首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precise management of nitrogen (N) using canopy color in aerial imagery of corn (Zea mays L.) has been proposed as a strategy on which to base the rate of N fertilizer. The objective of this study was to evaluate the relationship between canopy color and yield response to N at the field scale. Six N response trials were conducted in 2000 and 2001 in fields with alluvial, claypan and deep loess soil types. Aerial images were taken with a 35-mm slide film from ≥1100 m at the mid- and late-vegetative corn growth stages and processed to extract green and red digital values. Color values of the control N (0 kg N ha−1) and sufficient N (280 kg N ha−1 applied at planting) treatments were used to calculate the relative ratio of unfertilized to fertilized and relative difference color values. Other N fertilizer treatments included side-dressed applications in increments of 56 kg N ha−1. The economic optimal N rate was weakly related (R 2 ≤ 0.34) or not related to the color indices at both growth stages. For many sites, delta yield (the increase in yield between control N and sufficient N treatments) was related to the color indices (R 2 ≤ 0.67) at the late vegetative growth stage; the best relationship was with green relative difference. The results indicate the potential for color indices from aerial photographs to be used for predicting delta yield from which a site-specific N rate could be determined.  相似文献   

2.
Understanding spatial variability of indigenous nitrogen (N) supply (INS) is important to the implementation of precision N management (PNM) strategies in small scale agricultural fields of the North China Plain (NCP). This study was conducted to determine: (1) field-to-field and within-field variability in INS; (2) the potential savings in N fertilizers using PNM technologies; and (3) winter wheat (Triticum aestivum L.) N status variability at the Feekes 6 stage and the potential of using a chlorophyll meter (CM) and a GreenSeeker active crop canopy sensor for estimating in-season N requirements. Seven farmer’s fields in Quzhou County of Hebei Province were selected for this study, but no fertilizers were applied to these fields. The results indicated that INS varied significantly both within individual fields and across different fields, ranging from 33.4 to 268.4 kg ha−1, with an average of 142.6 kg ha−1 and a CV of 34%. The spatial dependence of INS, however, was not strong. Site-specific optimum N rates varied from 0 to 355 kg ha−1 across the seven fields, with an average of 173 kg ha−1 and a CV of 46%. Field-specific N management could save an average of 128 kg N ha−1 compared to typical farmer practices. Both CM and GreenSeeker sensor readings were significantly related to crop N status and demand across different farmer’s fields, showing a good potential for in-season site-specific N management in small scale farming systems. More studies are needed to further evaluate these sensing technology-based PNM strategies in additional farmer fields in the NCP.  相似文献   

3.
The objectives of this study were to evaluate the performance of the cropping system model (CSM)-CERES-Rice to simulate growth and development of an aromatic rice variety under irrigated conditions in a semiarid environment of Pakistan and to determine the impact of various plant densities and nitrogen (N) application rates on grain yield and economic return. The crop simulation model was evaluated with experimental data collected in experiments that were conducted in 2000 and 2001 in Faisalabad, Punjab, Pakistan. The experimental design was a randomized complete block design with three replications and included three plant densities (one seedling hill−1, PD1; two seedlings hill−1, PD2; and three seedlings hill−1, PD3) and five N fertilizer regimes (control, N0; 50 kg ha−1, N50; 100 kg ha−1, N100; 150 kg ha−1, N150; and 200 kg ha−1, N200). To determine the most appropriate combination of plant density and N levels, four plant densities from one seedling hill−1 to four seedlings hill−1 and 13 N levels ranging from 0 to 300 kg N ha−1 (52 scenarios) were simulated for 35 years of historical daily weather data under irrigated conditions. The evaluation of CSM-CERES-Rice showed that the model was able to simulate growth and yield of irrigated rice in the semiarid conditions, with an average error of 11% between simulated and observed grain yield. The results of the stimulation analysis result showed that two seedlings hill−1 along with 200 kg N ha−1 (PD2N200) produced the highest yield as compared to all other scenarios. Furthermore, the economic analysis through the mean gini dominance also showed the dominance of this treatment (PD2N200) compared to the other treatment combinations. Thus, the management scenario that consisted of two seedlings hill−1 and 200 kg N ha−1 was the best for high yield and monitory return of irrigated rice in the semiarid environment. The mean monetary returns ranged from 291 US $ ha−1 to 1 460 US $ ha−1 to 1 460 US  ha−1 among the 52 production options that were simulated. This approaching was demonstrated as effective way to optimize the density and N management for high yield and monetary return. It will help the rice production.  相似文献   

4.
Using plant sensing to determine the amount of nitrogen (N) to apply has the potential to increase profits in wheat (Triticum aestivum) production by reducing N cost or by increasing grain yield. The objective of this paper was to determine if yields and profits from experimental trials that used a precision N applicator to apply N were significantly different from trials that applied pre-determined amounts of N. Across Oklahoma, USA, experiments were designed to test 10 N treatments that included two variable rate treatments (VRT), two uniform rate treatments (URT) where the level of N applied was based on optical reflectance measurements (ORM), and six conventional treatments (i.e., pre-determined uniform rates of N). Data included treatments during 2005–2009 from eight different locations. Results indicated no statistical difference in yields between the conventional treatments that apply 90 kg ha−1 of N and the VRT and URT treatments. On average, the conventional treatment that applied 90 kg ha−1 of top-dress N produced the largest yield, with a VRT treatment producing the third largest yield. Profits were calculated for each treatment using a partial budget. On average, the treatment that received 90 kg ha−1 of top-dress N was the most profitable even though the pre-plant N (anhydrous ammonia) had a cost advantage relative to top-dress N (urea and ammonium nitrate).  相似文献   

5.
A fuzzy inference system (FIS) was developed to generate recommendations for spatially variable applications of N fertilizer. Key soil and plant properties were identified based on experiments with rates ranging from 0 to 250 kg N ha−1 conducted over three seasons (2005, 2006 and 2007) on fields with contrasting apparent soil electrical conductivity (ECa), elevation (ELE) and slope (SLP) features. Mid-season growth was assessed from remotely sensed imagery at 1-m2 resolution. Optimization of N rate by the FIS was defined against maximum corn growth in the weeks following in-season N application. The best mid-season growth was in areas of low ECa, high ELE and low SLP. Under favourable soil conditions, maximum mid-season growth was obtained with low in-season N. Responses to N fertilizer application were better where soil conditions were naturally unfavourable to growth. The N sufficiency index (NSI) was used to judge plant N status just prior to in-season N application. Expert knowledge was formalized as a set of rules involving ECa, ELE, SLP and NSI levels to deliver economically optimal N rates (EONRs). The resulting FIS was tested on an independent set of data (2008). A simulation revealed that using the FIS would have led to an average N saving of 41 kg N ha−1 compared to the recommended uniform rate of 170 kg N ha−1, without a loss of yield. The FIS therefore appears to be useful for incorporating expert knowledge into spatially variable N recommendations.  相似文献   

6.
Productivity and botanical composition of legume-grass swards in rotation systems are important factors for successful arable farming in both organic and conventional farming systems. As these attributes vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate more targeted management of crops and nutrients in the soil–plant–animal system. Two pot experiments were conducted to examine the potential of field spectroscopy to assess total biomass and the proportions of legume, using binary mixtures and pure swards of grass and legumes. The spectral reflectance of swards was measured under artificial light conditions at a sward age ranging from 21 to 70 days. Total biomass was determined by modified partial least squares (MPLS) regression, stepwise multiple linear regression (SMLR) and the vegetation indices (VIs) simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP). Modified partial least squares and SMLR gave the largest R 2 values ranging from 0.85 to 0.99. Total biomass prediction by VIs resulted in R 2 values of 0.87–0.90 for swards with large leaf to stem ratios; the greatest accuracy was for EVI. For more mature and open swards VI-based detection of biomass was not possible. The contribution of legumes to the sward could be determined at a constant biomass level by the VIs, but this was not possible when the level of biomass varied.  相似文献   

7.
Recent studies have demonstrated the potential importance of using soil texture to modify fertilizer N recommendations. The objective of this study was to determine (i) if surface clay content can be used as an auxiliary variable for estimating spatial variability of soil NO3–N, and (ii) if this information is useful for variable rate N fertilization of non-irrigated corn [Zea mays (L.)] in south central Texas, USA across years. A 64 ha corn field with variable soil type and N fertility level was used for this study during 2004–2007. Plant and surface and sub-surface soil samples were collected at different grid points and analyzed for yield, soil N parameters and texture. A uniform rate (UR) of 120 kg N ha−1 in 2004 and variable rates (VAR) of 0, 60, 120, and 180 kg N ha−1 in 2005 through 2007 were applied to different sites in the field. Distinct yield variation was observed over this time period. Yield and soil surface clay content and soil N parameters were strongly spatially structured. Corn grain yield was positively related to residual NO3–N with depth and either negatively or positively related to clay content depending on precipitation. Residual NO3–N to 0.60 and 0.90 m depths was more related to corn yield than from shallower depths. The relationship of clay content with soil NO3–N was weak and not temporally stable. Yield response to N rate also varied temporally. Supply of available N with depth, soil texture and growing season precipitation determined proper N management for this field.  相似文献   

8.
Spring barley was grown for 4 years (2001–2004) in field trials at two sites on morainic soil in central SE Norway, with five N level treatments: 0, 60, 90, 120 and 150 kg N ha-1. Regression analyses showed that a selection of soil properties could explain 95–98% of the spatial yield variation and 47–90% of the yield responses (averaged over years). A strategy with uniform fertilizer application of 120 kg N ha−1 (U N120) was compared with two variable-rate (VR) strategies, with a maximum N rate of either 150 kg N ha−1 (VRN150) or 180 kg N ha−1 (VRN180). These strategies were tested using either Norwegian prices (low price ratio of N fertilizer to yield value; PN/PY), or Swedish prices (high PN/PY). The VRN180 strategy had the highest potential yield and net revenue (yield value minus N cost) at both sites and under both price regimes. Using this strategy with Norwegian prices would increase the profit of barley cropping as long as at least 40 and 31% of the estimated potential increase in net revenue was realized, respectively. Using Swedish prices, uniform application appeared to be as good as or even better economically than the VR methods, when correcting for extra costs of VR application. The environmental effect of VR compared with uniform application, expressed as N not accounted for, showed contrasting effects when using Norwegian prices, but was clearly favourable using Swedish prices, with up to 20% reduction in the amount of N not accounted for.  相似文献   

9.
Farmers account for yield and soil variability to optimize their production under mainly economic considerations using the technology of precision farming. Therefore, understanding of the spatial variation of crop yield and crop yield development within arable fields is important for spatially variable management. Our aim was to classify landform units based on a digital elevation model, and to identify their impact on biomass development. Yield components were measured by harvesting spring barley (Hordeum vulgare, L.) in 1999, and winter rye (Secale cereale, L.) in 2000 and 2001, respectively, at 192 sampling points in a field in Saxony, Germany. The field was stratified into four landform units, i.e., shoulder, backslope, footslope and level. At each landform unit, a characteristic yield development could be observed. Spring barley grain yields were highest at the level positions with 6.7 t ha−1 and approximately 0.15 t ha−1 below that at shoulder and footslope positions in 1999. In 2000, winter rye harvest exhibited a reduction at backslope positions of around 0.2 t ha−1 as compared to the highest yield obtained again at level positions with 11.1 t ha−1. The distribution of winter rye grain yield across the different landforms was completely different in 2001 from that observed in 2000. Winter rye showed the highest yields at shoulder positions with 11.1 t ha−1, followed by the level position with 0.5 t ha−1 less grain yield. Different developments throughout the years were assumed to be due to soil water and meteorological conditions, as well as management history. Generally, crop yield differences of up to 0.7 t ha−1 were found between landform elements with appropriate consideration of the respective seasonal weather conditions. Landform analysis proved to be helpful in explaining variation in grain yield within the field between different years.  相似文献   

10.
In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0–161 kg N ha−1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work.  相似文献   

11.
Recent advances in optical designs and electronic circuits have allowed the transition from passive to active proximal sensors. Instead of relying on the reflectance of natural sunlight, the active sensors measure the reflectance of modulated light from the crop and so they can operate under all lighting conditions. This study compared the potential of active and passive canopy sensors for predicting biomass production in 25–32 randomly selected positions of a Merlot vineyard. Both sensors provided estimates of the normalized difference vegetation index (NDVI) from a nadir view of the canopy at veraison that were good predictors of pruning weight. Although the red NDVI of the passive sensors explained more of the variation in biomass (R 2 = 0.82), its relationship to pruning weight was nonlinear and was best described by a quadratic regression (NDVI = 0.55 + 0.50 wt−0.21 wt2). The theoretically greater linearity of the amber NDVI-biomass relationship could not be verified under conditions of high biomass. The linear correlation to stable isotope content in leaves (13C and 15N) provided evidence that canopy reflectance detected plant stresses as a result of water shortage and limited fertilizer N uptake. Thus, the canopy reflectance data provided by these mobile sensors can be used to improve site-specific management practices of vineyards.  相似文献   

12.
Eight Chinese Holstein cows were used in a 4 × 4 Latin square design to determine the effects of rumen protected methionine (RPMet) and Niacin on milk yield and milk composition of lactating cows with 14 d adaptation and 6-d sampling periods. The cows were fed the control diet or the control diet plus RPMet (25 g·−1), niacin (6 g·−1), or RPMet (25 g·−1) + niacin (6 g·−1). The results showed that RPMet supplementation in the diet increased 4% fat corrected milk (FCM) yield (P < 0.05) and milk fat percentage (P < 0.05). However, supplemental RPMet had no effect on the solid non fat (SNF) (P > 0.05) and lactose percentage (P > 0.05). Dietary niacin supplementation increased milk yield (P < 0.05), milk protein percentage (P < 0.05) and lactose percentage (P < 0.05), but had no effect on milk fat percentage (P > 0.05) and SNF (P > 0.05). RPMet supplementation in the diet of lactating cows significantly decreased serum urea nitrogen (P < 0.01) and glucose contents (P < 0.05), but had no effects on nonesterified fatty acids (NEFA), total cholesterol and triglyceride (P > 0.05). Niacin supplementation influenced the contents of glucose and NEFA in serum, but had no effects on the urea nitrogen, total cholesterol and triglyceride (P > 0.05).  相似文献   

13.
为定量探讨SWAT模型在土地利用方式对面源磷污染影响研究中的适用性,以甬江流域为研究区,构建流域2010年至2014年的SWAT水文水质模型,从水文响应单元的空间尺度上进行了分析研究。结果表明:模型在开展大中流域尺度,长时间序列的土地利用方式对面源磷污染影响的研究中表现良好;流域内林地、建设用地、耕地、园地年均产流深度分别为588.05、729.52、624.26、608.05 mm,产沙年均单位负荷分别为10.09、0.90、44.68、13.29 t·hm-2;总磷年均单位负荷分别为1.42、0.35、9.81、1.82 kg·hm-2。产流深度、产沙单位负荷与总磷单位负荷之间的一元线性回归模型表明:产流、产沙和面源磷之间存在明显的线性关系,且各土地利用方式产沙和磷(R2=0.83~0.88,P0.001)之间的一元线性回归模型预测能力均高于产流和总磷(R2=0.63~0.68,P0.001),表明了面源磷流失的主要载体为泥沙。此外,不同类型土地利用方式下磷输出空间差异性也十分显著,林地在坡度级别为6级时磷流失是2级时的6.90倍;土壤类型RGd(不饱和疏松岩性土)在坡度2级下磷流失是ACu(腐殖质低活性强酸土)的1.15倍,而在6级下是1.42倍。  相似文献   

14.
The present study was conducted to evaluate the effects of different folic acid supplemental levels on growth performance, serum biochemical indicators, and hepatic folate metabolism-related gene expressions in weaned piglets. There were 160 piglets with initially average bodyweight of 7.33 kg randomly assigned to diets containing five levels of folic acid: basal diets (C), 0.5 mg·kg−1 folic acid (FS 0.5), 2.5 mg·kg−1 folic acid (FS 2.5), 5.0 mg·kg−1 folic acid (FS 5.0), or 10.0 mg·kg−1 folic acid (FS 10.0). Blood samples were collected from a subset (n = 20; 4 pigs per treatment) of the piglets on day 0, 14, and 28. Liver samples were collected from the blood-taken piglets on day 28 of the experiment. Pigs fed basal diet supplemented with 2.5 mg·kg−1 folic acid grew faster (P<0.05) and consumed more feed (P<0.01) than groups of C, FS 5.0, and FS 10.0 during the last two weeks. Dietary treatment had no effect on F/G throughout the experiment. Pigs in the FS 2.5 group showed greater concentrations of Growth Hormone (GH) (P<0.05) and Insulin-like Growth Factors (IGF-1) (P<0.01) in serum than C and FS 10.0 on day 28. RT-PCR analysis revealed that FS 0.5, FS 2.5, and FS 5.0 had a greater abundance of the mRNA encoding 5,10-methylenetetrahydrofolate reductase than C and FS 10.0 (P<0.01). The mRNA expressions of folate binding protein in FS 0.5 and FS 2.5 were upregulated compared with pigs fed with basal diet (P<0.05). These results demonstrated that folate supplemental level of 2.5 mg·kg−1 significantly enhanced the growth performance of piglets. Folic acid had an impact on folate metabolism and the homocysteine concentrations. No folate supplementation or folate supplemental level of 10 mg·kg−1 could not increase the growth performance to the greatest degree.  相似文献   

15.
A study was conducted to explore the potential use of a hand-held (proximal) hyperspectral sensor equipped with a canopy pasture probe to assess a number of pasture quality parameters: crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, dietary cation–anion difference (DCAD), lignin, lipid, metabolisable energy (ME) and organic matter digestibility (OMD) during the autumn season 2009. Partial least squares regression was used to develop a relationship between each of these pasture quality parameters and spectral reflectance acquired in the 500–2 400 nm range. Overall, satisfactory results were produced with high coefficients of determination (R 2), Nash–Sutcliffe efficiency (NSE) and ratio prediction to deviation (RPD). High accuracy (low root mean square error-RMSE values) for pasture quality parameters such as CP, ADF, NDF, ash, DCAD, lignin, ME and OMD was achieved; although lipid was poorly predicted. These results suggest that in situ canopy reflectance can be used to predict the pasture quality in a timely fashion so as to assist farmers in their decision making.  相似文献   

16.
Spatial and temporal variability of soil nitrogen (N) supply together with temporal variability of plant N demand make conventional N management difficult. This study was conducted to determine the impact of residual soil nitrate-N (NO3-N) on ground-based remote sensing management of in-season N fertilizer applications for commercial center-pivot irrigated corn (Zea mays L.) in northeast Colorado. Wedge-shaped areas were established to facilitate fertigation with the center pivot in two areas of the field that had significantly different amounts of residual soil NO3-N in the soil profile. One in-season fertigation (48 kg N ha−1) was required in the Bijou loamy sand soil with high residual NO3-N versus three in-season fertigations totaling 102 kg N ha−1 in the Valentine fine sand soil with low residual NO3-N. The farmer applied five fertigations to the field between the wedges for a total in-season N application of 214 kg N ha−1. Nitrogen input was reduced by 78% and 52%, respectively, in these two areas compared to the farmer’s traditional practice without any reductions in corn yield. The ground-based remote sensing management of in-season applied N increased N use efficiency and significantly reduced residual soil NO3-N (0–1.5 m depth) in the loamy sand soil area. Applying fertilizer N as needed by the crop and where needed in a field may reduce N inputs compared to traditional farmer accepted practices and improve in-season N management.  相似文献   

17.
In this study growth and yield response of wheat crop to phosphobacterium inoculum was observed under sandy loam conditions. The investigations were carried out at field experiment. The experiment was laid out in Randomized Complete Block Design. The treatments were; 120-0-0 NPK kg/ha−1 (T 1), 120-50-0 kg/ha−1 (T 2), 120-100-0 NPK kg/ha−1 (T 3), T 1 + Phosphobacterium inoculum (T 4), T 2 + Phosphobacterium inoculum (T 5) and T 3 + Phosphobacterium inoculum (T 6).The results showed that bacterial strain (Pseudomonas spp.) was able to effect on yield and its attributes in wheat crop. The crop showed significant positive results. The inoculation significantly stimulates the germination count (m−2), number of tillers and spikes (m−2), 1000 grains weight (g) and grain yield (kg/ha−1). We suggest that application of 120-100-0 kg/ha−1 NPK along with coating of seed with phosphobacterium (Pseudomonas spp.) all the way through inoculation is a better practice to reduce the exploit of phosphatic fertilizers which are much costly.  相似文献   

18.
In a completely randomized block design experiment, 16 ruminally cannulated male sheep with body weights of (40 ± 2.1) kg were fed twice daily (8:00 and 16:00) with concentrate and forage (50:50 on dry matter (DM) basis). Dietary treatments were supplemented with intraruminal doses of powdered Yucca schidigera extract (YSE) at the levels of 0 (control), 100, 200 and 300 mg · kg−1. On days of 15, 16 and 17 after feeding, ruminal content was sampled at 0, 2, 4, 6 and 8 h after dosing (8:00), and blood samples were collected at the end of experiment (the days 18 and 19 after feeding). Results showed that the treatment groups’ acidity was not affected (P = 0.13) by YSE. Comparing to the control, the ruminal propionate concentration was increased by YSE addition in a dose-dependent manner by up to 29.8% (P < 0.05), and the acetic concentration was decreased by up to 17.5% (P < 0.05). The ruminal ammonia concentration 2 hours after feeding was higher (P < 0.05) in sheep fed without YSE (increased by 17.57 mg· 100 mL−1) than those fed with YSE at 200 mg · kg−1 (6.77 mg · 100 mL−1 increase in NH3) and at 300 mg · kg−1 (6.50 mg· 100 mL−1 increase in NH3). Protozoal populations in the rumen were lower (P < 0.05) with the YSE feeding dose at 300 mg · kg−1 than the control. The serum chemistries were not different among treatments (P > 0.05) and were within the normal physiological ranges for sheep 19 days after feeding. The study indicated that 200 mg· kg−1 and 300 mg· kg−1 YSE groups had particular suppressing effects on ruminal ammonia concentration, ammonia-N concentrations and protozoal populations. The effect of YSE on ruminal fermentation could be attributed to the selective inhibitory effect on rumen microbial species. High level (300 mg · kg−1) YSE as feed additives resulted no negative impact on sheep in our tests.  相似文献   

19.
Nutrient data obtained from soil chemical tests were analyzed in an activity analysis model to identify limiting factors in peanut production on the Texas High Plains. A production function was estimated for the study field, and limiting factors were identified at individual sites where the production function indicated that yield did not respond. The estimated production function also enabled us to conduct a cost-return analysis of variable- and blanket-rate fertilizer applications. The results showed that peanut yields did not respond to most of the nutrients included in the study, which confirmed conclusions from previous studies in the study region. Calcium and nitrogen were the only two limiting factors identified in this study. Significant economic returns could be obtained by site-specific fertilizer application. The average economic return from variable-rate calcium fertilizer application was $27.84 ha−1 and from blanket-rate it was $10.73 ha−1. The return from variable-rate nitrogen fertilizer application was about $20 ha−1 and from a blanket-rate it was about $14 ha−1. There seems to be quite a strong economic incentive to adopt variable-rate application for calcium and nitrogen fertilizer application.
Jeff JohnsonEmail:
  相似文献   

20.
A sensor for measuring crop biomass density has been designed and developed to meet the demands for practical use in site-specific farming. The mechanical sensor named ‘Crop-meter’ is based on the pendulum principle. The suitability and measuring stability of the Crop-meter has been confirmed under field conditions in different regions of Germany. Significant correlations were obtained between Crop-meter signals and soil electrical conductivity (R 2=0.16−0.66) and grain yield (R 2=0.42−0.57). To test the suitability of the Crop-meter for site-specific management, it was used to control variable application rates for nitrogen fertiliser, growth regulators and fungicides in real time. A small increase in yield (3.1%) as well as reduced application rates for agrochemicals (14.6% nitrogen fertilisers; 23.1% fungicides and growth regulators) were proved in large-scale trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号