首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
秸秆还田种类对稻田N2O排放及硝化反硝化微生物的影响   总被引:1,自引:0,他引:1  
以太湖流域典型单季稻田的原状土柱为研究对象,通过设置温室土柱试验,同步监测3种秸秆(水稻秸秆RS、小麦秸秆WS、玉米秸秆MS)施用下水稻各生长期N2O排放、水稻产量和土壤理化因子,同时定量化分析多个N2O排放相关菌群及功能基因的丰度,以阐明N2O排放对不同种类秸秆施用引发的微生物响应机制,筛选控制单季稻田N2O减排增效最佳的秸秆种类。结果表明:与对照相比,RS、WS和MS处理下水稻生长期N2O排放量分别增加162.32%、107.11%和9.48%,其中RS处理显著高于MS处理。水稻生育期内,土壤氨氧化菌(AOA、AOB)和反硝化菌群落(nir S、nos Z)丰度均呈现先上升后下降的变化趋势。与对照相比,拔节期RS处理显著增加AOA、AOB、nirS和nosZ拷贝数,MS和WS处理对上述功能基因丰度均无显著影响。各生育期土壤NH4+-N含量整体高于NO3-N含量,二者均在水稻分蘖期达到峰...  相似文献   

2.
  目的  评估水稻秸秆添加对东北地区不同种稻年限黑土CH4的排放的影响,以期为黑土水稻田秸秆还田提供理论依据。  方法  不同种稻年限(0、12、35、62和85 a)黑土,分别设不添加(CK)和添加1%水稻秸秆(S)处理,进行淹水培养试验(培养温度为20 ℃,淹水层为1 cm),测定土壤CH4排放通量及累积排放量,比较不同种稻年限土壤对水稻秸秆添加响应的差异。  结果  在淹水培养期间(150 d),添加水稻秸秆处理各种稻年限土壤CH4排放通量(0.00 ~ 3.33 mg kg?1 d?1)显著(P > 0.05)高于未添加秸秆处理(0.00 ~ 0.13 mg kg?1 d?1),未添加和添加水稻秸秆处理土壤CH4排放主要集中于淹水培养的前80 d和60 d。未添加水稻秸秆处理土壤CH4累积排放量为0.04 ~ 4.45 mg kg?1,不同年限稻田土壤CH4累积排放量差异不显著(P > 0.05)。添加水稻秸秆处理土壤CH4累积排放量为29.64 ~ 91.08 mg kg?1,显著高于未添加水稻秸秆处理(P < 0.05),且12 a和35 a土壤CH4累积排放量显著高于0 a、62 a和85 a(P < 0.05)。未添加和添加水稻秸秆处理土壤CH4累积排放量与土壤有机碳、可溶性有机碳氮和铵态氮含量呈显著正相关(P < 0.01)。添加水稻秸秆处理土壤CH4累积排放量还与土壤β-葡萄糖苷酶活性呈显著负相关(P < 0.05),土壤CH4累积排放量增量也与土壤有机碳含量也呈显著线性正相关(P < 0.01)。水稻秸秆添加后土壤可溶性有机氮含量是影响土壤CH4排放的直接因素,土壤可溶性有机碳和铵态氮含量及β-葡萄糖苷酶活性是影响土壤CH4排放的间接因素。  结论  水稻秸秆添加显著促进了黑土不同种稻年限土壤CH4排放,种稻年限越长,水稻秸秆添加后土壤CH4排放量越少。本试验条件下,黑土种稻年限大于35年时,水稻秸秆还田带来的土壤CH4排放量相对较小。  相似文献   

3.
  【目的】  比较冬种紫云英和水稻秸秆还田对稻田甲烷(CH4)产生、排放的影响,探究冬种紫云英的节肥效应和CH4减排机制。  【方法】  田间试验在湖南省农业科学院高桥试验基地进行,种植制度为单季超级稻‘晶两优华占’。田间试验设置1个不施肥对照(CK)和5个等氮磷钾养分施肥处理:单施化肥(CF)、化肥+水稻秸秆全量还田(S)、化肥+紫云英全量还田(M)、化肥+秸秆和紫云英全量还田(MS)、化肥+秸秆和紫云英全量还田+熟石灰(MSC)。在水稻分蘖初期(2021年6月21日),采用密闭式静态暗箱监测稻田CH4排放通量,通过底座侧面的接口采集田面水溶存CH4,同时每个小区按“S”形随机取0—20 cm土层土壤样品,一份用于测定理化性质,一份用于室内甲烷产生潜力和甲烷氧化潜力培养试验。  【结果】  1)田间试验中,供试稻田CH4排放通量范围为5.70~26.65 mg/(m2·h),虽然处理间差异未达显著水平,施肥处理的CH4排放通量均高于CK,S、MS、MSC处理的CH4排放通量又高于CF处理,在施肥处理中以M处理的CH4排放通量最低。与S处理相比,M处理减少了13.78%的化肥氮量,折合尿素24.46 kg/hm2,CH4排放通量降低了12.50%。供试稻田田面水溶存CH4浓度范围为70.02~163.58 mg/kg,以MSC处理最高,其田面水溶存CH4浓度比其他处理平均提高了30.68%。2)室内培养试验中,M处理的SOM和总碳含量分别比S处理提高了7.60%和7.55%,DOC含量降低25.99%。M处理的CH4产生潜力和CH4氧化潜力均最低,分别比其他5个处理平均降低61.04%和7.56%,比S处理降低83.16%和5.36%。M处理的乙酸发酵产CH4途径比例比其它5个处理平均降低52.52%,比S处理降低53.49%。  【结论】  冬种并翻压紫云英可替代部分化肥投入,不仅减少了水稻生育早期土壤中的有效态氮,还减少了土壤中的可溶性有机碳含量,因而比秸秆还田更有效地促进稻田增碳和减少CH4排放。紫云英全量还田处理主要抑制了乙酸型产甲烷过程。  相似文献   

4.
  【目的】  研究青海高原麦秸和豆科绿肥混合添加下土壤温室气体排放规律及其碳氮转化机制,为该地区农田系统秸秆和绿肥科学利用提供依据。  【方法】  采用室内模拟试验,设无添加对照(CK)、单独添加毛叶苕子(VS)、单独添加麦秸(WS)、麦秸与毛叶苕子混合添加(VWS),共4个处理。测定了温室气体排放速率、土壤活性碳氮组分、土壤酶活性、细菌、古菌、真菌、amoA、nirK和narG基因丰度。  【结果】  VWS处理与VS处理相比,CO2和N2O的累积排放量分别减少24.8%和74.6%,CH4累积吸收量增加9.1%,综合增温潜势(global warming potential, GWP)显著降低76.1% (P<0.05);与WS处理相比,CO2累积排放量增加33.7%,CH4累积吸收量与N2O累积排放量分别降低12.0%和43.1%,GWP降低49.4%。有机物料添加可调节土壤pH,增加土壤碳氮含量。VWS处理的土壤pH显著高于CK和VS处理;土壤水溶性有机碳(DOC)和微生物量碳(SMBC)含量较VS处理分别增加了21.6%和4.9%,无机氮(Nmin)、土壤水溶性有机氮(DON)和微生物量氮(SMBN)含量分别降低了77.3%、59.5%和6.3%;土壤Nmin、DOC、DON、SMBC和SMBN含量较WS处理分别增加64.0%、22.5%、56.5%、23.2%和27.8%。VWS处理较其他处理,α-葡萄糖苷酶(AG)和β-葡萄糖苷酶(BG)活性显著提高,亚硝酸还原酶(NIR)活性显著降低。VWS处理的真菌和古菌群落丰度较WS处理分别提高83.8%和69.8%,较VS处理分别降低62.6%和20.3%;VWS处理细菌群落丰度较VS处理降低33.4%。VWS处理下,AOB amoA、nirK和narG基因丰度较VS处理分别降低56.6%、41.4%和16.3%,较WS处理分别降低30.3%、25.9%和12.0%。相关分析结果表明,CO2和CH4排放与土壤有机碳、全氮、DOC、SMBC和SMBN含量,AG、NAG和NR活性,真菌、细菌、nirK和narG基因丰度呈显著正相关;N2O排放与土壤全氮、DON、SMBC和SMBN含量、真菌、AOB amoA和nirK基因丰度呈显著正相关,与土壤pH和BG活性呈显著负相关。偏最小二乘路径模型分析(PLS-PM)表明,AOB amoA是调控土壤N2O排放的主要功能菌群。  【结论】  麦秸、毛叶苕子单独添加以及二者混合添加均可促进土壤CO2排放,减少CH4吸收。相较于二者单独添加,混合添加可通过降低土壤AOB群落丰度等途径,实现N2O减排和综合增温潜势下降,可作为青海高原旱地土壤温室气体减排的一项有效措施。  相似文献   

5.
  【目的】  秸秆还田是我国水稻生产中的常规土壤培肥措施,在此背景下,进一步研究有机肥和包膜尿素替代部分普通尿素,以及施用硅肥和微量元素对土壤固碳效应和温室气体排放的影响及机理,为实现稻田“固碳减排”提供依据。  【方法】  江西高安县的双季稻田间定位试验始于2013年。在秸秆全部还田、早稻施N165 kg/hm2和晚稻施N 195 kg/hm2条件下,设置4个氮素处理: 100%普通尿素氮 (CK);用20%有机肥氮替代普通尿素氮 (N1);在N1基础上增加Si、Zn和S肥 (N2);在N2基础上用30%的包膜尿素氮替代普通尿素氮 (N3)。于收获期测定作物产量和地上部生物量,2016年测定了早稻和晚稻生育期温室气体 (CO2、N2O和CH4) 排放量。  【结果】  与早稻季相比,晚稻季温室气体排放总量较高,其中晚稻季CH4排放量是早稻季的4倍 (P < 0.05),生态系统呼吸增加了7.5%~9.3% (P > 0.05)。同一季节4个处理间生态系统呼吸没有显著差异;N2O排放量以CK 最高,其中早稻季CK处理比N1、N2和N3处理分别增加31.7%、27.2%和43.7%,晚稻季分别增加20.0%、31.5%和40.6% (P < 0.05);与CK处理相比,有机肥替代处理显著增加了CH4的排放量,其中早稻季N1、N2和N3处理分别增加了13.1%、13.9%和21.4%,晚稻季分别增加了19.4%、12.7%和13.7% (P < 0.05)。利用地上部生物量估计当季/年尺度土壤固碳效应,晚稻季有机肥处理 (N1、N2和N3) 与CK相比增加显著 (P < 0.05);2016年早稻产量比晚稻提高30%,所以早稻季综合净温室效应是负值 (碳汇),而晚稻季是正值 (碳源),全年总计为碳源,这表明稻田产生温室效应。与CK处理相比,有机肥和包膜尿素配施处理 (N3) 显著降低了全年综合净温室效应。  【结论】  连续4年的田间试验结果表明,在秸秆还田基础上,用有机肥部分替代普通尿素可显著增加CH4排放,但又显著降低N2O排放且增加土壤固碳效应。综合考虑,有机肥投入会显著降低双季稻田综合净温室效应。使用包膜尿素替代部分普通尿素可有效降低施用有机肥产生的CH4排放,且通过提高产量进一步降低双季稻生产系统的综合净温室效应。而施用中、微量元素肥料对综合净温室效应没有显著正效应。由于晚稻的温室气体排放量高于早稻,因此,通过优化施肥技术提高早稻产量是降低双季稻年度温室气体排放的有效措施。  相似文献   

6.
不同灌溉模式和施氮处理下稻田 CH4 和 N2O 排放   总被引:4,自引:0,他引:4  
【目的】研究不同灌溉模式和施氮处理稻田 CH4 和 N2O 的排放规律、综合增温潜势和综合排放强度,以期获得降低稻田 CH4 和 N2O 排放的灌溉模式和施氮管理。【方法】2015~2016 年在广西南宁市灌溉试验站进行晚稻和早稻大田试验,两次试验均设 3 种灌溉模式:常规灌溉 (CIR)、“薄浅湿晒 ”灌溉 (TIR) 和干湿交替灌溉 (DIR)。 2 种尿素-N 和猪粪-N 比例:100% 尿素-N (FM1),50% 尿素-N + 50% 猪粪-N (FM2)。共设 CIR-FM1、TIR-FM1、DIR-FM1、CIR-FM2、TIR-FM2 和 DIR-FM2 6 个处理,用静态箱–气相色谱法测定了水稻生育期内稻田 CH4 和 N2O 排放通量,分析了早晚稻生育期内 CH4 和 N2O 累积排放量和综合增温潜势,并结合产量分析了 CH4 和 N2O 综合排放强度。【结果】DIR 下 FM2 处理早稻产量和两季总产量比 FM1 处理分别提高 18.8% 和 17.7%,FM2 下 TIR 和 DIR 模式早稻产量分别比 CIR 模式提高 20.9% 和 37.4% 以及 DIR 模式两季总产量比 CIR 模式提高 21.5%。不同处理早晚稻生育前期 CH4 排放通量较高,生育中后期 CH4 排放通量较低。水稻生育期内 TIR 和 DIR 模式 CH4 累积排放量低于 CIR 模式,FM1 处理 CH4 累积排放量低于 FM2 处理。不同处理早晚稻生育前期 N2O 的排放通量为负值或者较低,N2O 排放主要集中在晒田完成复水之后及成熟期稻田水分落干时,DIR 模式 N2O 累积排放量显著高于 CIR 模式,FM2 处理 N2O 累积排放量高于 FM1 处理。不同处理稻田 CH4 和 N2O 的排放彼此间存在消长关系。CH4 对综合增温潜势的贡献率达 99% 以上,而 N2O 的贡献率不足 1%。3 种灌溉模式下 FM1 处理 CH4 或 N2O 增温潜势、CH4 和 N2O 综合增温潜势和排放强度均低于 FM2 处理,2 种施氮处理下 TIR 和 DIR 模式 CH4 和 N2O 综合增温潜势和排放强度低于 CIR 模式。【结论】与常规灌溉相比,“薄浅湿晒”灌溉水稻产量和 N2O 排放有所提高,但是降低 CH4 排放量及 CH4 和 N2O 综合增温潜势和排放强度;干湿交替灌溉增加水稻产量和 N2O 排放,但是降低 CH4 的排放量及 CH4 和 N2O 综合增温潜势和排放强度,因此,“薄浅湿晒”和干湿交替灌溉模式是有效降低稻田 CH4 和 N2O 综合增温潜势和排放强度的两种灌溉模式。在这两种灌溉方式下,与猪粪尿素配施相比,单施尿素显著降低 CH4 和 N2O 综合增温潜势和排放强度。  相似文献   

7.
【目的】 冬季种植紫云英翻压还田对促进稻田养分循环和提高氮素利用效率具有重要意义,本文重点研究了紫云英还田与氮肥配施对稻田温室气体排放的影响。 【方法】 盆栽试验条件下,设置紫云英与氮肥配施6个处理:不施肥 (CK);单施尿素 (CF);单施紫云英 (MV);1/4紫云英+3/4尿素 (1/4 MV+3/4 CF);1/2紫云英+1/2尿素 (1/2 MV+1/2 CF) 和3/4紫云英+1/4尿素 (3/4 MV+1/4 CF),除CK外,所有处理的施氮 (N) 量均为111.4 mg/kg干土。采用静态暗箱–气相色谱法,监测双季稻季节内稻田CH4和N2O排放特征及其全球增温潜势 (GWP) 与单位粮食产量温室气体排放强度 (GHGI)。 【结果】 1) 不同处理稻季CH4排放规律基本一致,早稻和晚稻生长季各处理CH4排放均集中在分蘖期与抽穗期,其中早稻季CH4没有明显的排放峰,其最大值为5.69 mg/(m2·h);晚稻季有两个较为明显的排放峰,出现在水稻移栽初期以及晒田期,最大峰值分别为13.33 mg/(m2·h) 和8.83 mg/(m2·h);稻田CH4累积排放量随紫云英施用比例的增加而增加。2) 不同施肥处理下N2O排放通量有较为明显的季节变化规律。早稻季N2O最大峰值出现在播后第3天,为1092.2 μg/(m2·h);晚稻季N2O排放主要集中在分蘖期和后期干湿交替阶段,最大峰值为795.7 μg/(m2·h);N2O累积排放量随紫云英施用比例的增加而减小,且MV的N2O累积排放量为负值。3) CF处理双季稻产量最高,显著高于CK、1/4 MV+3/4 CF和MV;1/2 MV+1/2 CF处理双季稻产量显著高于CK和1/4 MV+3/4 CF;各处理对稻田GWP及GHGI的影响均不显著。 【结论】 通过不同配比紫云英与氮肥配施盆栽试验发现,与CF相比,紫云英与氮肥不同配比对于稻田GWP及GHGI并无显著影响。   相似文献   

8.
为探讨添加秸秆及其生物质炭对淹水条件下砖红壤N2O和CH4排放的影响,以海南砖红壤为供试土壤,设置了玉米秸秆(Straw)、生物质炭(Biochar)、秸秆 + 生物质炭(Mix)和对照(CK)4个处理,探讨了等秸秆用量条件下添加不同秸秆形态对土壤氧化亚氮(N2O)和甲烷(CH4)排放的影响及形成强还原环境的可行性。结果表明:与CK处理相比,三个处理均可显著降低土壤N2O累计排放量,但仅Straw处理可显著促进土壤CH4排放、其它两个处理对土壤CH4排放影响不显著,致使straw处理综合温室效应增加明显。与CK处理相比,与Mix处理5天内土壤氧化还原电位(Eh)显著下降,而Biochar处理土壤Eh变化不显著;三个处理均使土壤pH上升、但Straw与Biochar处理之间差异不显著,Mix处理土壤有机碳、全氮及速效钾含量显著增加。因此,玉米秸秆及其生物质炭的配合施用,既可有效降低淹水条件下海南砖红壤排放CH4和N2O的综合温室效应,还能改善土壤养分状况但易于形成强还原条件。  相似文献   

9.
生物质炭和腐殖质对稻田土壤CH4和N2O排放的影响   总被引:1,自引:0,他引:1  
为探讨生物质炭与腐殖质单独施用与配合施用对稻田土壤CH4和N2O气体排放以及水稻产量的影响。以浙江临安潜育性水稻土的稻田系统为研究对象,设置2个水稻秸秆生物质炭添加水平(0,20 t/hm2)和3个腐殖质水平(0,0.6,1.2 t/hm2),共6个处理,分别为:(1)B0F0(对照,不添加生物质炭和腐殖质);(2)B0F1(腐殖质用量为0.6 t/hm2);(3)B0F2(腐殖质用量为1.2 t/hm2);(4)B1F0(生物质炭用量为20 t/hm2);(5)B1F1(生物质炭和腐殖质用量分别为20,0.6 t/hm2);(6)B1F2(生物质炭和腐殖质用量分别为20,1.2 t/hm2),研究生物质炭和腐殖质输入对水稻产量、稻田CH4和N2O气体排放的影响。结果表明:(1)与B0F0相比,单独施用生物质炭和腐殖质或生物质炭与腐殖质配施均降低了土壤CH4累积排放量,但增加了土壤N2O累积排放量;(2)生物质炭处理对GWP(global warming potential)和GHGI(greenhouse gas intensity)没有显著影响(P>0.05),腐殖质处理显著降低了GWP和GHGI(P<0.05),生物质炭和腐殖质对GWP和GHGI存在显著交互作用(P<0.05);(3)与B0F0相比,单独施用生物质炭和腐殖质或者生物质炭与腐殖质配施均能在一定程度上减少单位水稻产量的温室气体排放强度(GHGI),B0F2处理的GHGI最低,表明单施腐殖质处理(腐殖质用量为1.2 t/hm2)稻田土壤的减排效果和环境效应最好。研究结果为进一步探讨稻田土壤固碳减排提供数据支撑和理论依据。  相似文献   

10.
  【目的】  研究生物炭性质与氮肥用量对河套灌区春玉米田温室气体排放和产量的影响,为河套灌区高效利用生物炭固碳减排提供理论支撑。  【方法】  试验采用室内培养与田间试验相结合的方法,供试材料为秸秆生物炭和竹炭。田间试验设常规施氮300 kg/hm2对照(N)、常规氮量配施秸秆炭(SB+N)、常规氮量配施竹炭(BB+N)、减氮50%配施秸秆炭(SB+50%N)、减氮50%配施竹炭(BB+50%N)。采用静态暗箱–气象色谱法测定春玉米田温室气体排放量,并测定玉米产量。室内培养试验中分别制备热解温度为200℃、400℃和600℃的秸秆炭(S)和竹炭(B)加入土壤中,平衡3天后施入N 300 kg/hm2开始恒温恒湿培养,共培养14天。监测了不同培养时间土壤中N2O、CO2及CH4气体的排放通量。  【结果】  与N处理相比,SB+N、BB+N、SB+50%N和BB+50%N处理0—5 cm深土壤温度分别提高了0.50℃、1.84℃、0.35℃和1.37°C,0—10 cm深土壤温度分别提高了0.43℃、1.83℃、0.39℃和1.11°C;0—10 cm土壤含水率分别提高13.70%、8.90%、12.33%和8.90%。与N处理相比,在春玉米整个生育期内SB+N、BB+N、SB+50%N和BB+50%N处理的土壤N2O累积排放量分别减少了21.91%、23.16%、25.98%和28.17% (P<0.05);SB+N和BB+N处理的CO2累积排放量分别提高了7.96%和9.94% (P<0.05),而SB+50%N和BB+50%N处理的分别降低了11.54%和10.74% (P<0.05);整个春玉米生育期各生物炭处理的CH4累积排放量为负值,显著低于N处理(P<0.05);SB+N、BB+N、SB+50%N和BB+50%N处理土壤的全球增温潜势(GWP)分别降低了23.26%、23.98%、27.00%和29.14%,温室气体排放强度(GHGI)分别降低了27.24%、28.97%、32.57%和34.68% (P<0.05)。生物炭添加能够提高玉米产量,SB+N、BB+N、SB+50%N和BB+50%处理较N处理分别增加5.47%、7.01%、8.26%和8.47% (P<0.05)。培养试验发现生物炭能够减少土壤N2O和CO2的排放。N2O和CO2的排放通量随生物炭热解温度升高而减少,在相同热解温度下,竹炭的减排效果优于秸秆炭。各处理下土壤CH4的排放均表现为碳汇,其中600°C制备的竹炭对CH4的吸收量最高。  【结论】  施用生物炭能够改善土壤温度和土壤含水率,并显著降低N2O和CH4累积排放量,但常规施氮量下施用生物炭会提高CO2累积排放量。施用生物炭能够显著提高春玉米的产量并降低春玉米田GWP和GHGI。培养试验进一步说明了竹炭的减排效果优于秸秆炭,高热解温度的生物炭减排效果优于低热解温度生物炭,综合考虑田间与室内培养试验的结果、环境效益和经济效益,减氮50%配施竹炭的处理是河套灌区春玉米田提高产量并减少温室气体排放较为合适的措施。  相似文献   

11.
【目的】本研究目的为探讨连续三年施用石灰、生物炭和硅肥对中度镉污染稻田的修复效果。【方法】以湖南省典型双季稻区土壤-水稻系统为研究对象,采用随机区组设计,共设对照(T1)、施用石灰(T2)、施用生物炭(T3)和施用硅肥(T4)4个处理,分析施用不同改良剂的稻田土壤理化性质和水稻镉含量特征,通过冗余分析与回归分析探究土壤因子对镉在土壤-水稻系统中迁移转运的影响。【结果】相较于T1处理,T2处理土壤pH显著增加至6.92±0.05,土壤有效镉降低至0.41±0.09 mg kg-1;T3、T4处理与T1处理相比,土壤pH、有效镉、活性有机质均无显著差异。T3处理早稻和晚稻糙米镉含量最高,分别为0.54±0.07和0.11±0.04 mg kg-1;T2处理最低,分别为0.16±0.00和0.03±0.01 m...  相似文献   

12.
不同形态氮添加对毛竹林土壤N2O排放的影响   总被引:1,自引:1,他引:1  
  【目的】  氧化亚氮(N2O)排放是亚热带地区氮损失的主要途径,我们研究了不同形态含氮化合物对土壤N2O排放的影响。  【方法】  以毛竹(Phyllostachys edulis)林土壤为研究对象进行了室内培养试验。设置土壤中添加KNO3、NH4NO3、NH4Cl、KCl处理,以去离子水作为对照(CK),在25oC黑暗条件下培养。在培养0.5 h,1、3、5、7、14、28、60天,测定土壤N2O排放速率,铵态氮(NH4+-N)、硝态氮(NO3?-N)、可溶性有机碳(DOC)和水溶性氮(WSN)含量,采用荧光定量PCR技术测定了土壤氨氧化细菌(ammonia-oxidizing bacteria, AOB)、氨氧化古菌(ammonia-oxidizing archaea, AOA)、nirS、nirK、nosZⅠ、nosZⅡ基因丰度。  【结果】  培养第60天,氮添加与KCl添加处理均显著增加了土壤DOC含量,NH4NO3、NH4Cl处理显著增加了WSN含量,但显著降低了土壤pH。氮添加及KCl添加处理均增加了土壤AOA、AOB、nirK基因丰度,降低了nosZⅠ、nosZⅡ基因丰度。氮添加处理N2O排放速率均在培养第14天达到峰值,且相较于CK处理均增加了N2O累积排放量,KNO3、NH4NO3、NH4Cl和KCl处理累积排放量的增幅分别为524.3%、771.1%、652.7%、98.6%。N2O排放速率与NO3?、WSN、nirK基因丰度呈显著正相关,而与pH、nosZⅠ、nosZⅡ基因丰度呈显著负相关。  【结论】  铵态氮添加能显著促进毛竹林土壤N2O的排放,其效果高于硝态氮,NH4NO3作为混合氮,外源性NH4+-N、NO3?-N同时输入对土壤N2O排放的促进作用比单独添加NH4+-N、NO3?-N更显著,但并未出现叠加效应。  相似文献   

13.
【目的】本研究旨在明确硝化抑制剂对稻田土壤氮素周转的影响,探讨抑制剂提高氮肥利用率及微生物响应机理。【方法】以草甸黑土发育的水稻土为研究对象,进行了两组培养试验 (25℃),培养周期均为150天。共设4个处理:1) 不施肥 (CK);2) 单施尿素 (Urea);3) 尿素 + 双氰胺 (Urea + DCD);4) 尿素 + 3, 4-二甲基吡唑磷酸盐 (Urea + DMPP)。一组试验从培养第1天起,抽取气体样品,用气相色谱法测定N2O排放量。另一组试验从培养第1天直到结束,取土样测定氨氧化细菌和氨氧化古菌数量,采用荧光定量PCR等技术测定nirK基因和nirS基因拷贝数,用常规方法测定土壤无机氮含量。【结果】施用尿素显著增加了N2O排放量,其中85%的N2O排放发生在培养开始后的前两周内。Urea + DMPP处理土壤NH4+浓度在前23天稳定在较高水平,与Urea处理相比,N2O减排率为78.3%,Urea + DCD处理为21.6%。Urea + DMPP处理排放系数为0.05%,Urea + DCD为0.18%,Urea + DMPP处理显著低于Urea + DCD处理。施用尿素培养,土壤氨氧化细菌 (AOB) 数量显著增加而氨氧化古菌 (AOA) 数量则显著减少。添加DCD和DMPP能显著抑制AOB的数量,但对AOA没有影响。培养第3、30和90天,Urea + DMPP处理土壤中的AOB数量显著低于Urea + DCD处理的30%、56%和60%。对于反硝化细菌来说,所有处理中的nirK基因拷贝数均显著高于nirS基因拷贝数。添加DMPP在培养第3和30天显著减少了含nirK和nirS基因的反硝化细菌数量,而添加DCD对两类反硝化细菌数量无明显作用。【结论】东北黑土水稻生产中,硝化抑制剂DMPP降低N2O排放量和排放系数的效果显著好于DCD,因为DMPP在培养后的30天内,可以显著抑制氨氧化细菌繁衍,降低反硝化细菌数量,从而起到减少N2O排放、提高肥料利用率的作用。  相似文献   

14.
【目的】 生物质炭显著影响土壤氧化亚氮 (N2O) 排放,但关于其相关微生物机理的研究相对匮乏,尤其是生物质炭对酸性菜地土壤N2O排放的微生物作用机理。本文通过研究氮肥配施生物质炭对酸性菜地土壤N2O排放以及硝化和反硝化过程相关功能基因丰度的影响,探讨酸性菜地土壤N2O排放与功能基因丰度的关系,阐释生物质炭对酸性菜地土壤试验N2O排放的微生物作用机理。 【方法】 在田间一次性施入生物质炭 40 t/hm2,试验连续进行了3年,共9茬蔬菜。设置4个处理:对照 (CK)、氮肥 (N)、生物质炭 (Bc) 和氮肥 + 生物质炭 (N + Bc)。在施用后第三年,采集土壤样品进行室内培养,应用荧光定量PCR技术检测硝化过程氨氧化古菌 (AOA)、氨氧化细菌 (AOB) 功能基因amoA和反硝化过程亚硝酸还原酶基因 (nirK、nirS) 以及N2O还原酶基因 (nosZ) 等相关功能基因丰度,同时监测土壤pH值、无机氮 (铵态氮、硝态氮) 含量及N2O排放。 【结果】 与CK相比,生物质炭 (Bc) 处理的土壤有机碳 (SOC) 提高了27.1%,总氮 (TN) 提高了8.2%,amoA-AOB基因丰度显著降低了11.0%,nosZ基因丰度增加了21.2% (P < 0.05),N 2O排放没有显著变化 (P > 0.05)。与CK相比,施用氮肥 (N) 显著降低土壤pH ( P < 0.05),显著增加土壤无机氮含量、 nirK、nirS和nosZ功能基因丰度以及土壤N2O累积排放量 (P < 0.05)。与N处理相比,生物质炭与氮肥联合施用 (N + Bc) 处理显著增加 amoA-AOA、amoA-AOB、nirK、nirS和nosZ基因丰度,增幅分别为68.1%、39.3%、21.1%、19.8%、48.4% (P < 0.05),但 ( nirK + nirS)/nosZ的比值降低,同时N2O累积排放量显著降低33.3% (P < 0.05)。室内培养期间N 2O排放峰出现在1~5 d,N和N+Bc处理排放速率分别为 N 1.70 × 103和1.76 × 103 ng/(kg·h)。相关分析结果显示,N2O排放速率与氧化亚氮还原酶的标记基因nosZ基因拷贝数 (P < 0.05)、NH 4+-N含量 (P < 0.01) 呈显著正相关,与pH呈显著负相关 ( P < 0.01)。 【结论】 在菜地生态系统中氮肥和生物质炭联合施用可以有效缓解菜地土壤酸化,减少菜地土壤N2O排放,主要归因于反硝化作用nosZ基因丰度增加,(nirK + nirS)/nosZ比值降低。   相似文献   

15.
  【目的】   稻田是陆生生态系统中重要的氮库之一,在氮素生物地球化学循环中具有重要地位。研究不同施肥处理对稻田土壤微生物群落结构及其功能的影响具有重要意义。   【方法】   田间试验位于江苏省金坛市,在取样时试验已进行了6年。施肥处理包括:不施肥对照 (CK)、施化肥 (CF)、化肥+猪粪混施 (CMF)、化肥+秸秆混施 (CSF)。采用高通量测序和定量PCR方法测定稻田土壤微生物群落结构及氮循环相关功能微生物数量。   【结果】   在施用肥料6年后,土壤全碳、可溶性有机碳、全氮、铵态氮和硝态氮含量均不同程度地提高。与CF相比,CSF和CMF处理土壤pH升高,全碳、可溶性有机碳与养分含量升高。CK与施肥处理的土壤细菌群落结构差异明显,不同施肥处理的细菌群落结构之间有明显差别。聚类结果显示,CK与CMF处理细菌群落聚类更接近,CF处理和CSF处理细菌群落结构更为接近;与CK相比,CF、CMF、CSF处理土壤中氨氧化细菌 (AOB) 和铁氨氧化微生物Feammox A6的丰度显著提高,其中Feammox A6分别增长87.6%、158%和157%。冗余分析结果表明,施肥过程及其对土壤化学性质的改变显著影响土壤细菌群落的组成和分布。   【结论】   施肥导致的反应底物 (NH4+、NO3–含量) 及土壤理化性质的差异,是土壤微生物群落结构和功能微生物数量响应的主要决定因素。不施肥与化肥配施猪粪的土壤细菌群落聚类更接近,施化肥与化肥配施秸秆的细菌群落结构更为接近。施肥对氨氧化细菌AOA数量影响不明显,但显著提高氨氧化古菌AOB和厌氧铁氨氧化功能微生物Feammox A6的数量,特别是有机肥 (猪粪、秸秆) 提高Feammox A6数量的效果大于化肥。长期单施化肥土壤中厌氧氨氧化细菌丰度显著降低,反硝化功能基因nirK、nosZ丰度显著增高;化肥配施猪粪土壤中的厌氧氨氧化细菌丰度变化不明显,反硝化功能基因narG、nirK、nosZ丰度显著增高;化肥配施秸秆处理厌氧氨氧化细菌丰度变化不明显,反硝化功能基因nirK、nosZ丰度显著增高。  相似文献   

16.
为探明油菜、蚕豆、小麦秸秆还田对稻田土壤nirK型反硝化细菌群落结构的影响,采用IlluminaMiseq高通量测序法,研究了盆栽试验条件下单施化肥(NS)、油菜秸秆+化肥(RS)、蚕豆秸秆+化肥(BS)和小麦秸秆+化肥(WS)4个处理对稻田土壤nirK型反硝化细菌群落多样性及群落结构的影响。结果表明,相比NS处理,秸秆还田(RS、BS和WS处理)对nirK基因微生物的多样性指数没有显著影响(P 0.05),而RS处理的微生物多样性指数显著高于BS和WS处理(P 0.05)。Venn分析结果显示,相比NS处理,秸秆还田增加了红螺菌目(Rhodospirillales)。此外,RS处理增加了unclassified_Proteobacteria_miscellaneous,BS和WS处理增加了红细菌目(Rhodobacterales)。相比NS处理,秸秆还田改变了nirK基因微生物的共有目群落组成,而秸秆类型显著改变了共有目的相对丰度。综上所述,还田秸秆类型对nirK基因微生物的多样性和目水平微生物的群落结构均有显著影响,其中油菜秸秆还田的影响强于蚕豆和小麦秸秆。  相似文献   

17.
添加生物炭改善菜地土壤氨氧化细菌群落并提高净硝化率   总被引:2,自引:0,他引:2  
  【目的】  氨氧化过程是硝化作用的限速步骤,对氮循环有着重要影响。本研究通过分析生物炭输入下土壤氨氧化微生物群落的变化,揭示其影响土壤硝化作用的生物学机制。  【方法】  以华北潮土区设施菜地土壤为对象,设置生物炭梯度 (C0、C0.5、C1.5、C4.0) 土壤培养试验,结合PCR和T-RFLP等分析技术,观测生物炭输入下土壤氨氧化细菌群落变化动态,解析生物炭、土壤硝化作用与氨氧化细菌群落之间的关系。  【结果】  添加生物炭明显改变了土壤氨氧化微生物群落结构及氮素硝化过程。与未添加生物炭处理相比,生物炭添加处理培养前期土壤氨氧化细菌群落Shannon、Evenness指数分别升高5.4%~18.8%、26.2%~33.8%,后期Shannon指数降低20.7%~34.2%。生物炭输入对AOA群落没有明显影响,AOB群落256、58 bp代表物种丰度分别增加61.4%~56.0%、60.6%~78.6%,488 bp代表物种丰度降低22.8%~26.9%。21 bp代表物种丰度前期增加后期降低,与491 bp代表物种丰度变化相反。添加生物炭土壤AOB amoA基因丰度增加48.9%~53.2%。土壤NO3–-N含量提高1.7%~25.6%,NH4+-N含量下降13.4%~31.1%,土壤净硝化速率提高21.8%~70.2%。  【结论】  生物炭的输入可以改善以AOB为主的土壤氨氧化微生物群落结构,提高amoA酶活性,但是对氨氧化古菌微生物群落结构未产生明显影响。因此,生物炭提高土壤净硝化速率的作用与其对土壤氨氧化细菌群落和组成的影响密切相关。  相似文献   

18.
为探讨四川盆地丘陵区农业源CH4排放特征,采用IPCC排放因子法估算2007—2017年农业源CH4排放量,运用重心模型、Getis-Ord G*i指数检验和PLS-STIRPAT模型,探讨区域CH4排放的时空变化特征及驱动因素。结果表明:(1)2007—2017年,盆地丘陵区农业源CH4排放量达(32.52~35.93)万t,其中种植业、畜禽养殖业排放占比分别为44.54%~48.26%和51.75%~55.46%,总排放量呈现出随年限增加而降低的趋势,与养殖业CH4排放密切相关。(2)2007—2017年,盆地丘陵区农业源CH4排放重心总体向东北方向迁移; 高排放聚集区主要位于研究区东北部,呈现出扩张的趋势,低排放聚集区主要位于西南部,与高值聚集区呈现出相反的缩减趋势。(3)驱动因素中,总人口、农业从业结构和农业产值结构对农业源CH4排放起到正向促进作用,城镇化率、单位面积施肥量、人均耕地占有量、人均GDP和农村用电量对农业源CH4排放起控制作用。其中农业产值结构是推动研究区CH4增长的重要因素。综上,盆地丘陵区农业源CH4排放水平较高,时空分布差异变动较小,通过农业生产集约集中规模化可有效降低农业源CH4的排放量。  相似文献   

19.
许欣  陈晨  熊正琴 《土壤学报》2016,53(6):1517-1527
基于稻田中氮肥配施生物炭的田间定位试验,研究了施用生物炭与氮肥对旱季稻田土壤理化性质、甲烷氧化与产生潜势及甲烷氧化菌和产甲烷菌丰度的影响。田间试验共设置5个处理:单施生物炭、单施氮肥、氮肥配施生物炭(生物炭设置两个水平)以及对照。结果表明:施用生物炭三年后显著提高了有机碳和微生物生物量碳含量(p﹤0.05),与单施氮肥处理相比,氮肥配施生物炭后可显著提高土壤pH。与对照相比,单施生物炭显著提高土壤甲烷氧化潜势。在施氮条件下,甲烷氧化潜势与生物炭施用量之间存在正相关关系,与氮肥配施20 t hm-2处理相比,40 t hm-2生物炭处理甲烷氧化潜势增长53.8%。氮肥配施高倍生物炭与配施低倍生物炭处理相比产甲烷潜势由0.001提高至0.002 mg kg-1 h-1;氮肥施用一定程度上抑制了甲烷氧化菌数量的增长,单施氮肥处理中产甲烷菌数量较对照处理显著增加了3.0%;单施或配施低水平生物炭显著增加土壤甲烷氧化菌数量。氮肥显著降低了甲烷氧化菌与产甲烷菌基因丰度比(pmoA/mcrA)。而在同氮肥水平下施加生物炭显著增加了土壤pmoA/mcrA比值,即生物炭对甲烷氧化菌的促进作用显著高于产甲烷菌,提高了旱季稻田土壤的甲烷氧化能力,因此有助于减少稻田土壤甲烷的排放。  相似文献   

20.
【目的】 农田条件下研究用有机肥替代部分尿素、用秸秆生物炭替代秸秆对黑土有机质提升和温室气体排放的影响,为秸秆有效还田和“固碳减排”提供理论依据。 【方法】 2013—2015年在东北典型春玉米区进行田间定位试验,所有处理采用相同方法施用同量磷钾化肥,磷肥为磷酸氢二铵 (P5O2 60 kg/hm2),钾肥为硫酸钾 (K2O 75 kg/hm2),在施用4 t/hm2玉米秸秆前提下,设置:1) 不施尿素氮 (N0);2) 尿素氮100% (N 165 kg/hm2,N1);3) 尿素氮60% + 有机肥氮20% + 缓释氮20% (N2)。另外,处理4) 除了用2 t/hm2玉米秸秆炭替代4 t/hm2玉米秸秆外,其他与N2一致 (N3)。各生育期测定生态系统温室气体 (CO2、N2O和CH4) 排放量,收获期测定作物产量和地上部生物量。 【结果】 N1、N2、N3处理间玉米产量差异不显著。在等氮条件下,N1、N2、N3处理生态系统CO2排放分别为13170、10521、9994 kg/hm2,N2和N3处理降低CO2排放的效果显著好于N1,N2和N3处理差异不显著 (P < 0.05),N1、N2、N3处理N 2O累积排放分别为6.092、6.597、3.604 kg/hm2,N3降低N2O累积排放的效果显著好于N1和N2处理;N1、N2、N3处理CH4累积排放分别为0.694、1.652、–2.107 kg/hm2,N3处理降低CH4累积排放的效果显著好于N1和N2处理。农田系统净碳收支 (NECB,除土壤固碳外,作物?土壤系统产生的碳收支,如作物光合、呼吸和产量移出等),N2处理为C 766.5 kg/hm2,是碳汇,而N1和N3处理是碳源 (C ?621.3 kg/hm 2和?673.3 kg/hm2)。当季作物尺度上用NECB估算的土壤固碳效应N1、N2和N3处理分别为C ?142.9、176.3、1385.1 kg/hm 2,N3处理土壤固碳效应显著好于N2和N1处理。在化肥生产和运输以及农事操作等投入产生的间接碳排放量方面,化肥氮是农业投入的主要碳源,分别占N1、N2和N3处理农业投入的73%、71%和66%。综合考虑农事操作带来的碳排放,化学品投入带来的碳排放,以及农田系统温室气体排放和土壤固碳的收支,综合净温室效应N1、N2、N3处理分别为2535.2、1488.2、–3769.7 CO2 eq. kg/hm2,只有N3处理是碳汇。 【结论】 在供试黑土条件下,用有机肥替代部分化肥增加生态系统净碳收入;用秸秆生物炭替代秸秆显著增加土壤固碳效应、减少N2O排放;从综合净温室效应看,有机肥与秸秆生物炭分别替代部分化肥与秸秆“固碳减排”效果最佳。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号