首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceftiofur, a third generation cephalosporin, demonstrates in vitro efficacy against microorganisms isolated from septicemic neonatal foals. This pharmacokinetic study evaluated the intravenous and subcutaneous administration of ceftiofur sodium (5 mg/kg body weight; n = 6 per group) and subcutaneous administration of ceftiofur crystalline free acid (6.6 mg/kg body weight; n = 6) in healthy foals. Plasma ceftiofur- and desfuroylceftiofur-related metabolite concentrations were measured using high performance liquid chromatography following drug administration. Mean (±SD) noncompartmental pharmacokinetic parameters for i.v. and s.c. ceftiofur sodium were: AUC(0→∝) (86.4 ± 8.5 and 91 ± 22 h·μg/mL for i.v. and s.c., respectively), terminal elimination half-life (5.82 ± 1.00 and 5.55 ± 0.81 h for i.v. and s.c., respectively), C(max(obs)) (13 ± 1.9 μg/mL s.c.), T(max(obs)) (0.75 ± 0.4 h for s.c.). Mean (± SD) noncompartmental pharmacokinetic parameters for s.c. ceftiofur crystalline free acid were: AUC(0→∝) (139.53 ± 22.63 h·μg/mL), terminal elimination half-life (39.7 ± 14.7), C(max(obs)) (2.52 ± 0.35 μg/mL) and t(max(obs)) (11.33 ± 1.63 h). No adverse effects attributed to drug administration were observed in any foal. Ceftiofur- and desfuroylceftiofur-related metabolites reached sufficient plasma concentrations to effectively treat common bacterial pathogens isolated from septicemic foals.  相似文献   

2.
Pharmacokinetics of oral terbinafine in horses and Greyhound dogs   总被引:1,自引:0,他引:1  
The objective of the study was to assess the pharmacokinetics of terbinafine administered orally to horses and Greyhound dogs. A secondary objective was to assess terbinafine metabolites. Six healthy horses and six healthy Greyhound dogs were included in the pharmacokinetic data. The targeted dose of terbinafine was 20 and 30 mg/kg for horses and dogs, respectively. Blood was collected at predetermined intervals for the quantification of terbinafine concentrations with liquid chromatography and mass spectrometry. The half-life (geometric mean) was 8.1 and 8.6 h for horses and Greyhounds, respectively. The mean maximum plasma concentration was 0.31 and 4.01 μg/mL for horses and Greyhounds, respectively. The area under the curve (to infinity) was 1.793 h·μg/mL for horses and 17.253 h·μg/mL for Greyhounds. Adverse effects observed in one study horse included pawing at the ground, curling lips, head shaking, anxiety and circling, but these resolved spontaneously within 30 min of onset. No adverse effects were noted in the dogs. Ions consistent with carboxyterbinafine, n-desmethylterbinafine, hydroxyterbinafine and desmethylhydroxyterbinafine were identified in horse and Greyhound plasma after terbinafine administration. Further studies are needed assessing the safety and efficacy of terbinafine in horses and dogs.  相似文献   

3.
Pharmacokinetics of tinidazole in the horse   总被引:1,自引:0,他引:1  
Serum tinidazole concentrations were monitored in five clinically healthy adult horses after intravenous (i.v.) and oral administration of the drug (15 mg/kg and 25 mg/kg, respectively). After i.v. administration, the mean residence time was 7.0 h, the elimination half-life 5.2 h and the body clearance rate 1.6 ml/min/kg. The distribution volume was found to be 660 ml/kg. After oral administration, the mean residence time was 8.5 h, the absorption half-life 1.1 h and the bioavailability essentially 100%. In view of the in-vitro sensitivities of various anaerobic bacteria, a dosage of 10-15 mg/kg of tinidazole, orally, at 12-h intervals, can be recommended for the treatment of anaerobic infections in horses.  相似文献   

4.
Plasma distribution and elimination of florfenicol in channel catfish were investigated after a single dose (10 mg/kg) of intravenous (i.v.) or oral administration in freshwater at a mean water temperature of 25.4 °C. Florfenicol concentrations in plasma were analyzed by means of liquid chromatography with MS/MS detection. After i.v. florfenicol injection, the terminal half-life (t(1/2)), volume of distribution at steady state (V(ss)), and central volume of distribution (V(c)) were 8.25 h, 0.9 and 0.381 L/kg, respectively. After oral administration of florfenicol, the terminal t(1/2), C(max), T(max), and oral bioavailability (F) were 9.11 h, 7.6 μg/mL, 9.2 h, and 1.09, respectively. There was a lag absorption time of 1.67 h in oral dosing. Results from these studies support that 10 mg florfenicol/kg body weight in channel catfish is an efficacious dosage following oral administration.  相似文献   

5.
探讨盐酸小檗碱在鸡体内的药动学特征。鸡以3mg/kg和50mg/kg剂量静脉注射和口服给药,采用HPLC法测定血浆中盐酸小檗碱的质量浓度。血药浓度-时间数据经DAS药代动力学分析软件处理,计算出药动学参数。结果表明:盐酸小檗碱静脉注射药时曲线符合三室开放模型,主要药动学参数分别为:t1/2β为(0.41±0.24)h,t1/2γ为(3.66±1.06)h,Vc为(25.49±21.77)L·kg^-1,CL为(43.20±16.21)L·h^-1·kg^-1,AUC为(78.92±30.58)μg·L^-1·h。盐酸小檗碱口服给药的药时曲线符合二室开放模型,主要药动学参数分别为:t1/2α为(1.87±0.76)h,t1/2β为(4.18±3.14)h,t1/2ka为(0.89±0.46)h,Tmax为(2.64±0.63)h,Cmax为(4.09±0.11)μg·L^-1,AUC为(26.18±10.73)μg·L^-1·h,绝对生物利用度为2.03%。鸡口服盐酸小檗碱的生物利用度低,消除较快。  相似文献   

6.
Ronidazole (RDZ) is an effective treatment for feline Tritrichomonas foetus infection, but has produced neurotoxicity in some cats. An understanding of the disposition of RDZ in cats is needed in order to make precise dosing recommendations. Single-dose pharmacokinetics of intravenous (IV) RDZ and immediate-release RDZ capsules were evaluated. A single dose of IV RDZ (mean 9.2mg/kg) and a 95mg immediate-release RDZ capsule (mean 28.2mg/kg) were administered to six healthy cats in a randomized crossover design. Plasma samples were collected for 48 h and assayed for RDZ using high pressure liquid chromatography (HPLC). Systemic absorption of oral RDZ was rapid and complete, with detection in the plasma of all cats by 10 min after dosing and a bioavailability of 99.64 (±16.54)%. The clearance of RDZ following IV administration was 0.82 (±0.07) ml/kg/min. The terminal half-life was 9.80 (±0.35) and 10.50 (±0.82) h after IV and oral administration, respectively, with drug detectable in all cats 48h after both administrations. The high oral bioavailability of RDZ and slow elimination may predispose cats to neurotoxicity with twice-daily administration. Less frequent administration should be considered for further study of effective treatment of T foetus-infected cats.  相似文献   

7.
Tulathromycin is a macrolide antimicrobial agent proposed for therapeutic use in treatment of porcine and bovine respiratory disease. In this study, the absolute bioavailability of tulathromycin solution was investigated in pigs. Eight pigs, with body weight of 20.5 ± 1.6 kg, were given a single dose of tulathromycin at 2.5 mg/kg oral (p.o.) and intravenous (i.v.) in a crossover design. The plasma concentrations of tulathromycin and its metabolite were determined by LC-MS/MS method, and the pharmacokinetic parameters of tulathromycin were calculated by noncompartmental analysis. After p.o. administration, the maximum plasma concentration (C(max) ) was 0.20 ± 0.05 μg/mL at 3.75 ± 0.71 h. The terminal half-life (t(1/2λz) ) in plasma was 78.7 ± 6.75 h, and plasma clearance (Cl/F) was 1.14 ± 0.28 L/h/kg. After i.v. injection, plasma clearance (Cl) was 0.580 ± 0.170 L/h/kg, the volume of distribution (Vz) was 64.3 ± 21.2 L/kg, and the t(1/2λz) was 76.5 ± 13.4 h. In conclusion, an analytical method for the quantification of tulathromycin and its metabolite in plasma in swine was developed and validated. Following p.o. administration to pigs at 2.5 mg/kg b.w., tulathromycin was rapidly absorbed and the systemic bioavailability was 51.1 ± 10.2.  相似文献   

8.
The pharmacokinetics of ampicillin and amoxicillin following intravenous administration at a dose rate of 15 and 10 mg/kg respectively were studied in four healthy adult horses. Pharmacokinetics of pivampicillin and amoxicillin were studied after oral administration to four healthy adult horses. Pivampicillin, a prodrug of ampicillin, was administered orally to starved and fed horses at a dose rate of 19.9 mg/kg, which is equivalent on a molecular basis to 15 mg/kg ampicillin. Amoxicillin was administered orally to starved horses only, at a dose rate of 20 mg/kg. Ampicillin and amoxicillin concentrations in plasma, synovial fluid and urine were determined. Mean biological half-life of intravenously administered ampicillin and amoxicillin was 1.72 and 1.43 h respectively, whilst the distribution volume (Vss) appeared to be 0.180 and 0.192 1/kg. Orally administered pivampicillin and amoxicillin were rapidly absorbed. A maximum concentration in plasma of 3.80 micrograms/ml was reached 2 h after administration of pivampicillin to starved horses; in fed horses a maximum concentration of 5.12 micrograms/ml was reached 1 h after administration. After oral administration of amoxicillin a maximum concentration of 2.03 micrograms/ml was reached after 1 h. The (absolute) bioavailability of pivampicillin administered orally was 30.9% in starved horses and 35.9% in fed horses. The bioavailability of amoxicillin administered orally was 5.3% in starved horses.  相似文献   

9.
喹烯酮在鸡体内的代谢及药物动力学研究   总被引:2,自引:0,他引:2  
以HPLC-MS/MS为定量手段,研究了喹烯酮经静脉注射(2.5 mg/kg)、口服(30 mg/kg)两种给药途径在鸡体内的代谢及药物动力学特征.鸡静脉注射喹烯酮后,血浆中检测到喹烯酮原药和1-脱氧喹烯酮;口服灌注喹烯酮后,血浆中检测到喹烯酮原药和3-甲基喹噁啉-2-羧酸(MQCA).喹烯酮在鸡体内的药动学数据采用统...  相似文献   

10.
The pharmacokinetics of the antitrypanosomal drug isometamidium were studied in lactating goats after intravenous and intramuscular administration at a dose of 0.5 mg/kg body weight, in a crossover design at an interval of 6 weeks. Following intravenous administration, the half-life of the disappearance of the drug from plasma during the terminal phase was 3.2 h, and the mean residence time was 2.4 h. The apparent volume of distribution averaged 1.52 l/kg, and the mean total body clearance was 0.308 l/kg/h. After intramuscular administration, the absolute bioavailability was low, averaging 27%. This was consistent with a low mean maximum concentration of 24 ng/ml which occurred after 6 h. No drug was detectable (less than 10 ng/ml) in milk samples collected over a period of 14 days following drug administration by either the intravenous or intramuscular route. In tissues analysed when the goats were killed 6 weeks after administration of the second dose, no drug was detectable (less than 0.4 micrograms/g wet tissue) in the liver, kidney and muscle. However, at the injection site, drug concentrations varied from less than 0.4 to 18.8 micrograms/g wet tissue.  相似文献   

11.
This study examined the disposition kinetics and bioavailability of florfenicol after intravenous (i.v.), intramuscular (i.m.) and oral administration to rabbits at a dose of 30 mg/kg BW. Serial blood samples were collected through an indwelling catheter intermittently for 24 h for various routes. Plasma antibacterial concentrations were determined using a microbiological assay method with Bacillus subtilis ATCC 6633 as a reference organism. Plasma concentration-time data generated in the present study were analysed by non-compartmental methods based on statistical moment theory. Following i.v. administration, the overall elimination half-life (t1/2beta) was 1.54 h, mean residence time (MRT) was 1.69 h, mean volume of distribution at steady-state (Vdss) was 0.57 L/kg, and total body clearance (Cltot) was 0.34 L/kg/h. After i.m. and oral dosing, the terminal part of the curve should correspond to the absorption phase, instead of to the elimination phase, with terminal half-lives of 3.01 and 2.57 h, respectively. The mean absorption time (MAT) was 2.65 h for i.m. and 2.01 h for oral administration. Elimination rate constants differed with i.v., i.m. and oral administrations, suggesting a flip-flop situation. The observed mean peak plasma concentrations (Cmax obs) were 21.65 and 15.14 microg/ml achieved at a post-injection time (Tmax obs) of 0.5 h following i.m. and oral dosing, respectively. The absolute systemic availabilities were 88.25% and 50.79%, respectively, and the extent of plasma protein binding percent was 11.65%.  相似文献   

12.
  1. The pharmacokinetics of doxycycline in ducks were investigated after a single intravenous (IV), intramuscular (IM) or oral (PO) dose at 20 mg/kg body weight.

  2. The concentrations of doxycycline in plasma samples were assayed using a high performance liquid chromatography method, and pharmacokinetic parameters were calculated using a non-compartmental model.

  3. After IV administration, doxycycline had a mean (±SD) distribution volume (Vz) of 1761.9 ± 328.5 ml/kg and was slowly eliminated with a terminal half-life (t1/2λz) of 21.21±1.47 h and a total body clearance (Cl) of 57.51 ± 9.50 ml/h/kg. Following PO and IM administration, doxycycline was relatively slowly absorbed – the peak concentrations (Cmax) were 17.57 ± 4.66 μg/ml at 2 h and 25.01 ± 4.18 μg/ml at 1.5 h, respectively. The absolute bioavailabilities (F) of doxycycline after PO and IM administration were 39.13% and 70.71%, respectively.

  4. The plasma profile of doxycycline exhibited favourable pharmacokinetics characteristics in Muscovy ducks, such as wide distribution, relatively slow absorption and slow elimination, though oral bioavailability was low.

  相似文献   

13.
The intravenous, intramuscular and oral pharmacokinetics of ibuprofen in broiler chickens were investigated. In a preliminary study, plasma ibuprofen concentration-time profiles, following i.v. (25 mg/kg) dosing were best described by a 2-compartment model. After intravenous administration, the volume of distribution at steady-state ( V d(ss)), the total systemic clearance ( Cl B), the elimination half-life (t1/2p) and the MRT were 0.303 L/kg, 482.3 ml/h-kg, 2.71 h and 1.02 h, respectively. After intramuscular administration of ibuprofen, the t max and C max were 0.37 h, and 42.2μg/mL, respectively, with an estimated bioavailability of 46.7%. After oral administration of ibuprofen, the t max and C max were 0.31 h and 23.91 μg/mL, respectively, with an estimated bioavailability of 24.2%. This is a preliminary study, examining the use of ibuprofen in broiler chickens, and should be followed by tissue residue and efficacy studies in different disease states.  相似文献   

14.
The pharmacokinetic disposition of 2-mercaptopropionylglycine (2-MPG) given as a single intravenous injection and/or as a single oral dose was studied in 9 normal and 13 cystinuric dogs. After intravenous injection of approximately 10 or 20 mg/kg body weight the pharmacokinetics were best described by a three-exponential function. The first phase involved a distribution process apparently including establishment of drug-plasma protein and drug-tissue binding. The second phase involved rapid renal elimination and 60% of the drug was excreted within 3 h of administration. There was also a slow terminal third phase with a long half-life after both intravenous (t1/2 = 23 h) and oral (t1/2 = 22 h) administration. No dose dependency was observed. A deep pool of reversibly tissue-bound 2-MPG was indicated by a Vss of 3.3 +/- 0.9 l/kg body weight and the long terminal elimination phase. Total clearance was estimated as 4.1 +/- 0.9 ml/min/kg body weight. 2-MPG was eliminated mainly by renal excretion, but there was a difference in recovery of dose between normal and cystinuric dogs. During the first 24 h after intravenous and oral administration, 69% and 54%, respectively, of the drug was recovered in the urine of normal dogs. The corresponding figures in cystinuric dogs were 44% and 29%, respectively. The absolute bioavailability (FAUC) was 88 +/- 20% in normal dogs.  相似文献   

15.
Tissue and plasma concentrations were determined after intravenous and oral administration of erythromycin to pigeons to establish the pharmacokinetics and bioavailability of the drug. A short mean half-life of elimination of 0.9 h was found. The relative bioavailability after direct crop administration of erythromycin thiocyanate or erythromycin ethylsuccinate at a dosage rate of 100 mg/kg was less than 10%. At a drug concentration in drinking water of 1 g/l, erythromycin plasma levels were barely detectable, whilst lung and trachea concentrations reached a maximum of 1.6 micrograms/ml. Even after crop administration of 100-mg/kg erythromycin thiocyanate, low plasma levels were obtained, whilst lung and trachea concentrations were substantially higher. Prescribed drinking-water regimens seemed unable to yield therapeutic tissue concentrations. Only individual crop administration seemed an appropriate medication method. The use of erythromycin ethylsuccinate did not present any advantage in comparison with erythromycin thiocyanate.  相似文献   

16.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) administration of 10 mg/kg body weight (b.w.) in 300 healthy allogynogenetic silver crucian carp at 24-26°C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.v. administration, the plasma concentration-time data were described by an open two-compartment model. The elimination half-life (T(1/2β)), area under the concentration-time curve (AUC) and total body clearance of EF were 63.5 h, 239.6 μg·h/mL and 0.04 L/h/kg, respectively. Following p.o. administration, the plasma concentration-time data showed a double peak-shaped curve, indicating the possibility of enterohepatic recirculation of EF in allogynogenetic silver crucian carp. The maximum plasma concentration (C(max)), T(1/2β) and AUC of EF were 4.5 μg/mL, 62.7 h and 205.9 μg·h/mL, respectively. Absorption of EF was very good with a bioavailability (F) of 86%, which could be correlated with the unique structure of the alimentary canal in allogynogenetic silver crucian. CF, an active metabolite of EF, was not detected in this study.  相似文献   

17.
The purpose of the study was to describe the pharmacokinetics of subcutaneous fentanyl (15μg/kg) in six healthy Greyhound dogs. Fentanyl plasma concentrations were determined by a liquid chromatography with mass spectrometry method. Non-compartmental pharmacokinetic analysis was used. Fentanyl was rapidly absorbed with a mean peak concentration (C(MAX)) of 3.56ng/mL at 0.24h. The mean terminal half-life, volume of distribution per bioavailability, and clearance per bioavailability were 2.97h, 7.09L/kg, 27.60mL/min/kg, respectively. Pain occurred on injection in all six dogs, but addition of 8.4% sodium bicarbonate (1mL per 20mL fentanyl) resulted in no pain on injection in 3/3 dogs but similar C(MAX) values. The subcutaneous route may be an alternative route of fentanyl administration if intravenous administration is not practical.  相似文献   

18.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

19.
Pharmacokinetics of ofloxacin, a fluoroquinolone antimicrobial agent, was determined in broiler chickens after intravenous or oral administration of a single dose (10 mg/kg). Ofloxacin concentrations in plasma were determined using a high-performance liquid chromatography assay. Plasma concentration profiles were analyzed by the noncompartmental method. Elimination half-life and mean residence time of ofloxacin in plasma were 4.46 and 5.48 h after intravenous administration and 5.85 and 7.43 h, respectively, after oral administration. Maximal plasma concentration of 3.65 microg/mL was achieved at 1.25 h after oral administration. Apparent volume of distribution of 1.76 and 2.16 L/kg and total body clearance of 4.96 and 4.5 mL/min/kg were obtained following intravenous and oral administration, respectively. The oral bioavailability of ofloxacin was 110.01%. Ofloxacin was found to be more rapidly absorbed, widely distributed and more quickly eliminated than other fluoroquinolones in broilers. Based on these kinetic parameters, a dosage of 10 mg/kg given orally every 24 h can be recommended for the treatment of bacterial infections with MIC90 < 0.3 microg/mL.  相似文献   

20.
The objective of this study was to evaluate the pharmacokinetic profile of enrofloxacin and its active metabolite, ciprofloxacin, in Korean catfish after intravenous and oral administrations. Enrofloxacin was administered to Korean catfish by a single intravenous and oral administrations at the dose of 10 mg/kg body weight. The plasma concentrations from intravenous and oral administrations of enrofloxacin were determined by LC/MS. Pharmacokinetic parameters from both routes were described to have a two-compartmental model. After intravenous and oral administrations of enrofloxacin, the elimination half-lives (t(1/2,beta)), area under the drug concentration-time curves (AUC), oral bioavailability (F) were 17.44 +/- 4.66 h and 34.13 +/- 11.50 h, 48.1 +/- 15.7 microgxh/mL and 27.3 +/- 12.4 microgxh/mL, and 64.59 +/- 4.58% respectively. The 3.44 +/- 0.81 h maximum concentration (C(max)) of 1.2 +/- 0.2 microg/mL. Ciprofloxacin, an active metabolite of enrofloxacin, was detected at all the determined time-points from 0.25 to 72 h, with the C(max) of 0.17 +/- 0.08 microg/mL for intravenous dose. After oral administration, ciprofloxacin was detected at all the time-points except 0.25 h, with the C(max) of 0.03 +/- 0.01 microg/mL at 6.67 +/- 2.31 h. Ciprofloxacin was eliminated with terminal half-life t(1/2,beta) of 52.08 +/- 17.34 h for intravenous administration and 52.43 +/- 22.37 h for oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号