首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
支链氨基酸是体内最丰富的必需氨基酸,包括亮氨酸﹑异亮氨酸和缬氨酸。支链氨基酸具有促进蛋白质合成、提高机体免疫力和促进胚胎发育等生理功能。支链氨基酸在机体糖代谢调节中发挥着重要作用,其可以通过调控机体胰岛素的分泌﹑胰岛素的敏感性以及葡萄糖转运载体的表达和易位等方式调控糖代谢。本文对支链氨基酸在体内的代谢途径及其调控机体糖代谢的途径进行综述。  相似文献   

2.
Notable distinctions between an embryonic stem cell (ESC) and somatic cell are that an ESC can maintain an undifferentiated state indefinitely, self-renew, and is pluripotent, meaning that the ESC can potentially generate cells representing all the three primordial germ layers and contribute to the terminally differentiated cells of a conceptus. These attributes make the ESC an ideal source for genome editing for both agricultural and biomedical applications. Although, ESC lines have been successfully established from rodents and primates, authentic ungulate stem cell lines on the contrary are still not available. Outstanding issues including but not limited to differences in pluripotency characteristics among the existing ESC lines, pre-implantation embryo development, pluripotency pathways, and culture conditions plague our efforts to establish authentic ESC lines from farm animals. In this review, we highlight some of these issues and discuss how the recent derivation of induced pluripotent stem cells (iPSCs) might augur the establishment of robust authentic ESC lines from farm animals.  相似文献   

3.
ABSTRACT: Mycoplasma haemofelis is a pathogenic feline hemoplasma. Despite its importance, little is known about its metabolic pathways or mechanism of pathogenicity due to it being uncultivatable. The recently sequenced M. haemofelis str. Langford 1 genome was analysed and compared to those of other available hemoplasma genomes.Analysis showed that in hemoplasmas genes involved in carbohydrate metabolism are limited to enzymes of the glycolytic pathway, with glucose appearing to be the sole energy source. The majority of the pentose phosphate pathway enzymes that catalyze the de novo synthesis of ribonucleotides were absent, as were cell division protein FtsZ and chaperonins GroEL/ES. Uncharacterized protein paralogs containing putative surface expression motifs, comprised 62% of M. haemofelis and 19% of Mycoplasma suis genome coverage respectively, the majority of which were present in a small number of unstructured islands. Limited mass spectrometry and immunoblot data matched a number of characterized proteins and uncharacterized paralogs, confirming their expression and immunogenicity in vivo.These data have allowed further characterization of these important pathogens, including their limited metabolic capabilities, which may contribute to their uncultivatable status. A number of immunogenic proteins, and a potential mechanism for host immune system evasion, have been identified.  相似文献   

4.
Dairy cattle undergo dramatic metabolic, endocrine, physiologic and immune changes during the peripartal period largely due to combined increases in energy requirements for fetal growth and development, milk production, and decreased dry matter intake. The negative nutrient balance that develops results in body fat mobilization,subsequently leading to triacylglycerol(TAG) accumulation in the liver along with reductions in liver function,immune dysfunction and a state of inflammation and oxidative stress. Mobilization of muscle and gluconeogenesis are also enhanced, while intake of vitamins and minerals is decreased, contributing to metabolic and immune dysfunction and oxidative stress. Enhancing post-ruminal supply of methyl donors is one approach that may improve immunometabolism and production synergistically in peripartal cows. At the cellular level, methyl donors(e.g. methionine, choline, betaine and folic acid) interact through one-carbon metabolism to modulate metabolism,immune responses and epigenetic events. By modulating those pathways, methyl donors may help increase the export of very low-density lipoproteins to reduce liver TAG and contribute to antioxidant synthesis to alleviate oxidative stress. Thus, altering one-carbon metabolism through methyl donor supplementation is a viable option to modulate immunometabolism during the peripartal period. This review explores available data on the regulation of one-carbon metabolism pathways in dairy cows in the context of enzyme regulation, cellular sensors and signaling mechanisms that might respond to increased dietary supply of specific methyl donors. Effects of methyl donors beyond the one-carbon metabolism pathways, including production performance, immune cell function,mechanistic target or rapamycin signaling, and fatty acid oxidation will also be highlighted. Furthermore, the effects of body condition and feeding system(total mixed ration vs. pasture) on one-carbon metabolism pathways are explored. Potential effects of methyl donor supply during the pepartum period on dairy calf growth and development also are discussed. Lastly, practical nutritional recommendations related to methyl donor metabolism during the peripartal period are presented. Nutritional management during the peripartal period is a fertile area of research, hence, underscoring the importance for developing a systems understanding of the potential immunometabolic role that dietary methyl donors play during this period to promote health and performance.  相似文献   

5.
围产期奶牛脂肪肝等营养代谢性疾病的防治和调控是提高生产性能和效益的关键.胆碱作为一种动物生长发育必需的营养素,在奶牛肝脏脂肪代谢调控方面发挥着重要的作用.饲粮中适当补充胆碱可以有效降低肝脏脂肪含量和预防脂肪肝,并维持肝脏的正常生理功能.胆碱主要通过上调脂肪分解和下调脂肪生成途径的基因和蛋白的表达水平来调节脂肪代谢,从而减少脂肪沉积,缓解脂肪肝.本研究在已有文献报道基础上,阐述了胆碱的特性和功能,围绕胆碱对动物肝脏脂肪代谢的调节作用及机制进行了综述,旨在为奶牛维持机体健康、提高反刍动物生产性能提供理论依据.  相似文献   

6.
7.
Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.  相似文献   

8.
SOHLH1与SOHLH2属于基础型螺旋-环-螺旋(bHLH)转录因子,具有生殖细胞的特异性,在生殖细胞分化及发育早期发挥着重要作用。本文就SOHLH1与SOHLH2的进化、表达及调控机制进行综述,为未来人类生殖相关疾病的研究及治疗提供理论基础。  相似文献   

9.
10.
睾丸支持细胞结构、功能及研究进展   总被引:1,自引:0,他引:1  
在睾丸生精小管的上皮内存在生精细胞和支持细胞,支持细胞呈不规则形状,核细长,核仁大,表面积巨大.各级生精细胞处于支持细胞的包围中,随着生精细胞发育阶段的不同,睾丸支持细胞也发生相应的形态变化,以更好的维持生精细胞的发育.支持细胞参与血-睾屏障的形成,维持睾丸内的生精微环境;支持细胞分泌多种因子,它不但供给生精细胞营养,还可以为生精细胞提供免疫豁免的环境.近年来人们对睾丸支持细胞的形态结构和功能有了不断的了解.现就支持细胞的功能和研究进展进行综述.  相似文献   

11.
胰岛素(insulin)及其信号传导途径在细胞中发挥调节糖、脂肪和蛋白质代谢,影响生物的生长、代谢、生殖、衰老等功能[1]。自首个昆虫类胰岛素—家蚕素(Bombyxin)在家蚕体内被发现以来,其结构、分布、调控基因、分泌控制及其在生理学上的功能已部分被阐明。家蚕素一级结构与人胰岛素大约有40%的同源性,主要在家蚕脑组织中表达,其代谢调控作用等相关研究已取得较大进展。本文将在相关文献基础上对家蚕素信号通路及其在调控家蚕代谢、生长及发育的研究进展上做一综述。  相似文献   

12.
Tumor necrosis factor‐alpha (TNF‐α) is recognized as a cytokine because of its involvement in inflammation‐mediated biological defense functions. Although TNF‐α is primarily produced by macrophages, it is also produced by other cells, including lymphocytes, Kupffer cells, natural killer cells and adipocytes. While TNF‐α has diverse immune system functions, including antitumor activity, antimicrobial activity and mediation of inflammation, it also regulates a number of physiological functions, including appetite, fever, energy metabolism and endocrine activity. Factors such as viruses, parasites, other cytokines, and endotoxins induce TNF‐α production. In combination with other cytokines, TNF‐α plays a clinically important role in cattle by mediating immune inflammatory responses such as mastitis and endotoxic shock. It has been reported that cytokines such as TNF‐α are involved in metabolic disease such as acidosis. On the other hand, several data suggest that lactoferrin (LF) acts to prevent the release of a number of inflammatory mediators from various activated cells, and further suggest that the prophylactic effect of LF involves inhibition of cytokine production, including TNF‐α, that are principal mediators of the inflammatory response leading to death from toxic shock. This review discusses the role of TNF‐α in pathological conditions in cattle, including infections and metabolic diseases caused by perturbation of metabolism and endocrine functions.  相似文献   

13.
炎症是一种机体对感染或组织损伤的保护性反应。适度的或可控的炎症对于入侵病原微生物的清除以及受损组织的修复是必需的,然而过度的或不可控的炎症往往会导致病理性炎症反应发生,大大提高了各种感染性和代谢性疾病的发病风险。多不饱脂肪酸代谢生成的脂质调控介质对炎症的启动、发展以及消退均具有重要的调节作用,了解多不和脂肪酸的代谢及其代谢产物对炎症反应的调节机制,对于通过饲粮营养途径控制疾病发生以及改善人和动物健康具有重要的理论和现实意义。鉴此,本文综述了多不饱和脂肪酸的代谢途径,并就其代谢产物对炎症反应的调节进行了详细论述。  相似文献   

14.
Inborn errors of metabolism are caused by genetic defects in intermediary metabolic pathways. Although long considered to be the domain of human paediatric medicine, they are also recognised with increasing frequency in companion animals. The diagnosis of diseased animals can be achieved by searching for abnormal metabolites in body fluids, although such screening programmes have, until now, not been widely available to the small animal clinician. A comprehensive battery of analytical tools exists for screening for inborn metabolic diseases in humans which can be applied to animals and serve not only for the diagnosis of affected patients but also to detect asymptomatic carriers and further our understanding of metabolic pathways in dogs and cats. Moreover, naturally occurring animal models of inherited metabolic diseases provide a unique opportunity to study the biochemical and molecular pathogenesis of these disorders and to investigate possible therapeutic options.  相似文献   

15.
叶绿醇对脂肪细胞分化及糖脂代谢的调节作用   总被引:1,自引:0,他引:1  
叶绿醇(phytol)是植物叶绿素分子上一个支链。动物摄入的叶绿醇在体内可以代谢产生植烷酸和降植烷酸。叶绿醇及其代谢产物不仅是机体氧化代谢的重要能量来源,而且在糖脂代谢、脂肪细胞分化聚酯调控方面具有特殊的生物学功能,近年研究指出该过程与过氧化物酶体增殖激活物受体(PPAR)和视黄醇受体(RXR)的激活密切相关。因此,本文就叶绿醇在体内的基本代谢过程,叶绿醇及其代谢产物调控糖脂代谢的功能及其信号通路的最新研究进展进行简要综述,为深入研究叶绿醇的分子营养学机制提供参考。  相似文献   

16.
Transplantation of male germ line stem cells from a donor animal to the testes of an infertile recipient was first described in 1994. Donor germ cells colonize the recipient's testis and produce donor-derived sperm, such that the recipient male can distribute the genetic material of the germ cell donor. Germ cell transplantation represents a functional reconstitution assay for male germ line stem cells and as such has vastly increased our ability to study the biology of stem cells in the testis and define phenotypes of infertility. First developed in rodents, the technique has now been used in a number of animal species, including domestic mammals, chicken and fish. There are three major applications for this technology in animals: first, to study fundamental aspects of male germ line stem cell biology and male fertility; second, to preserve the reproductive potential of genetically valuable individuals by male germ cell transplantation within or between species; third, to produce transgenic sperm by genetic manipulation of isolated germ line stem cells and subsequent transplantation. Transgenesis through the male germ line has tremendous potential in species in which embryonic stem cells are not available and somatic cell nuclear transfer has limited success. Therefore, transplantation of male germ cells is a uniquely valuable approach for the study, preservation and manipulation of male fertility in animals.  相似文献   

17.
Spermatozoa are unique cells because of their morphological and physiological characteristics. They are produced during the process called spermatogenesis. Spermatogenesis consists of three phases: spermatocytogenesis, spermiogenesis and spermiation, during which spermatozoa undergo several changes. Spermatogenesis takes place within the seminiferous tubules containing two types of cells—the germ cells and the Sertoli cells—that alongside the Leydig cells, which play an important role when it comes to normal fertility. Everything is regulated by the hypothalamic–pituitary–gonadal axis and specific hormones due to multi-hormonal feedback systems. Spermatozoa possess morphological and physiological features, which are sometimes completely different from what is observed in various somatic cells. What is more, canine spermatozoa have specific characteristics making them special compared to the spermatozoa of other mammalian species. The metabolic energy production, which is crucial for the appropriate functioning of spermatozoa, can be fuelled by different metabolic pathways utilizing different chemical substrates. Inseparable from the oxidative phosphorylation process is the production of reactive oxygen species, which are both essential and toxic to spermatozoa. Furthermore, epididymis is a very important structure, responsible for the transport and maturation of spermatozoa, which are then stored in the last segment of epididymis—the epididymal cauda. Moreover, the retrieval of spermatozoa from the epididymides is crucial for the development of assisted reproduction techniques and sperm cryopreservation methods. The information gained from the research on domestic dogs might be transferred to their wild relatives, especially those species categorized as endangered.  相似文献   

18.
β-羟基丁酸(β-hydroxybutyric acid,BHBA)是酮体的主要成分之一,在反刍动物瘤胃中由微生物发酵产生的丁酸在瘤胃上皮细胞中氧化生成,BHBA对反刍动物瘤胃上皮细胞的代谢与增殖具有重要调控作用。近年来,有关BHBA研究多集中在肝脏生酮、奶牛酮病及泌乳等方面,关于BHBA与幼龄反刍动物瘤胃上皮细胞生长发育之间的关系及内在机制研究很少。本文重点针对BHBA在瘤胃上皮的生成、转运,以及BHBA作为信号分子调控瘤胃上皮细胞代谢与增殖的分子机制进行综述,这对于丰富瘤胃发育及调控理论与幼龄反刍动物培育营养策略具有重要意义。  相似文献   

19.
AMP激活的蛋白激酶(AMP-activated prorein kinase,AMPK)是一种能被腺苷一磷酸(AMP)激活的蛋白激酶。在动物应激(生理、营养、环境和疾病等)过程中起着重要作用。近年研究表明,AMPK在细胞和全身组织器官能量代谢平衡中起着举足轻重的作用,并且在调节物质代谢中起重要作用,其调节代谢过程主要包括葡萄糖转换,糖酵解和脂类代谢等。近年来在牛上已经进行了很多研究,其中包括其染色体定位及结构的确定等。本文将简要介绍AMPK的分子结构及功能,并对AMPK基因在牛上的研究进展进行综述。  相似文献   

20.
多不饱和脂肪酸是一种具有特殊生物学功能的物质,在机体免疫调节、细胞增长、基因调控、脂质代谢及抗癌等方面都具有重要的作用,作者简述了多不饱和脂肪酸的生物学功能及其在鸡生产中的应用研究进展,包括对鸡生产性能、蛋肉品质和免疫机制等方面的调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号