首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
在试验水温(28±2)℃条件下,按200mg/kg的剂量对吉富罗非鱼单次药饵饲喂磺胺间甲氧嘧啶(SMM)后,采用HPLC法测定各组织中的药物浓度,研究SMM在罗非鱼体内的药代动力学及消除规律。结果显示,药物在各组织(血液、肌肉、肝脏和肾脏)中的最大峰质量浓度(质量分数)Cmax分别为22.66、7.13、45.50、22.77μg/mL(μg/g);达峰时间Tmax分别为7.52、7.02、1.00/8.00和2.00/10.00h(Tmax 1/Tmax 2);肝、肾组织中的药-时曲线有明显的双峰现象,并且第1个峰浓度高于第2个峰浓度,提示该药物在罗非鱼胃肠道中具有非齐性吸收现象;药物在各组织中(血液、肌肉、肝脏和肾脏)的消除半衰期T1/2Ke分别为5.21、4.84、14.12、6.80h,显示SMM在罗非鱼体内代谢较快,属于较为短效的磺胺类药物;并且在肌肉和血液中的消除快于肝脏、肾脏。在(28±2)℃温度条件下,按200mg/kg的剂量对罗非鱼连续5d药饵饲喂SMM,研究药物的消除规律;根据罗非鱼可食性组织肌肉的残留检测结果,参考中华人民共和国第235号公告中对动物源性食品中磺胺类药物总量的MRL规定,以0.1mg/kg为残留限量,建议休药期不低于5d。  相似文献   

2.
在水温为(25±2)℃下,按10 mg/kg的剂量给吉富罗非鱼Oreochromis niloticus单次口服氧氟沙星,用高效液相色谱法测定鱼血浆和组织中的药物浓度,研究氧氟沙星在吉富罗非鱼体内的代谢及消除规律。结果表明:血浆及组织药时数据均符合一级吸收二室开放模型,吸收分布迅速,但消除较为缓慢,血浆、肌肉、肝胰脏、肾脏中的达峰时间(Tmax)分别为0.41、3.19、0.18、0.59 h;最大血药浓度分别为7.98μg/mL、17.24、36.10、46.65μg/g,组织中肝胰脏的药物浓度最高,在测定时间内各组织的药物浓度均高于血浆;药物消除速度依次为肾脏>肌肉>肝胰脏,消除半衰期(T1/2β)分别为12.90、19.45、28.27h。以10μg/kg为最高残留限量,在本试验条件下,建议休药期不低于8 d。在治疗罗非鱼疾病时,氧氟沙星的给药剂量为10 mg/kg,每天两次,连续使用2~3 d。  相似文献   

3.
口灌氟苯尼考在黄鳝体内的药物代谢动力学及其残留   总被引:1,自引:0,他引:1  
采用高效液相色谱法,研究25℃下黄鳝单次口灌氟苯尼考(20mg/kg)后其体内的药物代谢和连续3d口灌(20mg/(kg.d))氟苯尼考后的药物残留消除规律。试验结果表明,氟苯尼考在黄鳝体内吸收迅速、组织分布广泛。血浆、肝脏、肾脏和肌肉中氟苯尼考的达峰质量浓度(Cmax)和达峰时间(Tmax)分别为6.07μg/mL、7.57、9.34、5.87μg/mg和3.67、4.45、2.01、9.28h。各个组织消除半衰期t1/2β)的大小顺序为肾脏(29.26h)>肝脏(19.32h)>肌肉(17.22h)>血浆(10.84h)。氟苯尼考胺在黄鳝体内代谢缓慢,肾脏中的消除半衰期和代谢率(MR)最高,分别为45.93h和49.21%。连续3次口灌后,标示残留物在黄鳝肾脏组织的残留量最高,其次为肝脏和肌肉。给药10d后所有组织均检测不到残留。若按照日本规定0.1mg/kg的最大残留限量(MRL)计算,得到的休药期为12d,与实测浓度判断法得出的休药期基本一致。  相似文献   

4.
采用液质联用法(HPLC-MS/MS)建立了氟苯尼考和氟苯尼考胺同时检测的方法,研究了氟苯尼考口灌给药西伯利亚鲟后,氟苯尼考及其代谢物氟苯尼考胺在西伯利亚鲟体内的药动学和组织分布。水温22℃下,氟苯尼考以15 mg/kg剂量单次口灌给药西伯利亚鲟,检测血浆、肝脏、肾脏和肌肉等组织中氟苯尼考及其代谢产物氟苯尼考胺的浓度,结果显示:氟苯尼考及其代谢产物氟苯尼考胺在西伯利亚鲟体内的药时数据均符合一级吸收二室开放模型,氟苯尼考在血浆中的达峰浓度(Cmax)为3.4μg/mL,达峰时间(Tpeak)为2.943 h,表观分布容积(V/F)为3.267 L/kg,消除半衰期(t1/2β)为31.21 h,药时曲线下总面积(AUC)为76.51μg.h/mL,Cmax(FFA)/Cmax(FF)和AUCFFA/AUCFF仅为5.44%和20.73%;氟苯尼考在各组织中分布广泛,分布规律相近,肝脏、肾脏中药物浓度较高。结果表明:氟苯尼考在西伯利亚鲟体内具有吸收迅速、达峰浓度高、消除相对缓慢及组织中分布广泛的特征且氟苯尼考主要以原形药物形式代谢消除。研究亮点:针对氟苯尼考目前广泛用于水产养殖中细菌性疾病防治的现状,本文首次采用液质联用法进行了氟苯尼考及其代谢产物氟苯尼考胺在西伯利亚鲟体内分布及代谢规律的研究。建立了比较简单的样品处理方法,并从药物本身和代谢产物整体来研究药动学及组织分布特征,为制定该药安全使用方法提供了理论基础。  相似文献   

5.
【目的】探讨不同温度条件下复方磺胺嘧啶在罗非鱼Oreochromis niloticus血液中的药代动力学(简称药动学)特点及其变化.【方法】以罗非鱼为研究对象,在不同水温(18、23、28和33℃)饲养条件下以复方磺胺嘧啶[m(磺胺嘧啶)∶m(甲氧苄啶)=5∶1]按120 mg/kg的剂量单次饲喂给药,分别于给药后0.5、1、2、4、6、8、10、24、48、72 h采集血液样品,使用HPLC方法检测罗非鱼血浆中的药物质量浓度,研究复方磺胺嘧啶在罗非鱼血液中的吸收和消除变化规律.【结果和结论】18、23、28和33℃时,磺胺嘧啶在血浆中的峰质量浓度分别为12.41、19.60、22.48和30.78μg/mL,甲氧苄啶在血浆中的峰质量浓度分别为1.22、2.06、2.44和2.70μg/mL,2个药物的峰质量浓度均随着温度的升高而增大.磺胺嘧啶在血浆中的消除半衰期(t1/2 ke)分别为18.22、17.89、16.90和12.99 h,甲氧苄啶在血浆中的t1/2 ke分别为16.39、7.08、5.99和4.04 h,药物的消除随温度的升高而加快;各温度下药物在罗非鱼血液中的药动学均为1级动力学过程.给药后10 h内血浆中磺胺嘧啶和甲氧苄啶的比例分别为9.57∶1~11.01∶1、6.30∶1~9.36∶1、5.40∶1~10.39∶1和4.20∶1~20.64∶1,均维持在1∶1~40∶1的理想抑菌配比范围内.研究结果表明温度对药物在罗非鱼体内的吸收及消除影响显著,可提高药物的最大血药质量浓度与消除速率,但对复方磺胺嘧啶在血浆中的比值影响不显著.  相似文献   

6.
[目的]研究硫酸阿米卡星在鳗鲡体内的药物代谢动力学及其在组织中的残留.[方法]利用高氯酸提取、固相萃取净化组织,2,4,6-三硝基苯磺酸、吡啶、4-二甲基氨基吡啶、三氟乙酸柱前衍生后,采用高效液相紫外检测法测定硫酸阿米卡星在鳗鲡体内药代动力学和残留.[结果]利用衍生法所得药物在0.05 ~50 μg/ml浓度范围内线性关系良好(R=0.9995),最低检测限为0.05 μg/ml.血液和肌肉中的平均回收率分别为75.9%和76.9%.鳗鲡在(26±1)℃以50 mg/kg单剂量肌肉注射给药物后,鳗鲡血液中的药-时曲线符合一级吸收二室模型.达峰时间为0.597.h,分布半衰期为3.52 h,表明硫酸阿米卡星在鳗鲡体内吸收分布迅速.峰浓度为22.229μg/ml,消除半衰期为46.945 h,推测该药物可能残留时间较长.鳗鲡在(26±1)℃下50 mg/kg单剂量肌肉注射硫酸阿米卡星后,5d后在肌肉组织中未检出,19 d后血液中未检出.[结论]鳗鲡肌肉注射阿米卡星后,停药期为475 ~ 513 d.  相似文献   

7.
选取wister大鼠8只作为实验动物,分成8组,按照30 mg/kg(以氟苯尼考计)体重单次肌肉注射氟苯尼考琥珀酸钠,给药后间隔一定时间采血,以HPLC测定血样中氟苯尼考琥珀酸钠、氟苯尼考以及氟苯尼考胺,用BAPP2.0软件对动力学参数进行统计分析.结果表明,单剂量肌内注射氟苯尼考琥珀酸钠后,氟苯尼考、氟苯尼考琥珀酸钠以及氟苯尼考胺药时数据符合一级吸收一室模型,其主要的动力学参数为:Tmax 1h,0.5h,8h;Cmax 6.28,4.50,3.32μg/mL;Vd、AUC、CL/F(s)分别为0.77 mg/L、37.03μg/mL和0.26 L/h;1.05 mg/L、17.22 μg/mL、0.62 L/h;0.75 mg/L、85.5 μg/mL、0.07 L/h;同时研究还表明氟苯尼考琥珀酸钠进入大鼠体内后,在血液中各种酶的作用下能够迅速的转化为氟苯尼考且能够较快地达到血药浓度峰值,因此提示该产品起效快,维持血药浓度时间较长,在临床上适用于敏感菌所致的急性和重性感染.  相似文献   

8.
以20 mg.kg-1和2 mg.kg-1剂量对经检测不含甲基睾丸酮残留的罗非鱼单次口灌给药,用高效液相色谱法测定血浆及组织中甲基睾丸酮(MET)的浓度。用乙酸乙酯提取样品,Florisil小柱净化。以3p97软件分析药时数据,MET在两个浓度组均符合一级吸收二室开放模型,吸收半衰期分别为0.29和0.28 h;分布半衰期分别为0.65和0.57 h,达峰时间分别为是0.78和0.60 h,消除半衰期分别为18.40和5.98 h。20 mg.kg-1组血液和肌肉中MET残留至144 h仍有检出,至216 h血液和肌肉样品MET均未检出;肝脏中的药物浓度高于血液和肌肉中的浓度,MET残留至24 h有检出,48 h的样品未检出。结果表明,口灌给药,MET在罗非鱼体内吸收、分布快,肝脏为主要吸收和代谢器官,与血液和肌肉相比消除速率要快,血液和肌肉中的MET消除速率相对较缓慢,因此开展MET监督检验除了常规的肌肉样品的检测外,还应增加血液样品的检测。  相似文献   

9.
健康中华鳖160只,随机分为2组,按30mg/kg剂量单次肌注和灌服氟苯尼考,运用高效液相色谱法测定中华鳖血浆和肌肉药物浓度,利用3P97药代动力学软件分析数据,肌注和口灌药时数据均符合一室开放模型,肌注给药的动力学方程为C=16.72(e-0.15t-e0.52t),主要药代动力学参数:AUC为76.45μg/ml.h,吸收半衰期(T1/2Ka)1.31h,消除半衰期(T1/2Ke)4.48h,最高血药浓度Cmax为7.09μg/ml;口灌给药的动力学方程为C=39.99(e-0.19t-e0.4t),其主要药代动力学参数:AUC为109.42μg/ml.h,吸收半衰期(T1/2Ka)1.73h,消除半衰期(T1/2Ke)为3.63h,最高血药浓度Cmax为10.64mg/l;实验结果表明:口灌氟苯尼考后,在中华鳖体内吸收快,血药浓度高,维持时间长,生物利用度高;药物在肌肉中消除缓慢。  相似文献   

10.
在实验室条件下,研究了不同水温(16、26℃)和不同药物剂量[15、45 mg/kg(鱼体质量)]下,氟苯尼考(FF)及其代谢物氟苯尼考胺(FFa)在德国镜鲤Cyprinus carpio mirror体内的残留消除规律.试验采用混饲口灌给药,在16、26℃水温条件下,以15 mg/kg(鱼体质量)剂量给药;在26℃水温条件下,以15、45 mg/kg(鱼体质量)剂量给药,于给药后0.5、1、2、4、6、8、12、24、72、120、168、216、264 h分别取鱼体肌肉、肝胰脏和肾脏组织,采用高效液相色谱荧光检测法测定鱼体各组织中FF和FFa的含量.结果表明:鱼体各组织中的FF和FFa,高温组较低温组消除快,高剂量组较低剂量组消除慢;高水温(26℃)下,用药后168 h时鱼体肌肉中的FF检测不出,而FFa浓度为36.3 μg/kg,低水温(16℃)下,用药后264 h时鱼体肌肉中的FF浓度为23 μg/kg,而FFa浓度为49μg/kg;低剂量组在用药后168 h时,鱼体肌肉中的FF和FFa的浓度之和为36μg/kg,而高剂量组在用药后264 h时,鱼体肌肉中的FF和FFa的浓度之和为59μg/kg;药物在德国镜鲤各组织中的消除顺序依次为肌肉>肝胰脏>肾脏.  相似文献   

11.
氟苯尼考颗粒与氟苯尼考粉在猪体内的药物动力学比较   总被引:1,自引:0,他引:1  
健康猪14头随机分为A、B2组,分别单剂量胃管灌服氟苯尼考粉和颗粒,按体质量给药剂量均为30 mg/kg,进行比较药动学研究.高效液相色谱法(HPLC)测定其血药浓度.采用药动学分析软件WinNonlin 5.2.1的非房室模型处理血药浓度-时间数据.氟苯尼考粉灌胃给药的主要药物动力学参数为:t1/2β=(10.22±0.18)h,ke=(0.07±0.01)h-1,tmax=(1.67±0.48)h,Cmax=(24.68±1.13)μg·mL-1,AUC=(190.97±16.60)μg·mL-1·h,MRT=(8.33±0.42)h,tcp=(17.66±1.52)h.氟苯尼考颗粒灌胃给药的主要药物动力学参数为:t1/2β=(16.36±4.14)h,ke=(0.05±0.01)h-1,tmax=(5.71±0.47)h,Cmax=(12.23±0.78)μg·mL-1,AUC=(155.44±6.59)μg·mL-1·h,MRT=(14.96±0.35)h,tcp=(23.03±0.49)h.试验结果表明,与氟苯尼考粉相比,氟苯尼考颗粒的消除半衰期更长,有效血药浓度维持时间也较长.  相似文献   

12.
为研究氟苯尼考在罗非鱼(Oreochromis niloticus)体内的吸收特征及组织毒理,在30℃实验条件下,分别按0、5、12、20、40、80、100 mg/kg的给药剂量,通过药饵单次饲喂实验罗非鱼氟苯尼考后,使用HPLC方法检测各剂量组的血药浓度,结果发现各剂量组10 h的血药浓度分别为0、1.49±0.46、2.66±0.62、5.08±0.75、10.60±2.34、13.74±2.87、14.42±0.49μg/mL(M±SD,n≥6,n为各浓度点数据量),表明随着给药剂量的增加,实验动物体内血药浓度也随之上升,但40 mg/kg剂量以上,其浓度增幅降低,提示药物利用率随着给药剂量的增加而降低。在相同试验条件下,按照0、12、20、40、100 mg/kg的给药剂量连续饲喂罗非鱼7 d以研究药物对罗非鱼的组织毒理特性,组织切片显示20 mg/kg以下剂量组未见明显病变,在高剂量组(40 mg/kg、100 mg/kg)则出现了剂量依赖的肝肾细胞损伤现象,并且该损伤在继续饲养7 d的情况下未见修复。建议生产上的给药剂量不高于20 mg/kg,以免造成机体组织损伤,利用率降低及环境污染等问题。  相似文献   

13.
不同给药方式下培氟沙星在鲤体内的药代动力学研究   总被引:1,自引:0,他引:1  
在水温为18℃下,按10 mg/kg(体质量)对体质量为(200±30)g的福瑞鲤Cyprinus carpio单次肌肉注射和混饲口灌培氟沙星,于不同时间点采集鲤血浆、肌肉、肝胰脏、肾脏组织,经超高液相色谱法测定各组织中培氟沙星的浓度,并采用DAS 3.0药物代谢动力学软件的非房室模型统计矩方法分析药时数据。结果表明:混饲口灌给药和肌注给药后,培氟沙星的药时曲线下面积( AUC)分别为88.35、139.9 mg·h/L,达峰浓度( Cmax )分别为2.092、3.687 mg/L,达峰时间( Tmax )分别为4.0、0.5 h,消除半衰期( t1/2)分别为22.301、74.357 h,表观分布容积( Vd )分别为5.464、15.342 L/kg,总体清除率( CL )分别为0.170、0.143 L·kg/h。研究表明,肌肉注射给药较混饲口灌达峰时间短,达峰浓度高,半衰期长,生物利用度高。  相似文献   

14.
鸡蛋中粘杆菌素残留含量消除规律研究结果表明。鸡蛋中药物浓度-时间的药动学主要参数为:鸡蛋中药物的达峰浓度(Cmax)为(242.5641±158.7074)μg/kg,达峰时间(Tmax为(10.20668±0.93777)d,零阶矩曲线下面积(AUC)(1668.298±686.8698)μg/(ks·d),吸收半衰期(K01-HL)(2.459439±2.255054)d,消除半衰期(K10-HL)(2.387610±1.889865)d,清除率(CL)(0.130340±0.029891)L/(kg·d)。  相似文献   

15.
乙酰甲喹在美洲鳗鲡体内的药物代谢动力学及残留研究   总被引:1,自引:0,他引:1  
潘葳  刘文静 《福建农业学报》2016,(10):1028-1033
在水温(25±1)℃条件下,分别采用口灌和浸浴的给药方式,以120mg·kg~(-1)的单剂量混饲口灌及5mg·L~(-1)浸浴18h给予乙酰甲喹后,用高效液相色谱法测定血浆、肌肉、肝脏及肾脏中的药物浓度,研究不同给药方式下乙酰甲喹在美洲鳗鲡体内的药代动力学特征及残留情况。结果表明:乙酰甲喹原药在美洲鳗鲡体内吸收良好、代谢快、体内残留少。口灌给药后,血浆中药物浓度达峰时间T_(max)为0.75h,达峰质量浓度C_(max)为4 115μg·L~(-1),消除相半衰期T_(1/2)为7.40h,总体消除率CL/F为41.89L·kg~(-1)·h~(-1),72h后血浆、肌肉、肝脏及肾脏中几乎检测不到原药;浸浴给药血浆中药物浓度于0.25h达峰,达峰质量浓度C_(max)为435.6μg·L~(-1),消除相半衰期T_(1/2)为0.26h,总体消除率CL/F为1.241L·kg~(-1)·h~(-1),2.5h后各组织中几乎检测不到原药。2种方式给药乙酰甲喹在美洲鳗鲡血浆中分布均符合药动学一室开放模型。  相似文献   

16.
 【目的】 研究并比较泰妙菌素混悬注射液和泰妙菌素注射液在猪体内的药物代谢动力学特征及生物利用度。【方法】 7头健康猪,按随机拉丁方设计,进行单次给药剂量(10 mg•kg-1 b.w)静注、肌注泰妙菌素注射液和肌注泰妙菌素注射混悬液,高效液相色谱串联质谱法测定猪血浆中泰妙菌素的浓度,罗红霉素作为内标,3P97药动学计算软件处理血浆药物浓度-时间数据。【结果】 猪静注给药的药时数据符合无吸收三室开放模型,主要药动学参数为:t1/2β为2.04±0.23 h,t1/2α为0.39±0.06 h,t1/2π为0.12±0.04 h,Vd 为8.73±1.83 L•kg-1,AUC为3.78±0.52μg•mL-1•h-1,ClB为2.99±0.43 L•kg-1•h-1)。猪肌注泰妙菌素注射液的药时数据符合一级吸收二室开放模型,主要的药物动力学参数分别为:t1/2Ka(0.06±0.01)h,t1/2β(3.67±0.41)h,Tmax(0.18±0.03)h,Cmax(1.32±0.25)μg•mL-1,AUC(2.62±0.21)μg•mL-1•h-1,生物利用度为73.51%。猪肌注泰妙菌素混悬液的药时数据则符合一级吸收一室开放模型,主要的药物动力学参数为:t1/2Ka(0.04±0.01)h,t1/2Ke(2.90±0.43)h,Tmax(0.27±0.03)h,Cmax(0.7±0.11)μg•mL-1,AUC(2.80±0.35)μg•mL-1•h-1,生物利用度为75.73%。t检验比较肌注泰妙菌素注射液和泰妙菌素注射混悬液的主要药动学参数,结果表明,两者除达峰浓度Cmax有显著差异外,AUC、t1/2Ka、Tmax、t1/2Ke和生物利用度均无显著性差异。【结论】泰妙菌素注射混悬液肌注后在猪体内具有吸收迅速,体内分布广,达峰迅速,消除较快的药动学特征。  相似文献   

17.
在(26±1)℃的水温条件下,青虾一次性肌肉注射25mg/kg诺氟沙星后,用反相高效液相色谱法测定青虾血淋巴和肌肉组织中诺氟沙星含量。青虾血淋巴药一时曲线和肌肉药一时曲线均可以用二室开放模型来描述,诺氟沙星在青虾血淋巴液中的主要药动学参数为:分布相半衰期t1/α为1.66h,消除相半衰期t1/β为1.69h,达峰时间T(Peak)为1.82h,峰浓度C(max)为6.0081μg/mL,曲下面积AUC为30.75μg·mL^-1·h^-1,吸收相半衰期t1/2ka为1.66h。肌肉中的主要药动学参数为:分布相半衰期t1/ks为0.08h,消除相半衰期t1/2β为4.42h,达峰时间狄Peak)为0.03h,峰浓度C(max)为16.72μg/mL,曲下面积AUC为12.34μg·mL^-1·h^-1,吸收相半衰期t1/2a为0.08h。结果表明青虾肌注诺氟沙星后,能比较迅速的被吸收,并且在组织中维持较高的药物浓度。  相似文献   

18.
本试验建立了小龙虾组织中氟苯尼考(FF)和氟苯尼考胺(FFA)残留的高效液相色谱检测方法,并采用连续6 d药浴(水温25℃)的方式,研究淡水小龙虾肌肉和肝胰脏中FF及其主要代谢物FFA代谢动力学和消除规律。检测方法是以PBS(pH 6.0)和乙酸乙酯-氨水(体积比为98∶2)作为提取溶剂,采用XTerra@RP18(5μm,4.6 mm×250 mm)反向色谱柱,利用乙腈-磷酸二氢钠缓冲液(体积比为3∶7)为流动相,流速0.8 mL.min-1,紫外检测波长224 nm。在添加20~500μg.kg-1标样时,该方法的回收率大于70%,变异系数低于7.92%。FF和FFA的检出限分别为20μg.kg-1和10μg.kg-1。残留消除试验结果表明:在药浴FF 6 d后,在组织中两种药物均检出,说明其代谢物也有出现。停药后168 h,肌肉中检测不到FFA;停药后336 h,肝胰脏中检测不到FFA残留,肌肉和肝胰脏中均检测不到FF残留。两种药物在肝胰脏的消除速率都慢于肌肉,FF的消除速率均略慢于FF和FFA总量在组织中的消除速率,肝胰脏中的FFA浓度远高于肌肉中的。FF和FFA两种药物残留总量在淡水小龙虾肌肉和肝胰脏的消除曲线方程分别是y=505.06e-0.012 9x和y=775.71e-0.010 0x、y=690.78e-0.013 5x和y=1 778.7e-0.011 1x,消除半衰期(t1/2)分别为51.33 h和62.43 h,在肌肉和肝胰脏中降至100μg.kg-1的理论时间分别为5.94 d和10.8 d。考虑到温度为影响药物代谢和残留的最主要环境因素,建议FF在小龙虾体内的休药期为270℃.d。  相似文献   

19.
氟苯尼考在两种鳗鲡体内残留及消除规律的研究   总被引:1,自引:0,他引:1  
研究了氟苯尼考在日本鳗鲡和欧洲鳗鲡体内的残留消除规律.在25℃下,以30 mg/kg的剂量多次口灌给药后1、2、3、5、8、12、20、30 d,取鳗鲡的血浆和肌肉、肝脏、肾脏等样品,加入内标氯霉素混合,经萃取过滤后采用反相高效液相色谱法检测,测定的平均回收率在97.8%~101.3%之间,日内变异系数为(3.23±0.49)%,日间变异系数为(4.08±0.85)%.氟苯尼考在鳗鲡体内消除较慢,在日本鳗鲡和欧洲鳗鲡血浆中的半衰期分别达7.8 d和8.3 d.氟苯尼考的最高残留限量,如规定为0.2μg/g,则日本鳗鲡和欧洲鳗鲡用药后的最大休药期分别是38.7 d和28.5 d;如规定为1μg/g,则最大休药期分别是19.0 d和11.2 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号