 degrees C, respectively. These data correspond to the greater clay content of the Greenville soil (32%) as compared to the Tifton soil (2%). Therefore, the Greenville soil had greater soil adsorption and less flumioxazin was generally available to be degraded by soil microorganisms. In soils that were heat treated to reduce microbe populations, 99% of initial flumioxazin was accounted for after 16 days. Mineralization of flumioxazin, measured as 14CO2 evolution, was also greater in the Tifton soil (2.2% after 64 days) than in the Greenville soil (2.0% after 64 days). From these data, it was concluded that microbes were the most influential factor concerning the degradation of flumioxazin.  相似文献   

16.
Column experiments on phytolith transport were conducted to assess the partial contributions of water percolation and earthworm activity to phytolith transport in loamy and sandy soils. Six intact cores of a loamy sandy Haplic Cambisol and nine cores of a silty loamy Stagnic Luvisol were excavated. With the Luvisol, three treatments were perfomed: a percolation treatment with periodic irrigation, but without earthworms, a percolation and earthworm treatment with periodic irrigation and earthworms (Aporrectodea caliginosa) and a control. The Cambisol cores did not contain earthworms and hence only percolation and control treatments were tested. The phytoliths of common reed (Phragmites australis) were labelled with the fluorescent dye fluorescein isothiocyanate and applied to the soil surface of each core. Except for the control treatment, 3600 mm of water was applied over 6 months. In the Cambisol, the weighted mean transport distance of phytoliths was significantly greater with percolation (2.2 ± 0.1 cm) than in the control (0.9 ± 0.3 cm), indicating that water percolation is a driving mechanism of phytolith transport. In the Luvisol, the difference in mean transport depth between control and percolation treatments (1.0 ± 0.2 and 1.5 ± 0.3 cm) was not significant. The earthworms did not affect the mean transport distance of phytoliths in the Luvisol, but the phytolith concentrations in the leachates were significantly greater and their size distribution did not change with soil depth as observed in the percolation treatment without earthworms. Further studies are required to quantify the effect of earthworms on phytolith transport.  相似文献   

17.
The effect of acidic precipitation on cation leaching in a second-growth Douglas-fir ecosystem at the Thompson Research Center is reviewed. Sulfate mobility and soil pH buffering power were tested by applications of heavy doses of H2SO4 to the study plot. Sulfate at high concentrations proved to be immobilized, presumably by adsorption to soil sesquioxide surfaces. Soil sulfate adsorption was determined at varying sulfate concentrations, and two mechanisms of adsorption are implied by the shapes of the isotherms.  相似文献   

18.
This paper describes the movement of anions and cations through soils at the regional scale using block‐scale and regional simulations of one‐dimensional ion transport through cultivated soils. The simulations were based on field experiments in a region of about 10 km2 in Lower Saxony, Germany. Transport was modelled with the convection–dispersion equation, and the cation exchange was described using the Gapon equation. We evaluated the spatial variation of cation exchange parameters, obtained estimates valid at the block scale, and simulated the one‐dimensional transport of anions and cations. The movement of anions and cations was simulated over blocks using effective transport parameters calculated from local transport parameters. The approach led to a good agreement between measured and predicted concentrations of Br, Na+, K+, Ca2+ and Mg2+ on four different 1 ha blocks. However, the mean concentrations of K+ in the soil solution in the uppermost horizons could not be described satisfactorily by the model. For the regional simulations, transport and exchange parameters were estimated by block kriging. All variograms of the exchange parameters were spatially structured with correlation lengths varying from 100 m to 300 m. Results of the regional simulations imply that Cl and K+ were transported substantially deeper in the southern part than in the northern part of the area. The transport depth of the ions strongly depended on the pore water velocities. The simulation of solute transport to the water table showed the influence of the depth of water table on the estimated travel times, superimposing the influence of the transport parameters in the region. The results of the regional simulations also emphasize the importance of careful fertilization, especially in regions with shallow water tables such as in the north of the area.  相似文献   

19.
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model. Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done. The most important thing is to refine the parameters and select precise boundary conditions.  相似文献   

20.
In experiments in lysimeters of sandy soil chlordane was transported in water flows only when sorbed on suspended soil material. A chlordane ‘concentration’ was calculated by dividing this sorbed chlordane by the volume of the water sample in which the suspended matter was carried. In all but one lysimeter the first peak in this ‘concentration’ appeared in the drainage well ahead of the first peak in the concentration of bromide applied at the same time as the chlordane. Chlordane also persisted in the drainage for less time than bromide. The transport of chlordane was most closely associated with that of the largest category of suspended soil material (> 1.2 μm), possibly because that category contained the most organic matter. It was not associated with the transport of colloidal matter for either of the two possible size limits applied to the latter (< 0.22 μm or < 0.45 μm). In the lysimeters to which pig slurry was applied the evidence that it enhanced the transport of chlordane was limited and equivocal; the chlordane was probably sorbed strongly by the soil's organic matter before the slurry was applied. The application of chlordane was 100 times greater than in normal agricultural practice and it was followed by a substantial volume of water. Nevertheless, only 0.00002% of it was transported from the lysimeters, and its ‘concentration’, calculated as above, never exceeded the EU limit of 0.1 μg1?1 for any one pesticide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号