首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The plasma concentration of buprenorphine was measured by radioimmunoassay in six female cats after the administration of 0.01 mg/kg (0.033 ml/kg) buprenorphine hydrochloride solution into the side of the cat's mouth. Blood samples were taken through a preplaced jugular catheter before and one, two, four, six, 10, 15, 30, 45 and 60 minutes, and two, four, six, 12 and 24 hours after the dose was administered. The buprenorphine was accepted well by all the cats and did not cause salivation or vomiting. Its median peak plasma concentration was 7.5 ng/ml and was reached after 15 minutes. The pharmacokinetic data were similar to the pharmacokinetic data obtained after the intramuscular and intravenous administration of buprenorphine to cats from the same colony, suggesting that the mucosal route of administration should be as effective as intravenous and intramuscular injections. In addition, the pH of the oral cavity of 26 cats was measured with pH paper, and 100 cat owners were asked their preferred method of administering drugs to cats. The pH of the cats' mouths was between 8 and 9, and the technique preferred by the cat owners was the use of drops placed in the mouth.  相似文献   

2.
ObjectiveTo compare sedation and antinociception after oral transmucosal (OTM) and intramuscular (IM) administration of a dexmedetomidine-buprenorphine combination in healthy adult cats.Study designRandomized, ‘blinded’ crossover study, with 1 month washout between treatments.AnimalsSix healthy neutered female cats, weighing 5.3–7.5 kg.MethodsA combination of dexmedetomidine (40 μg kg?1) and buprenorphine (20 μg kg?1) was administered by either the OTM (buccal cavity) or IM (quadriceps muscle) route. Sedation was measured using a numerical rating scale, at baseline and at various time points until 6 hours after treatment. At the same time points, analgesia was scored using a dynamic and interactive visual analogue scale, based on the response to an ear pinch, and by the cat’s response to a mechanical stimulus exerted by a pressure rate onset device. Physiological and adverse effects were recorded, and oral pH measured. Signed rank tests were performed, with significance set at p < 0.05. Data are presented as median and range.ResultsThere were no differences in sedation or antinociception scores between OTM and IM dosing at any of the time points. Nociceptive thresholds increased after both treatments but without significant difference between groups. Buccal pH remained between 8 and 8.5. Salivation was noted after OTM administration (n = 2) and vomiting after both OTM (n = 4), and IM (n = 3) dosing.Conclusions and clinical relevanceIn healthy adult cats, OTM administration of dexmedetomidine and buprenorphine resulted in comparable levels of sedation and antinociception to IM dosing. The OTM administration may offer an alternative route to administer this sedative-analgesic combination in cats.  相似文献   

3.
The pharmacokinetics and thermal antinociceptive effects of buprenorphine after intravenous (i.v.) or oral transmucosal (OTM) administration were studied in six adult cats. Plasma buprenorphine concentrations were measured using radioimmunoassay in a crossover study after a dose of 20 microg/kg given by the i.v. or OTM route. Oral pH was measured. Blood for drug analyses was collected before, and at 1, 2, 4, 6, 10, 15, 30, and 60 min and at 2, 4, 6, 8, 12, and 24 h after treatment. Thermal thresholds were measured before treatment, then following treatment every 30 min to 6 h, every 1 hour to 12 h and at 24 hours postadministration. Plasma buprenorphine concentration effect relationships were analyzed using a log-linear effect model. Oral pH was 9 in each cat. Peak plasma buprenorphine concentration was lower and occurred later in the OTM group but median bioavailability was 116.3%. Thermal thresholds increased significantly between 30 and 360 min in both groups. Peak effect was at 90 min and there was no difference at any time between the two groups. There was distinct hysteresis between plasma drug concentration and effect in both groups. Overall, OTM administration of buprenorphine is as effective as i.v. treatment and offers a simple, noninvasive method of administration which produces thermal antinociception for up to 6 h in cats.  相似文献   

4.
The tolerance of cephalexin in 10 cats was studied after oral administration of coated tablets (Cefaseptin; Chassot and Cie AG). Over a period of 21 days, the drug was administered twice daily at doses of 25, 30, 50 and 75 mg/kg body-weight. While the first three dose rates were well tolerated clinically, the highest dose was not. After seven days of treatment, signs of intolerance were salivation, vomiting and diarrhoea. Biochemical and haematological parameters (determined in blood, plasma and urine) were not altered. Plasma and skin concentrations of cephalexin were measured after oral treatment of cats with 25 and 50 mg cephalexin/kg body-weight. After treatment with 25 mg/kg body-weight, a mean elimination plasma half-life of 1–7 hours was calculated. The cephalexin concentration measured in the skin after two hours ranged from 8 to 22 per cent of the plasma level, so it is questionable if sufficiently high skin concentrations for efficacy are achieved with doses of 25 mg/kg body weight.  相似文献   

5.
ObjectiveTo determine if buprenorphine plus dexmedetomidine administered via the oral transmucosal route produces sufficient sedation in cats so that students can insert intravenous catheters.Study DesignProspective, randomized, blinded, clinical trial.AnimalsEighty‐seven shelter‐owned female cats aged 4–48 months, weighing 1.1–4.9 kg.MethodsCats were randomly allocated to two treatment groups based on route of drug administration: oral transmucosal (OTM), or intramuscular (IM). Buprenorphine (20 μg kg?1) plus dexmedetomidine (20 μg kg?1) were administered as pre‐medicants via one of these two routes. Prior to and 20 minutes after drug administration, heart and respiratory rates, systolic arterial pressure, and posture were measured and recorded. Twenty minutes after drug administration the same variables plus each cat’s response to clipper sound, clipping, and restraint were recorded; higher scores indicated more sedation.ResultsThere were no significant differences between the two groups prior to pre‐medication. Within each treatment group heart rate was significantly lower 20 minutes after treatment, but it did not differ significantly between the two groups. Twenty minutes after treatment, respiratory rate was significantly less in the OTM group, but did not differ significantly between the two groups. Systolic arterial pressure did not differ within or between the two groups at either time. Scores for posture increased significantly within both groups, and cats in the IM group had higher scores after treatment. Twenty minutes after treatment, cats in the IM group had higher scores for clipping and restraint than OTM cats. Ketamine (IM) was necessary to facilitate catheterization in 25% and 16% of cats in the OTM and IM groups, respectively, but this was not significantly different.Conclusions and clinical relevanceAdministration of dexmedetomidine plus buprenorphine by the OTM route is easy to perform, but produces less sedation than the IM route for IV catheterization in cats.  相似文献   

6.
Plasma concentrations and pharmacokinetics of dexmedetomidine and buprenorphine after oral transmucosal (OTM) and intramuscular (i.m.) administration of their combination in healthy adult cats were compared. According to a crossover protocol (1‐month washout), a combination of dexmedetomidine (40 μg/kg) and buprenorphine (20 μg/kg) was given OTM (buccal cavity) or i.m. (quadriceps muscle) in six female neutered cats. Plasma samples were collected through a jugular catheter during a 24‐h period. Plasma dexmedetomidine and buprenorphine concentrations were determined by liquid chromatography–tandem mass spectrometry. Plasma concentration–time data were fitted to compartmental models. For dexmedetomidine and buprenorphine, the area under the plasma concentration–time curve (AUC) and the maximum plasma concentrations (Cmax) were significantly lower following OTM than following i.m. administration. For buprenorphine, time to reach Cmax was also significantly longer after OTM administration than after i.m. injection. Data suggested that dexmedetomidine (40 μg/kg) combined with buprenorphine (20 μg/kg) is not as well absorbed from the buccal mucosa site as from the intramuscular injection site.  相似文献   

7.
Pharmacokinetic analysis of buprenorphine administered to six healthy dogs via the oral transmucosal (OTM) route at doses of 20 and 120 microg/kg was conducted using liquid chromatography-electrospray ionization-tandem mass spectroscopy (LC-ESI-MS/MS). Bioavailability was 38% plus or minus 12% for the 20 microg/kg dose and 47%+/-16% for the 120 microg/kg dose. Maximum plasma concentrations were similar for buprenorphine doses of 20 microg/kg IV and 120 microg/kg OTM. Sedation and salivation were common side effects, but no bradycardia, apnea, or cardiorespiratory depressive effects were seen. When the two OTM dosing rates were normalized to dose, LC-ESI-MS/MS analysis of buprenorphine and its metabolites detected no significant difference (P>.05), indicating dose proportionality. The results of this study suggest that OTM buprenorphine may be an alternative for pain management in dogs.  相似文献   

8.
Medetomidine (200 μg/kg) was administered orally and, on a seperate occasion, im to 7 cats. Peak serum drug concentrations were reached more slowly after oral (43.6 ± 14.3 min) than after im administration (21.6 ± 10.0 min). The onset of sedation and recumbency lagged after oral administration. There were no statistically significant differences between the 2 routes of administration in peak serum concentrations, systemic drug availability or extent of sedation. However, there was considerable variation in these parameters between individuals after oral administration. The extent of salivation correlated negatively with systemic drug availability after oral administration. Where excessive salivation did not occur, systemic drug availability and the depth of sedation were comparable to, or even higher than, were obtained after the corresponding im administrations. In conclusion, oral administration of medetomidine induced a clinical sedation but, when accurate dosing is a necessity, the oral route may not be very reliable due to possible drug losses through salivation.  相似文献   

9.
10.
OBJECTIVE: To determine clinical activity and toxic effects of ifosfamide when used to treat cats with vaccine-associated sarcoma (VAS). ANIMALS: 27 cats with a nonresectable, recurrent, or metastatic VAS. PROCEDURE: Each cat received ifosfamide (900 mg/m(2) of body surface area) as an IV infusion during a 30-minute period. Diuresis by infusion of saline (0.9% NaCl) solution and administration of mesna were used to prevent urothelial toxicosis. Treatments were administered every 3 weeks, and tumor response was assessed after the second treatment. All ifosfamide-associated toxic effects were graded in accordance with predetermined criteria. RESULTS: 61 treatments were administered to 27 cats (median, 2 treatments/cat; range, 1 to 4 treatments/cat). After ifosfamide treatment, 1 cat had a complete response and 10 had partial responses for an overall response rate of 11 of 27 (41%; 95% confidence interval [CI], 25% to 59%). Responses lasted from 21 to 133 days (median, 70 days; 95% CI, 60 to 113 days). The acute dose-limiting toxicosis was neutropenia, which was detected 5 to 28 days (median, 7 days) after treatment. Median nadir neutrophil count was 1,600 cells/muL (range, 200 to 5,382 cells/microL). Nine (33%) cats had adverse gastrointestinal effects (primarily salivation during the ifosfamide infusion and inappetence after treatment). Two cats were euthanatized because of severe nephrotoxicosis, and 1 cat developed pulmonary edema during diuresis. CONCLUSIONS AND CLINICAL RELEVANCE: Ifosfamide has antitumor activity against VAS in cats and is tolerated well by most cats. Ifosfamide should be evaluated as an adjuvant treatment for cats with VAS.  相似文献   

11.
This study aimed to define the pharmacokinetic profiles of dexmedetomidine and methadone administered simultaneously in dogs by either an oral transmucosal route or intramuscular route and to determine the bioavailability of the oral transmucosal administration relative to the intramuscular one of both drugs, so as the applicability of this administration route in dogs. Twelve client‐owned dogs, scheduled for diagnostic procedures, were treated with a combination of dexmedetomidine hydrochloride (10 μg/kg) and methadone hydrochloride (0.4 mg/kg) through an oral transmucosal route or intramuscularly. Oral transmucosal administration caused ptyalism in most subjects, and intramuscular administration caused transient peripheral vasoconstriction. The results showed reduced and delayed absorption of both dexmedetomidine and methadone when administered through an oral transmucosal route, with median (range) Cmax values of 0.82 (0.42–1.49) ng/ml and 13.22 (2.80–52.30) ng/ml, respectively. The relative bioavailability was low: 16.34% (dexmedetomidine) and 15.5% (methadone). Intramuscular administration resulted in a more efficient absorption profile, with AUC and Cmax values for both drugs approximately 10 times higher. Dexmedetomidine and methadone administered simultaneously by an oral transmucosal route using injectable formulations were not well absorbed through the oral mucosa. Nevertheless, additional studies on these drugs combination using alternative administration routes are recommended.  相似文献   

12.
OBJECTIVE: To compare the effectiveness of preoperative PO and SC administration of buprenorphine and meloxicam for prevention of postoperative pain-associated behaviors in cats undergoing ovariohysterectomy. DESIGN: Randomized controlled study. ANIMALS: 51 female cats (4 to 60 months old; weight range, 1.41 to 4.73 kg [3.1 to 10.4 lb]). PROCEDURE: Cats received 1 of 5 treatments at the time of anesthetic induction: buprenorphine PO (0.01 mg/kg [0.0045 mg/lb]; n = 10), buprenorphine SC (0.01 mg/kg; 10), meloxicam SC (0.3 mg/kg 10.14 mg/lb]; 10), meloxicam PO (0.3 mg/kg; 10), or 0.3 mL of sterile saline (0.9% NaCI) solution SC (control group; 11). Sedation scores and visual analog scale and interactive visual analog scale (IVAS) pain-associated behavior scores were assigned to each cat 2 hours before and at intervals until 20 hours after surgery. RESULTS: Cats receiving meloxicam PO or SC had significantly lower IVAS scores (2.91 and 2.02, respectively), compared with IVAS scores for cats receiving buprenorphine PO (755). Pain-associated behavior scores for cats administered buprenorphine or meloxicam PO or SC preoperatively did not differ significantly from control group scores. Rescue analgesia was not required by any of the cats receiving meloxicam, whereas 3 of 10 cats receiving buprenorphine PO, 2 of 10 cats receiving buprenorphine SC, and 1 of 11 cats receiving the control treatment required rescue analgesia. CONCLUSIONS AND CLINICAL RELEVANCE: On the basis of pain-associated behavior scores, cats receiving meloxicam PO or SC before ovariohysterectomy appeared to have less pain after surgery than those receiving buprenorphine PO preoperatively.  相似文献   

13.
ObjectiveTo evaluate the thermal antinociceptive effects of a high-concentration formulation of buprenorphine alone or followed by hydromorphone in conscious cats.Study designRandomized, blinded, placebo-controlled crossover study design.AnimalsA total of six purpose-bred, adult female ovariohysterectomized Domestic Short Hair cats.MethodsCats were allocated into three treatments each consisting of two injections, subcutaneous then intravenous (IV) administration, 2 hours apart: treatment SS, two injections of 0.9% saline; treatment BS, buprenorphine (0.24 mg kg–1, 1.8 mg mL–1) and saline; and treatment BH, buprenorphine (0.24 mg kg–1) and hydromorphone (0.1 mg kg–1). Skin temperature (ST) and thermal threshold (TT) were recorded before (baseline) and for 24 hours following first injection. TT data were analyzed using mixed linear models and a Benjamini–Hochberg sequential adjustment procedure (p < 0.05).ResultsThere were no significant differences among treatments for baseline ST and TT values, treatment SS over time and between treatments BS and BH. Compared with baseline, TT was significantly increased at all time points in treatments BH and BS except at 2 hours in treatment BS. TT was significantly higher than SS at 3–18 hours and 4–12 hours for treatments BS and BH, respectively. Maximal increases in TT were 47.5 °C at 2 hours, 53.9 °C at 3 hours and 52.4 °C at 6 hours in treatments SS, BS and BH, respectively.Conclusions and clinical relevanceAdministration of IV hydromorphone following high-concentration buprenorphine provided no additional antinociception and decreased the duration of effect when compared with high-concentration buprenorphine alone. Alternative analgesics should be considered if additional analgesia is required after administration of high-concentration buprenorphine.  相似文献   

14.
OBJECTIVE: To evaluate plasma glipizide concentration and its relationship to plasma glucose and serum insulin concentrations in healthy cats administered glipizide orally or transdermally. ANIMALS-15 healthy adult laboratory-raised cats. PROCEDURE: Cats were randomly assigned to 2 treatment groups (5 mg of glipizide, PO or transdermally) and a control group. Blood samples were collected 0, 10, 20, 30, 45, 60, 90, and 120 minutes and 4, 6, 10, 14, 18, and 24 hours after administration to determine concentrations of insulin, glucose, and glipizide. RESULTS: Glipizide was detected in all treated cats. Mean +/- SD transdermal absorption was 20 +/- 14% of oral absorption. Mean maximum glipizide concentration was reached 5.0 +/- 3.5 hours after oral and 16.0 +/- 4.5 hours after transdermal administration. Elimination half-life was variable (16.8 +/- 12 hours orally and 15.5 +/- 15.3 hours transdermally). Plasma glucose concentrations decreased in all treated cats, compared with concentrations in control cats. Plasma glucose concentrations were significantly lower 2 to 6 hours after oral administration, compared with after transdermal application; concentrations were similar between treatment groups and significantly lower than for control cats 10 to 24 hours after treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Transdermal absorption of glipizide was low and inconsistent, but analysis of our results indicated that it did affect plasma glucose concentrations. Transdermal administration of glipizide is not equivalent to oral administration. Formulation, absorption, and stability studies are required before clinical analysis can be performed. Transdermal administration of glipizide cannot be recommended for clinical use at this time.  相似文献   

15.
Background: The safety of IV administration of docetaxel to cats with cancer has not been reported. Objectives: Document adverse effects of IV administration of docetaxel to cats. Animals: Twenty‐one client‐owned cats with any confirmed malignancy. Methods: Cats received up to 5 docetaxel treatments, administered IV every 3 weeks. The initial dosage was 1.0 mg/kg, and dosages were increased by increments of 0.25 mg/kg in cohorts of 3 cats. Adverse events were determined by a CBC at days 7 and 21, serum chemistry and urine specific gravity at day 21, and medical histories provided by the owners. Results: Cats received docetaxel dosages ranging from 1.0 to 2.5 mg/kg, for a median of 2 treatments. Dose‐limiting toxicoses included fever, neutropenia, and vomiting, seen in 2 of the 4 cats treated at 2.5 mg/kg. Hypersensitivity reactions were infrequent (4 of the 21 cats) and mild. The maximum tolerated dosage was 2.25 mg/kg. Conclusions and Clinical Importance: Docetaxel can be administered IV to cats with a low incidence of adverse effects.  相似文献   

16.
Incretin hormones are secreted from the intestines in response to specific nutrients. They potentiate insulin secretion and have other beneficial effects in glucose homeostasis. We aimed to study the incretin effect in cats and to compare the effect of oral glucose, lipids, or amino acids on serum concentrations of insulin, total glucose-dependent insulinotropic peptide (GIP) and total glucagon-like peptide 1 (GLP-1). Ten healthy cats were used in a repeated measures design. Glucose, lipid, or amino acids were administered through nasoesophageal tubes on separate days. Blood glucose (BG) concentrations were matched between experiments by measuring BG every 5 min and infusing glucose intravenously at a changing rate. Intravenous glucose infusion with no prior treatment served as control. The incretin effect was estimated as the difference in insulin area under the curve (AUC) after oral compared with intravenous glucose. Temporal changes and total amount of hormone secretions were compared between treatment groups with the use of mixed models. Total glucose infused (TGI) at a mean dose of 0.49 g/kg resulted in slightly higher BG compared with 1 g/kg oral glucose (P = 0.038), but insulin concentrations were not significantly different (P = 0.367). BG and the TGI were not significantly different after the 3 oral challenges. Total GIP AUC was larger after lipids compared with amino acids (P = 0.0012) but GIP concentrations did not increase after oral glucose. Insulin and GIP concentrations were positively correlated after lipid (P < 0.001) and amino acids (P < 0.001) stimulations, respectively, but not after oral glucose stimulation. Total GLP-1 AUC was similar after all three oral stimulations. Insulin and GLP-1 concentrations were positively correlated after glucose (P = 0.001), amino acids (P < 0.001), or lipids (P = 0.001) stimulations. Our data indirectly support an insulinotropic effect of GIP and GLP-1. Potentiation of insulin secretion after oral glucose is minimal in cats and is mediated by GLP-1 but not GIP.  相似文献   

17.
Maximum breath hydrogen excretion after the oral administration of xylose to 11 healthy cats ranged from 0.13 ml/hour to 0.47 ml/hour, with a mean of 0.18 ml/hour. After oral administration of xylose, breath hydrogen excretion in five cats with chronic diarrhoea and, or, vomiting was significantly different (P<0.001) compared with healthy cats. Increased breath hydrogen excretion occurred before xylose was given and at all measurement times after its administration to the sick cats (P<0.05), indicating carbohydrate malassimilation. In four sick cats, large increases in breath hydrogen excretion occurred, with maximum values ranging from 1.21 to 1.56 ml/hour, but in one cat the maximum value was only 0.28 ml/hour. Plasma xylose concentrations in cats with chronic diarrhoea and, or, vomiting were not significantly different from healthy cats (P>0.05) and thus did not demonstrate carbohydrate malassimilation. A hiatus hernia was seen on radiographic views of the thorax and abdomen of one cat with chronic vomiting. Inflammatory bowel disease was found in three of the five sick cats after upper gastrointestinal endoscopic examination and mucosal biopsy. Clostridium species were isolated in increased numbers from the cats with chronic diarrhoea and, or, vomiting (P<0.005), after quantitative bacterial culture of small intestinal fluid specimens obtained endoscopically. Clostridium species were isolated from all five cats with chronic diarrhoea and, or, vomiting but from only one of eight healthy cats. However, whether a specific bacterial pathogen caused the increased breath hydrogen excretion found in these cats could not be determined from this study.  相似文献   

18.
OBJECTIVE: To determine effects of epidural administration of morphine and buprenorphine on the minimum alveolar concentration of isoflurane in cats. Animals-6 healthy adult domestic shorthair cats. PROCEDURES: Cats were anesthetized with isoflurane in oxygen. Morphine (100 microg/kg diluted with saline [0.9% NaCl] solution to a volume of 0.3 mL/kg), buprenorphine (12.5 microg/kg diluted with saline solution to a volume of 0.3 mL/kg), or saline solution (0.3 mL/kg) was administered into the epidural space according to a Latin square design. The minimum alveolar concentration (MAC) of isoflurane was measured in triplicate by use of the tail clamp technique. At least 1 week was allowed between successive experiments. RESULTS: The MAC of isoflurane was 2.00 +/- 0.18%, 2.13 +/- 0.11%, and 2.03 +/- 0.09% in the morphine, buprenorphine, and saline solution groups, respectively. No significant difference in MAC was detected among treatment groups. CONCLUSIONS AND CLINICAL RELEVANCE: A significant effect of epidural administration of morphine or buprenorphine on the MAC of isoflurane in cats could not be detected. Further studies are needed to establish whether epidural opioid administration has other benefits when administered as a component of general anesthesia in cats.  相似文献   

19.
Alternatives to intravenous administration of opioids are needed in veterinary medicine. Previous research suggests that opioids can be administered through the buccal mucosa in dogs. This study reports the pharmacokinetics of buprenorphine HCl (0.05 mg/kg) administered transmucosally in six dogs compared with those of buprenorphine HCl (0.015 mg/kg) administered intravenously. The results suggest that the pharmacokinetics of buprenorphine HCl administered intravenously or transmucosally are similar and that transmucosal administration may be considered as a noninvasive alternative to intravenous administration.  相似文献   

20.
Thermal thresholds were measured in eight cats after the intramuscular administration of morphine (0.2 mg/kg), buprenorphine (0.01 mg/kg) or butorphanol (0.2 mg/kg), doses commonly used in clinical practice; 0.9 per cent saline (0.3 ml) was injected as a control. Groups of six cats were used and each cat participated in at least two treatments, according to a randomised design. The investigator was blinded to the treatments. The thermal thresholds were measured with a testing device developed specifically for cats, and measurements were made before and five, 30, 45 and 60 minutes and two, four, six, 12 and 24 hours after the injections. There was no significant change in thermal threshold after the injection of saline. With butorphanol, the threshold was increased only at five minutes after the injection and was decreased two hours after the injection; with morphine it was increased from between four and six hours after the injection, and with buprenorphine it was increased from between four and 12 hours after the injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号