首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The disposal of untreated urban sewage in to open water bodies is common in most developing countries. This poses potential negative consequences to public health and agricultural sustainability. Hyderabad, one of India’s largest cities, disposes large amounts of its wastewater untreated into the Musi River, from where it is used, with the aid of irrigation weirs, for agricultural production. This paper presents a 14 month (December 2003 – January 2005) water quality survey which aimed to quantify spatial and temporal changes in key water quality parameters along a 40 km stretch of the Musi River. The survey found that river water quality improved dramatically with distance from the city; from untreated sewage in the city to irrigation water safe for use in agriculture 40 km downstream of the city. This improvement was contributed to by different treatment processes caused or aided by the irrigation weirs placed on the river.  相似文献   

2.
The growing necessity to develop more productive agriculture has encouraged the expansion of new irrigated lands. However, water use in agriculture may affect the natural regimes of water systems. This study aims to analyze, for the first time, water use and its dynamics during the creation of a newly irrigated land. Water use was studied through the development of water balances and subsequent application of quality indices for irrigation in two unirrigated years (2004–2005) and three years of gradual implementation of irrigation (2006, 2007 and 2008) in the Lerma basin (752 ha, Spain). Increases in evapotranspiration, drainage and water content in the aquifer were verified during the gradual transformation into irrigated land. Water balances closed adequately, giving consistency to the results and enabling the application of quality indices for irrigation. Irrigation quality analysis showed a use of available water resources equal to 84%. However, the estimated irrigation efficiency presented lower values, mainly due to irrigation drainage (15%) and combined losses by both evaporation and wind drift of sprinkler irrigation systems (13%). The results indicate that the use of water in the Lerma basin is at the same management level of other modern irrigation systems in the Ebro basin, although there is still margin for improvement in irrigation management, such as reducing the irrigation drainage fraction and the evaporation and wind drift losses of sprinkler irrigation systems.  相似文献   

3.
Due to urban growth, some agricultural lands have been replaced by residential, municipal, and industrial areas. In some cases the remaining agricultural land will not have enough water because of transfers from agriculture to M&I (municipal and industrial) users. Therefore, in many places, especially in arid and semi-arid regions, the use of treated wastewater as a reliable source of irrigation water has already been, or will be, considered in the future. Due to its unique characteristics, this new resource has many challenges that cannot be ignored, such as health issues, water quality, and long- and short-term effects on soils and crops. The study described herein considered the development of a new GIS-based model for planning and managing the reuse of treated wastewater for the irrigation of agricultural and green lands, considering various factors such as population and urban growth. The model is composed of several different modules, including an urban growth model. These modules are designed to help in the decision-making process for allocations of water resources to agricultural areas, considering factors such as crop types, crop pattern, water salinity, soil characteristics, pumping and conveyance costs, and also by comparing different management scenarios. Appropriate crops that can be grown with a specific water salinity and soil characteristics, proper water resources for each farm (according to pumping and conveyance costs, and analysis of water demand, and water supply) can be determined through the application of this model. The model can also rank agricultural areas and open spaces in and near an urban area according to their suitability for irrigated agriculture.  相似文献   

4.
Groundwater (GW) management is an essential element in irrigated agriculture. This paper analyzes the temporal dynamics of GW table and salinity in Khorezm, a region of Uzbekistan which is situated on the lower Amu Darya River in the Aral Sea Basin and suffering from severe soil salinization. We furthermore identify the critical areas for potential soil salinization by examining GW table and salinity measured during 1990–2000 in 1,972 wells, covering the entire region. Additionally, case studies were performed to assess the contribution of the GW to the soil salinization on a field scale. Over the entire area, GW was only moderately saline averaging 1.75 ± 0.99 g l−1 However, GW levels were generally very shallow averaging 148 ± 57 cm below the ground surface and thus likely to prompt secondary soil salinization. Three case studies where GW table, soil and GW salinity were closely monitored at the field scale, suggested that the elevated GW levels forced soil salinization by annually adding 3.5–14 t ha−1 of salts depending on the position and salinity of the GW table. Maps interpolated from the regional dataset revealed that GW was significantly shallower and more saline in the western and southern parts of Khorezm despite the presence of a drainage network which is rather uniformly distributed throughout the region. The results of the current study will assist the development of an improved drainage management in Khorezm.  相似文献   

5.
The creation of a new irrigated area influences the pollutants exported from the zone and, consequently, the quality of receiving water bodies. The aim of this study was to analyze the masses of the main pollutants exported by an area before and during its gradual transformation into irrigated land. To this end, salinity balances were carried out and the nitrate exported from the Lerma basin (752 ha, Spain) was quantified during 2004–2008. The agroenvironmental impact was evaluated through the use of pollution indices. The results revealed that the transformation of the area into irrigated land decreased salinity and increased nitrate concentration in drainage. The increase in the volume of drainage increased the masses of salt and nitrate exported, which in turn increased pollution indices during the transition. However, these indices were still lower than those quantified in other irrigated lands and therefore can still be considered to be of low contamination level. This study demonstrates the important environmental influence of introducing irrigation to an area, as pollution levels change and become mainly dependent on the management of irrigation and nitrogenous fertilization. For this reason, it is highly desirable to promote the optimization of agricultural management in a way that minimizes its impact.  相似文献   

6.
A field experiment was conducted to examine the effect of drip irrigation using wastewater from a table olive industry on physiological, nutritional and yield parameters of olive trees (Olea europaea L.). Very limited information, if any, exists, on the potential of recycling this kind of wastewater in agriculture. Two types of wastewater were used in the experiment, the first with SAR and EC values of 12–56 and 3.5–4.2 dS m−1, respectively, and the second 73–90 and 4.3–6.0 dS m−1. In general, this kind of wastewater has a highly variable composition and SAR values that are too high for agricultural purposes. Olive trees rapidly responded to wastewater application. Compared to the control (fresh water), the more saline wastewater caused important decreases in leaf water potential, stomatal conductance to H2O and the photosynthesis rate after only 15 days of irrigation, the reduction being more pronounced after 2 months of irrigation. This treatment also caused a rapid, significant reduction in leaf N concentration, as compared with the N level in the trees before irrigation. Both types of wastewater significantly reduced olive yield, compared to that obtained in the control. These results indicate that this kind of wastewater is unsuitable for application to olive orchards under irrigation. Received: 16 August 1999  相似文献   

7.
The scarcity of freshwater resources is a critical problem in semi-arid zones and marginal quality water is increasingly being used in agriculture. This paper aimed at evaluating the physico-chemical and biological risks on irrigated soils and fruits of macrophyte treated wastewater (TWW), the nutrients supply, and the effect on tomato and eggplant production in semi-arid Burkina Faso. During three years of experiments, treated wastewater was used, with fresh water as control, in combination with or without mineral fertilizer application at recommended rate (140 kg N/ha + 180 kg P2O5/ha + 180 kg K2O/ha). The study revealed that the treated wastewater provided variable nutrients supply depending on year and element. The treated wastewater without mineral fertilizer improved eggplant yield (40% in average) compared to the freshwater. Both crops responded better to mineral fertilizer (52% for tomato and 82% for eggplant) and the effects of the treated wastewater and fertilizer were additive. As the N supply of TWW was very unsteady (8-227% of crop need), and P2O5 supply did not satisfy in whole crop need (3-58%) during any of the three years of experiment, we recommended that moderate N and P2O5 fertilizers be applied when irrigating with TWW in semi-arid West-Africa. On the contrary, the K2O supply was more steady and close to crop requirement (78-126%) over the three years of experiment and no addition of K fertilizer may be needed when irrigated with TWW. Faecal coliforms and helminth eggs were observed in treated wastewater and irrigated soils at rate over the FAO and WHO recommended limits for vegetable to be eaten uncooked. Tomato fruits were observed to be faecal coliform contaminated with the direct on-foliage irrigation with treated wastewater. Our results indicate that treated wastewater can effectively be used as both nutrients source and crop water supply in market gardening in the semi-arid Sub-Saharan West Africa (SSWA) where freshwater and farm income are limiting. Yet consumers should properly cook or disinfect treated-wastewater irrigated vegetables before eating, and market gardeners should also be careful manipulating treated wastewater to avoid direct health contamination in this environment.  相似文献   

8.
The relationships between urban development, water resources management and wastewater use for irrigation have been studied in the cities of Accra in Ghana, Addis Ababa in Ethiopia and Hyderabad in India. Large volumes of water are extracted from water sources often increasingly far away from the city, while investments in wastewater management are often lagging behind. The resulting environmental degradation within and downstream of cities has multiple consequences for public health, in particular through the use of untreated wastewater in irrigated agriculture. Despite significant efforts to increase wastewater treatment, options for safeguarding public health via conventional wastewater treatment alone remain limited to smaller inner-urban watersheds. The new WHO guidelines for wastewater irrigation recognize this situation and emphasize the potential of post- or non-treatment options. Controlling potential health risks will allow urban water managers in all three cities to build on the benefits from the already existing (but largely informal) wastewater reuse, those being the contribution to food security and reduction of fresh water demands.  相似文献   

9.
An experiment was conducted in diked rice fields with various weir heights (6 cm to 30 cm at an interval of 4 cm) for three consecutive years in the sub-humid climate of eastern India. The results reveal that about 56.75% and 99.5% of the seasonal rainfall can be stored in 6 cm and 30 cm weir height plots, respectively. Sediment losses of 347.8 kg/ha and 3.3 kg/ha have been recorded in runoff water coming out of 6 cm and 30 cm weir height plots, respectively in a cropping season. Similarly, total Kjeldahl nitrogen loss in runoff water from rice fields ranged from 4.23 kg/ha (6 cm weir height plots) to 0.17 kg/ha (26 cm weir height plots). The available K loss ranged from 2.20 kg/ha (6 cm weir height plots) to 0.04 kg/ha (30 cm weir height plots). Keeping in mind the aspects of conserving rainwater, sediment and nutrient and minimizing irrigation requirement, 22–26 cm of dike height is considered to be suitable for rice fields of the Bhubaneswar region during the Kharif (rainy) season. A lumped water balance model for diked rice field was developed and used for the present investigation. The computed values of runoff obtained from the simulation model are in close agreement with the observed values obtained in an experiment using higher weir heights (22 cm and above). The temporal distribution of runoff and irrigation requirement at fortnight intervals reveal that highest irrigation requirement is found during the first half of November followed by the second half of October and the first half of October. Rice fields up to a weir height of 18 cm produced about 20% of the total runoff in each of the first three fortnights. A gradual reduction in runoff was observed in the remaining fortnights. The least runoff was noticed in the month of November (during the first fortnight).  相似文献   

10.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

11.
Drip irrigation system has been one of the technical means to improve water use efficiency. In India, this system is gaining popularity among fruit growers and in water scarced area but a substantial area is being covered annually under vegetables crops. One of the major concerns raised by farmers about this system is its economic viability. In present study, the economic viability of drip irrigation system for growing capsicum crop based on discounted cash flow technique (Net present worth and Benefit cost ratio) was explored. Eight irrigation treatments were laid under drip with and without plastic mulch. The irrigation levels were taken as 1, 0.8 and 0.6 of the crop evapotranspiration. The pan evaporation method was used for estimation of reference evapotranspiration and Water Balance Approach was used for irrigation scheduling. The average amount of water supplied under treatment VD (100% irrigation requirement supplied with drip) was found to be 415 mm for whole growing season of the crop. Similarly the amount of water was found to be 332 mm and 249 mm for the treatment 0.8VD (80% irrigation requirement supplied with drip) and 0.6VD (60% irrigation requirement supplied with drip) respectively. Highest yield was recorded in case of treatment VD + PM (100% irrigation requirement supplied with drip plus plastic mulch) followed by VD. Yield under treatments 0.8VD, 0.6VD, 0.8VD + PM and 0.6VD + PM were significant while treatments VD, VF and VF + PM were at par with the treatment VD + PM. Net Present Worth (NPW) was found to be positive for all the treatments. The highest NPW was obtained under treatment VD as Rs. 309,734.90 and lowest was in case of 0.6VD + PM as Rs. 144,172.24. The yield per mm of water used was reported to be at higher side as 35 in both the treatments VD and VD + PM. But the yield per mm of water used was found to be lowest as 18.07 and 19 in case of VF and VF + PM respectively.  相似文献   

12.
Growing global population figures and per-capita incomes imply an increase in food demand and pressure to expand agricultural land. Agricultural expansion into natural ecosystems affects biodiversity and leads to substantial carbon dioxide emissions.Considerable attention has been paid to prospects for increasing food availability, and limiting agricultural expansion, through higher yields on cropland. In contrast, prospects for efficiency improvements in the entire food-chain and dietary changes toward less land-demanding food have not been explored as extensively. In this study, we present model-based scenarios of global agricultural land use in 2030, as a basis for investigating the potential for land-minimized growth of world food supply through: (i) faster growth in feed-to-food efficiency in animal food production; (ii) decreased food wastage; and (iii) dietary changes in favor of vegetable food and less land-demanding meat. The scenarios are based in part on projections of global food agriculture for 2030 by the Food and Agriculture Organization of the United Nations, FAO. The scenario calculations were carried out by means of a physical model of the global food and agriculture system that calculates the land area and crops/pasture production necessary to provide for a given level of food consumption.In the reference scenario - developed to represent the FAO projections - global agricultural area expands from the current 5.1 billion ha to 5.4 billion ha in 2030. In the faster-yet-feasible livestock productivity growth scenario, global agricultural land use decreases to 4.8 billion ha. In a third scenario, combining the higher productivity growth with a substitution of pork and/or poultry for 20% of ruminant meat, land use drops further, to 4.4 billion ha. In a fourth scenario, applied mainly to high-income regions, that assumes a minor transition towards vegetarian food (25% decrease in meat consumption) and a somewhat lower food wastage rate, land use in these regions decreases further, by about 15%.  相似文献   

13.
 Field experiments were conducted for 2 years (1997 and 1998) on sandy loam soil in northwestern Botswana to study the effect of five levels of pan evaporation replenishment (20, 40, 60, 80 and 100%) on marketable yield, yield components, irrigation production efficiency and economic return of winter broccoli, carrot, rape and cabbage under a drip irrigation method. The highest mean marketable yield (2 years) of broccoli (19.1 t/ha), carrot (58.9 and 32.9 t/ha), rape (61.8 t/ha) and cabbage (97.2 t/ha) was recorded at 80% of pan evaporation replenishment. The irrigation production efficiency of broccoli (5.9 kg/m3), rape (14.6 kg/m3) and cabbage (23.6 kg/m3) was maximum at 80, 20 and 60% of pan evaporation replenishment respectively. Irrigation replenishment up to 80% of pan evaporation loss did not influence the irrigation production efficiency for total and root yield of carrot. The results revealed that a further increase in irrigation amount resulting from 100% of pan evaporation replenishment did not increase the marketable yield of crops but reduced the irrigation production efficiency significantly. The seasonal water applied and marketable yield of broccoli, carrot, rape and cabbage showed quadratic relationships (R 2 = 0.85–0.98), which can be used for allocating irrigation water within and between the crops. The net return increased with the increase in pan evaporation replenishment. The results revealed that the rape crop is the most remunerative, followed by cabbage, broccoli and carrot. Received: 2 November 1998  相似文献   

14.
Land retirement is ceasing irrigation withthe goal of reducing load, in general, ofdissolved constituents and, in particular,of trace elements, present in subsurfacedrainage generated from irrigated lands. Retirement is achieved through a process ofgoal setting, strategy development anddetermining effects, developing landselection criteria, implementation, andmonitoring. In this study, effects of landretirement are evaluated using hydrologic,soil and economic models as well as resultsfrom a field demonstration study. From themodeling and field monitoring, a process isdeveloped to meet the goals of a landretirement program in the San JoaquinValley of California.Potential negative effects listed for landretirement included loss of agriculturalproductivity, perhaps permanently, and lossof revenue to surrounding communities. Uncertainties included those associatedwith reuse of retired lands as wildlifehabitat, with retired-land maintenanceincluding dust control, with potentialpreservation of retired lands in reservefor future re-introduction to irrigated ordry-land agriculture, and withinstitutional changes concerning repaymentof federal and state water contracts. Benefits would accrue from economic returnto the landowner from the sale of property,the sale or lease of irrigation watersupply, the reduced cost of handlingdrainage, and allocation of freed-up waterto beneficial uses, and the reduced risk ofselenium exposure to fish and wildlife.A recommended sequential approach to selectand manage retired land is to identifyprimary objectives; formulate and implementarea-specific land retirement scenarios;measure biologic, hydrologic, soils andeconomic consequences in the short term andthe long term and manage and monitorretired lands based on dynamic biologic,hydrologic and soil conditions.  相似文献   

15.
《Agricultural Systems》2005,85(3):306-323
This study is about changes in land use and interactions of land use change and livelihoods in the Chagga farming system on the slopes of Mt. Kilimanjaro, Tanzania. An aerial photo interpretation and fragmentation analysis of the years 1961, 1982 and 2000 was conducted covering approximately the Kirua Vunjo Division, a transect of 152 km2 from the forest reserve edge to the plains. Earlier changes were traced from literature review. The results show the expansion of cultivation to more marginal land down the slope, the disappearance and extreme fragmentation of bush land and appearance and expansion of settlements. The home garden area has experienced some specific internal change, but has not expanded down the slope. In the 1960s there were small open fields and patches of grazing lands amongst home gardens. In the 1980s the area was more uniformly covered by homegardens. Since then it has become patchy again as new homesteads have been built on subdivided farms and more food is produced on the higher slopes. Population pressure and the ensuing expansion of agriculture to more marginal land, intensification of the homegarden system, together with climate changes affecting the water supplies, have caused changes in farmers’ livelihoods. As land scarcity now hinders expansion of agriculture, farm size has seriously decreased, common resources have become scarce, and prices of coffee in the world market remain low, farmers are trying to intensify and diversify their farm production. Local initiative is leading to change, but the locally conceived alternatives are too few and lack integrated approaches of technical agricultural research, economic analysis, and policy studies and reforms. Non-agricultural activities and paid employment are becoming increasingly important. However, due to considerable entry barriers to remunerable off-farm jobs, not all households enjoy equal access to attractive non-farm opportunities. The future welfare of the area will depend on increasing the marketable knowledge and skills of the population that will enable it to become integrated in the economy of the region and the country.  相似文献   

16.
A study of the water balances of The Fayoum irrigated lands and Lake Qarun was made to investigate the management of the irrigation system and the efficiency of irrigation water use. The two water balances are strongly interrelated. The drainage flow to Lake Qarun and the water level of the Lake are in delicate balance. A rise in Lake level causes the inundation of adjacent land. Management of The Fayoum water balance assumes control over irrigation water flows, but this control has technical and organizational limitations. Also discussed is the influence of irrigation practices in The Fayoum on the water balance (e.g., the autumn flushing of fields and farmers' preference for not irrigating at night in winter). Notwithstanding a high overall efficiency, irrigation efficiency during the winter is low. The reasons for this are given, together with the constraints against improving system management. Improved uniformity of the division and application of irrigation water will enable a better technical control of flows and will result in better water management in The Fayoum. Abbreviations: FID — Fayoum Irrigation Department, 1 feddan (fe) — 0.4 ha, 1 mcm — 1 million cubic metres: an average annual flow of 3.17 m3/s gives 100 mcm, m3/fe.year — supplied volume (m3) per surface area (fe) per year: 1000 m3/fe.year equals 240 mm/year, MSL — Mean Sea Level  相似文献   

17.
Most activities that support economic growth in the São Francisco River Basin (Brazil) need water. Allocation of the water resources to each competing use needs quantification in order to develop an integrated water management plan. Irrigation agriculture is the largest water consuming activity in the basin. It has produced large economic and social advancements in the region and has potential for further development. The local development agency in the São Francisco River has projected an increase of more than 500,000 ha in irrigation developments distributed within the basin.Water requirements of the projected irrigation expansions and their effects on river flow were quantified. A semi-distributed model was constructed to simulate the water balance in 16 watersheds within the basin. The watersheds were hydrologically characterized by the average precipitation, atmospheric demand and runoff as well as their variability. Water requirements for increased irrigated agriculture were calculated using an agronomic mass balance. A Monte Carlo procedure generated the variability of irrigation requirements and resulting decreased river flows from the multidimensional probability distribution of the hydrologic variables of each watershed.Irrigation requirements were found to be more variable during the wet season because of weather variability. In contrast to what might be expected, in drier years, irrigation requirements were often larger during the wet season than in the dry season because the cropped area is largest in the wet months and variability of precipitation is greater. Increased irrigation shifted downward the distribution of river flows but not enough to affect other strategic water uses such as hydropower. Further irrigation expansion may be limited by wet season flows.  相似文献   

18.
Eritrea’s coastal zone has been identified as an area of substantial development potential. About 14,000 ha of this 5 million ha area (i.e. <0.3%) has already been developed under a form of spate irrigation known locally as jeriff. This is a water diversion and spreading technique in which wadis (ephemeral streams), springing from Eritrea’s Central Highlands are diverted to irrigate land in the coastal plains. The system as it is applied in Sheeb, an area north-east of Asmara, characterised by agro-pastoral spate irrigation, is described. Under spate irrigation, crop growth is entirely dependent on the residual soil moisture stored in the soil profile. If the basin fields are flooded adequately, the resulting residual soil moisture is sufficient for two or sometimes three crop harvests. The spate irrigation system builds up land by depositing rich sediment on the fields, but therefore, the elevation of the irrigated lands rises every year. Moreover, the system requires huge numbers of trees annually for constructing diversion structures which are subsequently often washed away by heavy floods. In general, the overall irrigation efficiencies of spate schemes are only about 20% because of the difficulty of controlling floods and because water is lost by percolation, seepage and evaporation. Suggestions are made to improve the system and make it more sustainable: permanent flood diversion and distribution structures should be built to effectively divert the floods and to reduce water loss through percolation and seepage, and the basin fields should be properly levelled to distribute the floodwater uniformly over the entire field.  相似文献   

19.
Satisfying future water demands for agriculture   总被引:2,自引:0,他引:2  
The global demand for water in agriculture will increase over time with increasing population, rising incomes, and changes in dietary preferences. Increasing demands for water by industrial and urban users, and water for the environment will intensify competition. At the same time, water scarcity is increasing in several important agricultural areas.We explore several pathways for ensuring that sufficient food is produced in the future, while also protecting the environment and reducing poverty. We examine four sets of scenarios that vary in their focus on investments in rainfed agriculture and irrigation, and the role of international trade in adjusting for national disparities in water endowments. Rainfed agriculture holds considerable potential but requires adequate mechanisms to reduce inherent risks. Irrigation expansion is warranted in places where water infrastructure is underinvested such as sub-Saharan Africa. In South Asia the scope for improving irrigation performance and water productivity is high. International trade can help alleviate water problems in water-scarce areas, subject to economic and political considerations. We examine also a regionally optimized scenario that combines investments in rainfed and irrigated agriculture with strategic trade decisions. Compared to ‘business as usual’, this scenario reduces the amount of additional water required to meet food demands by 2050 by 80%. Some of that water could be made available for the environment and other sectors. We conclude that there are sufficient land and water resources available to satisfy global food demands during the next 50 years, but only if water is managed more effectively in agriculture.  相似文献   

20.
The quantification of evapotranspiration (ET) from irrigated projects is important for water rights management, water resources planning and water regulation. Traditionally, ET has been estimated by multiplying a weather-based reference ET by crop coefficients (Kc) determined according to the crop type and the crop growth stage. However, there is typically question regarding whether crops grown compare with the conditions represented by the Kc values, especially in water short areas. In addition, it is difficult to estimate the correct crop growth stage dates for large populations of crops and fields. METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) is an image-processing model for calculating ET as a residual of the surface energy balance. METRIC is a variant of SEBAL, an energy balance process developed in the Netherlands by Bastiaanssen and was extended to provide tighter integration with ground-based reference ET. METRIC was applied with Landsat images in southern Idaho to predict monthly and seasonal ET for water rights accounting and for operation of ground water models. ET “maps” (i.e., images) provide the means to quantify, in terms of both the amount and spatial distribution, the ET on a field by field basis. The ET maps have been used in Idaho to quantify net ground-water pumpage in areas where water extraction from underground is not measured and to estimate recharge from surface-irrigated lands. Application and testing of METRIC indicates substantial promise as an efficient, accurate, and relatively inexpensive procedure to predict the actual evaporation fluxes from irrigated lands throughout a growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号