首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
 抽穗期是决定水稻品种适应地区和季节的关键性状。水稻抽穗期QTL对产量性状和(或)株高具多效作用是个普遍现象, 但是, 除了Ghd7和DTH8(Ghd8), 其他水稻抽穗期基因的多效性尚需进一步验证。本研究针对抽穗期基因RFT1 Hd3a所处区间和Hd1所处区间, 以珍汕97B为轮回亲本、密阳46为供体亲本, 构建了遗传背景基本一致的2个BC2F5分离群体;采用Windows QTL Cartographer 2.5进行抽穗期、株高及千粒重的QTL分析, 并根据RFT1 Hd3a下游17 kb处的连锁标记Si2944及Hd1的基因标记Si9337的基因型, 将每个群体中的纯合基因型材料分成4组, 比较其表型差异。结果表明, 这2个区间对抽穗期、株高及千粒重均呈显著作用, 它们之间不呈显著互作, 且Hd1所处区间对3个性状的作用均强于RFT1 Hd3a所处区间。  相似文献   

2.
对元江普通野生稻(Oryza rufipogon Griff.)(简称元江普野)荷花塘3号为供体、籼稻(O.sativassp.indica)恢复系蜀恢527为轮回亲本构建的种间近等基因系群体进行数量性状位点(QTL)分析,在近等基因导入系YJ10-03-01中鉴定了一个抽穗扬花期耐热QTL。利用均匀分布在水稻12条染色体上的360个SSR标记检测近等基因系YJ10-03-01和籼稻恢复系蜀恢527,共获得9个多态性标记。单标记分析表明第5染色体短臂上的多态性标记与抽穗扬花期耐热性极显著相关。进一步在人工气候室模拟高温条件下处理YJ10-03-01与蜀恢527杂交得到F2分离群体(1027个单株)并进行SSR标记分析,以水稻结实率为耐热指标,利用复合区间作图方法在第5染色体短臂上检测到一个抽穗扬花期耐热性QTL,暂命名为qHTH5。该QTL在F2及F3世代分别解释8.6%和19.4%的表型变异。在F3世代,继续利用目标区间标记RM7320和RM7444之间的SSR标记鉴定纯合重组体,利用置换作图法将QTL定位在约304.2kb之内(RM592-RM17921)。  相似文献   

3.

Background

Combining ability is a measure for selecting elite parents that make the highest contributions to hybrid performance. However, the genetic bases of combining ability and how they contributed to heterosis is seldomly known.

Results

We constructed a both NCII and NCIII population derived from an indica-japonica cross to study the relationship among parental performance, combining ability and hybrid performance of 11 agronomic traits. Among them, specific combining ability is more important to grain yield than parental performance and general combining ability. We performed linkage analyses to phenotypic values and combining ability of all 11 traits in Doubled haploid lines and its two backcross populations and identified 108 QTLs in total. Among these QTLs, four known loci, Sd1, Ghd7, Ghd8 and DEP1 contribute a lot to GCA effects of agronomic traits except grain yield and seed setting rate. Three QTLs, Ghd8, S5 and qS12, contribute a lot to SCA effects of grain yield and present overdominace.

Conclusions

Our study provides insights into the genetic bases of combining ability and heterosis and will promote the improvements of indica-japonica hybrid breeding.
  相似文献   

4.
Stigma exsertion is an important trait for outcrossing ability in rice. Stigma exsertion rate (SER) of male sterile lines (MSLs) is a key factor affecting F1-seed production in hybrid rice. In this study, seven QTLs for SER were detected on five chromosomes using a set of single-segment substitution lines (SSSLs) derived from O. glaberrima. Three of the QTLs were mapped in the estimated intervals of 92.5–333.0 kb. qSER-5 was located in a substitution segment of 92.5 kb. qSER-1b and qSER-8b were respectively limited to 333.0 kb and 107.5 kb by secondary substitution mapping. qSER-1b and qSER-3 had bigger additive effects of 11.5% and 11.9%, respectively, while the other five QTLs had smaller additive effects from 5.7% to 8.6%. Open reading frames were identified in the regions of qSER-5 and qSER-8b in O. sativa and O. glaberrima genomes. Fine mapping of the QTLs laid a foundation for the cloning of genes, and QTLs for SER will be used to develop MSLs with strong ability of outcrossing.  相似文献   

5.
粳稻不同生态类型间F1的杂种优势及其亲本的配合力分析   总被引:29,自引:5,他引:24  
用8个不同生态类型的粳稻品种配成8×8双列杂交,研究8个重要农艺性状的杂种优势以及亲本的配合力。结果表明,不同生态类型间杂种F1 各性状的优势有正有负。56个F1组合平均, 小区产量性状表现19.5%的高亲优势, F1小区产量超过高亲值的组合占87.5%,其余7个性状的F1值位于中亲值与高亲值之间。 在不同生态类型所构成的总体中,株高、每穗总粒数、每穗实粒数和小区产量4个性状的加性遗传方差和非加性遗传方差同等重要;抽穗期、穗长、单株有效穗3个性状的加性遗传方差更重要;千粒重性状非加性遗传方差更为重要。小区产量和产量构成因素一般配合力效应和特殊配合力效应方差较大的亲本是秀水04和3726;特殊配合力效应大且综合性状优良的组合是越光/秀水04。  相似文献   

6.
《Plant Production Science》2013,16(2):224-232
Abstract

In rice (Oryza sativa L.), the maintenance of high photosynthetic rate of flag leaves and the carbon remobilization from leaf sheaths after heading is a critical physiological component affecting the yield. To clarify the genetic basis of RuBisCO content of the flag leaf, a major determinant of photosynthetic rate, and non-structural carbohydrate (NSC) concentration in the third leaf sheath at heading, we carried out quantitative trait loci (QTL) analysis with 39 Koshihikari/Kasalath chromosome segment substitution lines (CSSLs) and backcross progeny F2 population derived from target CSSL holding the QTL/Koshihikari in the field. QTLs for RuBisCO content and NSC concentration at heading were detected between R2447-C1286 and R2447-R716 on chromosome 10, respectively, by comparing Koshihikari with four CSSLs for chromosome 10 (SL-229, -230, -231 and -232). The progeny QTL for RuBisCO content and for NSC concentration at heading qRCH-10 and qNSCLSH-10-1, respectively, were detected at similar marker intervals between RM8201 and RM5708. In addition, QTLs for RuBisCO content at 14 d after heading, qRCAH-10-1 and qRCAH-10-2, were detected in regions different from that of qRCH-10. No QTL for NSC concentration at 14 d after heading was detected between RM8201 and R716, the region analyzed in this study. The QTLs qRCH-10 and qRCAH-10-1 for RuBisCO content would have additive effects. These QTLs for RuBisCO content and NSC concentration newly found using CSSLs and their backcross progeny F2 population should be useful for better understanding the genetic basis of source and temporary-sink functions in rice and for genetic improvement of Koshihikari in terms of their functions.  相似文献   

7.
FUNAABOR-2 is a popular Ofada rice variety grown in a large area under rainfed upland condition across western states of Nigeria. We used the combination of phenotypic and marker-assisted selection(MAS) to improve grain yield of FUNAABOR-2 under drought stress(DS) at the reproductive stage via introgression of two drought quantitative trait loci(QTLs), qDTY12.1 and qDTY2.3. Foreground selection was carried out using peak markers RM511 and RM250, associated with qDTY12.1 and qDTY2.3, respectively, followed by recombinant selection with RM28099 and RM1261 distally flanking qDTY12.1. Furthermore, BC1 F2-derived introgressed lines and their parents were evaluated under DS and non-stress(NS) conditions during the 2015–2016 dry season. Overall reduction of grain yield under DS compared to NS was recorded. Introgressed lines with qDTY12.1 and qDTY2.3 combinations showed higher yield potential compared to lines with single or no QTL under DS, indicating significant positive interactions between the two QTLs under the FUNAABOR-2 genetic background. Pyramiding of qDTY12.1 and qDTY2.3 in the FUNAABOR-2 genetic background led to higher grain yield production under DS and NS.  相似文献   

8.
Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL, qDTY12.1, along with two major blast resistance genes i.e. Pi54 and Pi1 through marker-assisted backcross breeding. Both traits were transferred till BC2 generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY12.1), RM206 for Pi54 and RM224 for Pi1. Extensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having qDTY12.1 and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.  相似文献   

9.
A spontaneous mutation,tentatively named d63,was derived from the twin-seedling progenies of rice crossed by diploid SARIII and Minghui 63.Compared with wild-type plants,the d63 mutant showed multiple abnormal phenotypes,such as dwarfism,more tillers,smaller flag leaf and reduced seed-setting rate and 1000-grain weight.In this study,two F 2 populations were developed by crossing between d63 and Nipponbare,d63 and 93-11.Genetic analysis indicated that d63 was controlled by a single recessive gene,which was located on the short arm of chromosome 8,within the genetic distance of 0.40 cM from RM22195.Hence,D63 might be a new gene as there are no dwarf genes reported on the short arm of chromosome 8.  相似文献   

10.
利用微卫星标记对四川省主推杂交水稻品种进行了DNA指纹图谱构建和品种鉴定研究。208对引物中具有多态性的引物共123对,占所用引物的59.13%。不同染色体的微卫星分析的多态性不同,第9、10染色体微卫星的多态性高于其他染色体,第12染色体上的微卫星标记的多态性最差,仅为46.15%。42份常用杂交水稻亲本材料聚类分析表明,恢复系和不育系的遗传基础均较狭窄,但恢复系和不育系之间的遗传距离相对较远,从一定程度上反映了遗传距离与杂种优势的正相关。筛选出的各个亲本材料的特异引物或引物组合,能够将某个亲本材料与其他材料相区分。利用这些SSR引物建立了四川省主要杂交水稻亲本的DNA指纹数据库,可以有效地解决杂交水稻及其杂交种的鉴定问题,以及有效地分析各材料间的亲缘关系。从DNA指纹数据库中筛选出D优527的特异引物RM337、RM244和RM346,可以鉴定出D优527中的纯度,与田间鉴定结果一致;在真伪性鉴定中将同一不育系配组的D优527和D优68区分开,说明微卫星鉴定结果是准确可靠的,可用于品种权保护和品种真伪性及纯度鉴定。  相似文献   

11.
Forty pairs of SSR markers were used to compare the genetic diversity changes in 151 Chinese major rice varieties planted in 1950s and in the recent ten years. Of 40 SSR loci, 39 were found to be polymorphic while one locus (RM479) monomorphic. A total of 213 alleles were identified from the 39 polymorphic loci. The average number of alleles per locus (Na) was of 5.5, ranging from 2 to 11. Nei’s gene diversity index (He) varied drastically among loci from 0.309 at RM174 to 0.869 at RM418, with an average value of 0.649. There existed significant difference in SSR allelic diversity between indica and japonica subspecies, and indica had more variation than japonica both in Na and He. By comparison with the genetic changes in Na and He, it was revealed that the varieties planted in 1950s had more alleles and higher He than those in the recent ten years both for indica and japonica rices. The difference between two subspecies for Na was significant in a tendency over time (indica: z = 2.677, P = 0.007; japonica: z = 3.441, P = 0.001), but not significant for He (indica: z = 1.471, P = 0.141; japonica: z = 1.932, P = 0.053). Analysis of molecular variance (AMOVA) indicated that there existed significant difference (P < 0.05) in genetic variation between the two periods, of which more genetic variation was contributed by indica (Fst = 0.050) and japonica (Fst = 0.082) subsets. Using locus-by-locus AMOVA procedure, significant genetic differentiations were observed in 13 loci (RM21, RM128, RM147, RM169, RM190, RM221, RM231, RM251, RM253, RM317, RM341, RM418, and RM478) for indica varieties and 11 loci (RM101, RM135, RM152, RM159, RM169, RM190, RM251, RM253, RM311, RM418, and RM478) for japonica ones between the two periods. It was found some alleles had been lost in current major rice varieties as comparing with those in 1950s. Therefore, it should be necessary to exploit more alien elite genetic resources for extension of genetic background in current rice breeding program.  相似文献   

12.
We conducted a quantitative trait locus (QTL) analysis of 165 rice recombinant inbred lines derived from a cross between Zhonghui 9308 (Z9308) and Xieqingzao B (XB) in Hainan and Hangzhou, China. Grain thickness (GT), brown rice thickness (BRT), hull thickness (HT) and milling quality were used for QTL mapping. HT was significantly and positively correlated with GT and BRT. Twenty-nine QTLs were detected with phenotypic effects ranging from 2.80% to 21.27%. Six QTLs, qGT3, qBRT3, qBRT4, qHT6.1, qHT8 and qHT11, were detected repeatedly across two environments. Inherited from XB, qHT6.1, qHT8 and qHT11 showed stable expression, explaining 9.92%, 21.27% and 10.83% of the phenotypic variances in Hainan and 9.61%, 6.40% and 6.71% in Hangzhou, respectively. Additionally, the QTL cluster between RM5944 and RM5626 on chromosome 3 was probably responsible for GT and milling quality. The cluster between RM6992 and RM6473 on chromosome 4 played an important role in grain filling. Three near isogenic lines (NILs), X345, X338 and X389, were selected because they contained homozygous fragments from Zhonghui 9308, corresponding to qHT6.1, qHT8 and qHT11, respectively. The hull of XB was thicker than those of X345, X338 and X389. In all the lines, qHT6.1, qHT8 and qHT11 that regulated rice HT were stably inherited with obvious genetic effects.  相似文献   

13.
Northeast regions of China (38–55°N latitude) play an important role in Japonica rice planting. Heading dates of 10 Japonica rice cultivars native to the Northeast of China were investigated and their sensitivities to photoperiod and temperature were analyzed. The results showed that these Japonica rice cultivars were insensitive to photoperiod but strongly sensitive to temperature, i.e. a high temperature can markedly shorten the heading date. Genetic analyses were conducted on these 10 cultivars using a set of heading date tester lines. All these Japonica cultivars carried a dominant early heading gene Ef-1, and most of these cultivars carried the photoperiod insensitivity allele e1, and two types of alleles were presented at the Se-1 locus, including recessive photoperiod insensitivity gene Se-1e and dominant strong photoperiod-sensitivity (PS) gene Se-1n. The PS of these cultivars carrying E1 or Se-1n can be repressed or weakened by Ef-1 and the recessive allele hd2 they carried. These results provided a reasonable explanation to the adaptability of Japonica rice to the high latitude environment of the Northeast China, and could be useful for breeding new cultivars well adapted to the high latitude regions and expanding the rice cultivation range.  相似文献   

14.
Cadmium(Cd) is one of heavy metals harmful to human health. As rice is the main staple food in Asia and Cd is easily contaminated in rice, the molecular regulation of Cd accumulation should be explored. In this study, a recombinant inbred population derived from Xiang 743/Katy was grown in Cd-polluted fields and used to map the quantitative trait loci(QTLs) for Cd accumulation in rice grains. We identified seven QTLs distributed on chromosomes 2, 3, 6, 7, 8 and 10. These QTLs displayed phenotypic variances of 58.50% and 40.59% in 2014 and 2015, respectively. Two QTLs, qCd-2 and qCd-7, were identified in both the two years. qCd-2 was detected on the interval of RM250–RM207 on chromosome 2, with an LOD of 2.51 and a phenotypic contribution of 13.75% in 2014, and an LOD of 3.35 and a phenotypic contribution of 14.16% in 2015. qCd-7 co-localized with the cloned qCdT7 on chromosome 7 and may represent the correct candidate. The other five QTLs were detected only in one year. To further confirm the effects of qCd-2, a residual heterozygous line designated as RHL945, with a heterozygous interval of RM263–RM207 on chromosome 2, was selected from the recombinant inbred population and used to develop an F2 population consisting of 155 individual plants. By incorporating further simple sequence repeat markers into the segmental linkage map of the target region, qCd-2 was delimited in the interval of RM5404–RM3774, with an LOD value of 4.38 and a phenotypic contribution of 15.52%. These results reflected the genetic regulation of grain Cd in rice and paved the way for the future cloning of qCd-2.  相似文献   

15.
为了探讨红莲型不育细胞质应用于杂交粳稻育种的可能性,利用包台(BT)型、红莲(HL)型、茶野(CL)型、野败(WA)型等4种细胞质的同核异质不育系六千辛A与181个粳稻亲本测交,根据测交F1的小穗育性,筛选HL型粳稻恢复系。在此基础上,对筛选出的HL型粳稻恢复系与更多HL型不育系复测,并进行不同细胞质杂交粳稻的比对试验。研究结果表明:1)HL型和CL型不育系的恢、保关系十分一致,测交F1小穗育性间的相关性达极显著水平。2)HL型和CL型粳稻不育系的可恢性虽不如BT型不育系,但明显优于WA型粳稻不育系;以测交F1小穗育性达到85%以上作为选择标准,从BT型恢复系和广亲和恢复系中筛选出25个HL型(CL型)粳稻恢复系。3)不育系的核背景对杂种育性有影响,HL型六千辛A可恢性最好,其次为HL型陵香A,HL型珍5A可恢性最差。4)与BT型不育系配制的杂种相比,HL型和CL型不育系配制的杂种育性稳定性相对较差。5)HL型不育系配制的杂种与BT型、WA型不育系配制的杂种在播种至抽穗历期、株高、产量及品质性状上均无明显差异;HL型不育系配制的杂交粳稻结实率正常,与BT型不育系配制的杂种无明显差异,明显高于WA型不育系配制的杂种。说明HL型不育细胞质应用于杂交粳稻育种是可行的。  相似文献   

16.
Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR markers was constructed.Genetic analysis was conducted by mixed major gene plus polygene inheritance models,and quantitative trait loci (QTLs) identification by the QTLNetwork 2.0 and the composite interval mapping approach of WinQTLCart 2.5 software.Results showed that the PA trait was controlled by two major genes plus polygenes,mainly by major genes.Eight QTLs for PA were detected by the QTLNetwork 2.0 software,and each locus explained 0.01% to 39.89% of the phenotypic variation.Twelve QTLs for PA were detected by the WinQTLCart 2.5 software,with each locus explaining 2.83% to 30.60% of the phenotypic variation.Two major QTLs (qPA9.2 and qPA9.5) distributed between RM3700 and RM3600 and between RM5652 and RM410,respectively,and a moderate QTL (qPA9.7) distributed between RM257 and OSR28,were both detected by the two methods in all of the four environments.The negative effect alleles of the three QTLs were from Xiushui 79.In addition,eight pairs of epistatic QTLs with minor effects were also detected.QTL × environment interactions were not significant for additive QTLs and epistatic QTL pairs.  相似文献   

17.
Fine Mapping of C(Chromogen for Anthocyanin) Gene in Rice   总被引:1,自引:1,他引:0  
Seven residual heterozygous lines (RHLs) displaying different genotypic compositions in the genomic region covering probable locations of C (Chromogen for anthocyanin) gene on the short arm of rice chromosome 6 were selected from the progenies of the indica cross Zhenshan 97B/Milyang 46. Seeds were harvested from each of the seven plants, and the resultant F2:3 populations were used for fine mapping of C gene. It was shown in the populations that the apiculus coloration matched to basal leaf sheath coloration in each plant. By relating the coloration performances of the populations with the genotypic compositions of the RHLs, the C locus was located between rice SSR markers RM314 and RM253. By using a total of 1279 F2:3 individuals from two populations showing coloration segregation, the C locus was then located between RM111 and RM253, with genetic distances of 0.7 cM to RM111 and 0.4 cM to RM253. Twenty-two recombinants found in the two populations were assayed with seven more markers located between RM111 and RM253, including six SSR markers and one marker for the C gene candidate, OsC1. The C locus was delimited to a 59.3-kb region in which OsC1 was located.  相似文献   

18.
Genetic segregation analysis for flag leaf angle was conducted using six generations of P1,P2,F1,B1,B2 and F2 derived from a cross of 863B(a maintainer line of japonica rice) and A7444(a germplasm with large flag leaf angle).Genotypes and phenotypes of flag leaf angle were investigated in 863B(P1),A7444(P2) and 141 plants in BC1F1(863B/A7444$$$$863B) population.An SSR genetic linkage map was constructed and QTLs for flag leaf angle were detected.The genetic map containing 79 information loci was constructed,which covers a total distance of 441.6 cM,averaging 5.6 cM between two neighboring loci.Results showed that the trait was controlled by two major genes plus polygene and the major genes were more important.Fifteen markers showed highly significant correlations with flag leaf angle based on single marker regression analysis.Two QTLs(qFLA2 and qFLA8) for flag leaf angle were detected by both composite interval method in software WinQTLCart 2.5 and composite interval method based on mixed linear model in QTL Network 2.0.The qFLA2 explained 10.50% and 13.28% of phenotypic variation,respectively,and was located at the interval of RM300 and RM145 on the short arm of chromosome 2.The qFLA8 explained 9.59% and 7.64% of phenotypic variation,respectively,and was located at the interval flanking RM6215 and RM8265 on the long arm of chromosome 8.The positive alleles at the two QTLs were both contributed from A7444.  相似文献   

19.
Grain size traits, including grain length, grain width and grain thickness, are controlled by quantitative trait loci (QTLs). Many QTLs relating to rice grain size traits had been reported, but their control mechanisms have not yet been elucidated. A recombinant inbred line (RIL) population of 240 lines, deriving from a cross between TD70, an extra-large grain size japonica line with 80 g of 1000-grain weight, and Kasalath, a small grain size indica variety, were constructed and used to map grain size QTLs to a linkage map by using 141 SSR markers in 2010 and 2011. Five QTLs for grain length, six for grain width and seven for grain thickness were detected distributing over chromosomes 2, 3, 5, 7, 9 and 12. Seven QTLs, namely qGL3.1, qGW2, qGW2.2, qGW5.1, qGW5.2, qGT2.3 and qGT3.1, were detected in either of the two years and explained for 56.19%, 4.42%, 29.41%, 10.37%, 7.61%, 21.19% and 17.06% of the observed phenotypic variances on average, respectively. The marker interval RM1347-RM5699 on chromosome 2 was found common for grain length, grain width and grain thickness; qGL3.1 and qGT3.1 were mapped to the same interval RM6080-RM6832 on chromosome 3. All 18 QTL alleles were derived from the large grain parent TD70. Most of the QTLs mapped in the present study were found the same as the genes previously cloned (GW2, GS3 or qGL3, GW5 and GS5), and several were the same as the QTLs (GS7 and qGL-7) previously mapped. Three QTLs, qGL2.2 on chromosome 2, qGW9 and qGT9 on chromosome 9, were first detected. These results laid a foundation for further fine mapping or cloning of these QTLs.  相似文献   

20.
The genetics of resistance to green leafhopper Nephotettix virescens (Distant) was studied in 17 cultivars of rice (Oryza sativa L.). Seedlings at the one-leaf stage were infested with second- and third-instar nymphs of green leafhopper. Reactions to seedling injury were recorded 7–8 days after infestation. The reactions of F1, F2, and F3 populations from the crosses of resistant varieties with susceptible parent TN1 revealed that resistance of Tilakkachray, Kalimekri 77-5, and Tilockkachari was governed by two dominant genes and resistance of IR42 was conveyed by a single recessive gene. Single dominant genes govern resistance in the remaining 13 cultivars. Allele tests revealed that a single dominant gene of Segon Perak and one of the two genes of Kalimekri 77-5 are allelic to Glh 1. The single dominant gene of Ernest, Bignou and ARC614 and one of the two genes of each of Tilakkachray, Kalimekri 77-5, and Tilockkachari are allelic to Glh 2. A single dominant gene, which is allelic to Glh 3, conditions resistance in Arai and IR30. The single recessive gene which conveys resistance in IR42 appears to be allelic to glh 4. The allelic relationships of one of the two genes of Tilakkachray and Tilockkachari and single dominant genes of Fulkari 653, Chao Pho Kha, Amoule Borome, Kabero, Aus Murali, IR28 and IR34, with each other and with Glh 5 are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号