首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated annual productivity and carbon fluxes over the Fontainebleau forest, a large heterogeneous forest region of 17,000 ha, in terms of species composition, canopy structure, stand age, soil type and water and mineral resources. The model is a physiological process-based forest ecosystem model coupled with an allocation model and a soil model. The simulations were done stand by stand, i.e., 2992 forest management units of simulation. Some input parameters that are spatially variable and to which the model is sensitive were calculated for each stand from forest inventory attributes, a network of 8800 soil pits, satellite data and field measurements. These parameters are: (1) vegetation attributes: species, age, height, maximal leaf area index of the year, aboveground biomass and foliar nitrogen content; and (2) soil attributes: available soil water capacity, soil depth and soil carbon content. Main outputs of the simulations are wood production and carbon fluxes on a daily to yearly basis. Results showed that the forest is a carbon sink, with a net ecosystem exchange of 371 g C m(-2) year(-1). Net primary productivity is estimated at 630 g C m(-2) year(-1) over the entire forest. Reasonably good agreement was found between simulated trunk relative growth rate (2.74%) and regional production estimated from the National Forest Inventory (IFN) (2.52%), as well as between simulated and measured annual wood production at the forest scale (about 71,000 and 68,000 m(3) year(-1), respectively). Results are discussed species by species.  相似文献   

2.
Russian forests are of high importance for the Russian economy, the European wood market, for nature conservation, and for carbon sequestration. However, the ongoing changes in forest management and administration in Russia led to uncertainty about forest ownership, wood harvesting levels, and long-term impacts of alternative management plans. Therefore, better insight in their current and future state is highly desirable. We present a study for the Leningrad region forests in which alternative management regimes for wood production and nature conservation values are balanced in varying ways. The total forest land area in the Leningrad region forest fund is 4.8 million ha. Coniferous species dominate and due to the natural succession occurring, the forests are divers in vertical structurally.

A timber assessment model was used to project the forest until 2040. Five forest management scenarios were run. Special attention was paid to a scenario that simulates recovery of the Russian forest sector in combination with the incorporation of a ‘set-aside for nature conservation’ policy. All scenarios showed that recovery of the forest sector in the Leningrad region is biologically feasible. A sustainable continuous annual production of 10.6 million m3 per year (2.8 m3 ha−1 per year) by 2040 was found. The ‘Recovery with Nature Conservation’ scenario showed that recovery of the forest sector in combination with the establishment of set-aside areas is very well feasible. It was possible to set aside 28% of the forest area for nature conservation while still developing a forest sector to a production level higher than that achieved in the late eighties.

The timber assessment model applied was not specifically designed to incorporate nature-oriented forest management. We, therefore, discuss ways of improving the required methodology to analyse long-term effects of nature-oriented forest management in Europe.  相似文献   


3.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

4.
We compare uncertainty through sensitivity and uncertainty analyses of the modelling framework CO2FIX V.2. We apply the analyses to a Central European managed Norway spruce stand and a secondary tropical forest in Central America. Based on literature and experience we use three standard groups to express uncertainty in the input parameters: 5%, 10% and 20%. Sensitivity analyses show that parameters exhibiting highest influence on carbon sequestration are carbon content, wood density and current annual increment of stems. Three main conclusions arise from this investigation: (1) parameters that largely determine model output are stem parameters, (2) depending on initial state of the model, perturbation can lead to multiple equilibrium, and (3) the standard deviation of total carbon stock is double in the tropical secondary forest for the wood density, and current annual increment. The standard deviation caused by uncertainty in mortality rate is more than 10-fold in the tropical forest case than in the temperate managed forest. Even in a case with good access to data, the uncertainty remains very high, much higher than what can reasonably be achieved in carbon sequestration through changes in forest management.  相似文献   

5.
Forests provide wood products and feedstock for bioenergy and bio-based products that can mitigate climate change by reducing carbon emissions. In order to assess the effects of forest products on reducing carbon emissions, we analyzed the carbon balance for individual carbon pools across the forest supply chain over a long period of time. We simulated particular forest supply chain activities pertaining to even-aged management of pine stands in South Korea to demonstrate our methods. Two different rotation scenarios (i.e., 40 and 70 years) were assessed over the 280-year time horizon in terms of temporal changes in carbon stock in each carbon pool along the supply chain, carbon transfer between carbon pools, substitution effects, and delayed carbon release by wood products. We found that the average carbon stock level was higher for the 70-year rotation scenario, but the total amount of gain in carbon was higher for the 40-year rotation at the end of the time horizon. This study confirms that forest products and energy feedstock can both reduce carbon emissions and increase carbon storage. However, the complexity of carbon accounting along the supply chain warrants a thorough evaluation from diverse perspectives when it is used to assess forest carbon management options.  相似文献   

6.
Dead wood, in the form of coarse woody debris and standing dead wood, or snags, is an essential structural component of forest ecosystems. It plays a key role in nutrient cycling, ecosystem functions and provision of habitat for a wide variety of species. In order to manage dead wood in a temperate hardwood forest, an understanding of its availability and spatial distribution is important. This research evaluates airborne digital camera remote sensing for mapping temperate forest dead wood across an area within Gatineau Park, Canada. Two approaches were evaluated: (1) direct detection and mapping of canopy dead wood (dead branches and tall snags) through the combination of three techniques in a hybrid classification: ISODATA clustering, object-based classification, and spectral unmixing, and (2) indirect modelling of coarse woody debris and snags using spectral and spatial predictor variables extracted from the imagery. Indirect modelling did not provide useful results while direct detection was successful with field validation showing 94% accuracy for detected canopy level dead wood objects (i.e. 94% of validation sites with canopy dead wood were detected correctly) and 90% accuracy for control sites (i.e. 90% of validation sites with no canopy level dead wood were identified correctly). The procedures presented in this paper are repeatable and could be used to monitor dead wood over time, potentially contributing to applications in forest carbon budget estimation, biodiversity management, and forest inventory.  相似文献   

7.
Estimation of accurate biomass of different forest components is important to estimate their contribution to total carbon stock. There is lack of allometric equations for biomass estimation of woody species at sapling stage in tropical dry forest (TDF), and therefore, the carbon stored in this forest component is ignored. We harvested 46 woody species at sapling stage in a TDF and developed regression models for the biomass estimation of foliage, branch, bole and the total aboveground part. For foliage and branch biomass, the models with only stem diameter as estimator showed greater R 2. For bole and aboveground biomass, the models including wood specific gravity or wood density exhibited higher R 2 than those without wood density. Also, the model consisting of wood density, stem diameter and height had the lowest standard error of estimate for bole and aboveground biomass. Moreover, the R 2 values are very similar among models for each component. The measurement error of height and the use of a standard value of wood density together may introduce more than 2 % error into the models. Therefore, we suggest using diameter-only model, which may be more practical and equally accurate when applied to stands outside our study area.  相似文献   

8.
The Kyoto Protocol brought a new forest function into focus: forests as carbon sinks. This new forest function may lead to new conflicts, because on the one hand, Switzerland has decided to account for forest management under Kyoto Protocol (Article 3.4), and on the other hand, Swiss Forestry statistics and the Swiss National Forest Inventory indicate that increasing amounts of wood are being harvested. This trend seems likely to continue. In this study, we used the empirical forest model MASSIMO and the soil model YASSO to analyse four different forest management scenarios. These scenarios basically feature different levels of harvesting frequencies and different rotation length, as well as their impact on regional potentials for carbon sequestration and harvesting amounts. Results were analysed both for the whole of Switzerland and for two very different regions: The Swiss Eastern Plateau and the Swiss Eastern Alps. The results indicate that Swiss forests can provide an increasing amount of harvested wood (+18% in relation to the base year 1996) for approximately 20 years and act as a carbon sink accountable under the Kyoto Protocol (0.5 million tons carbon per year). The corresponding forest management strategy aims for a sustainable and harvestable increment and may, therefore, avoid spurious carbon maximization in forests that can happen by accounting for only forest systems, and not for the effect of substitution of non-wood products and fossil fuels by forest products. The regional results indicate that (1) the carbon sink effect of Alpine forests in Switzerland might be limited, because generally, Alpine forests have low growth and yield and (2) a large increase in harvesting may lead to regional carbon sources and necessitate regional monitoring of increment to avoid overexploitation. As MASSIMO does not include the impacts of climate change, the conclusions of this study cannot be interpreted as actual predictions into the future but portray the impact of the applied management actions on the respective trends in carbon stocks and stock changes. They are, therefore, a contribution to support future management decisions. Further studies should focus on interactions with additional forest functions such as the preservation of biodiversity, increase the consideration of forest damage and account for the effect of climate change.  相似文献   

9.
Background: Bioenergy is re-shaping opportunities and imperatives of forest management. This study demonstrates,through a case study in Scots pine(Pinus sylvestris L.), how forest bioenergy policies affect stand management strategies.Methods: Optimization studies were examined for 15 Scots pine stands of different initial stand densities, site types, and temperature sum regions in Finland. Stand development was model ed using the Pipe Qual stand simulator coupled with the simulation-optimization tool Opti For Bioenergy to assess three forest bioenergy policies on energy wood harvest from early thinnings.Results: The optimal solutions maximizing bare land value indicate that conventional forest management regimes remain optimal for sparse stands. Energy harvests occurred only when profitable, led to lower financial returns. A forest bioenergy policy which included compulsory energy wood harvesting was optimal for denser stands. At a higher interest rate(4 %), increasing energy wood price postponed energy wood harvesting. In addition, our results show that early thinning somewhat reduced wood quality for stands in fertile sites. For less fertile sites, the changes were insignificant.Conclusions: A constraint of profitable energy wood harvest is not rational. It is optimal to carry out the first thinning with a flexible forest bioenergy policy depending on stand density.  相似文献   

10.
Technical change is developing rapidly in some parts of the forest sector, especially in the pulp and paper industry where wood fiber is being substituted by waste paper. In forest sector models, the processing of wood and other input into products is frequently represented by activity analysis (input–output). In this context, technical change translates in changes over time of the input–output (I–O) coefficients and of the manufacturing cost (labor, capital, and materials, excluding wood and fiber). In the case of the global forest products model, the I–O coefficients and the manufacturing costs are determined empirically from historical data, while correcting for possible reporting errors. The method consists of goal programming. The objective function is the sum of the weighted absolute value of the deviations from estimated and observed production in each country of interest. The constraints express the relationship between the multiple output (sawnwood, panels, pulp, paper) and input (wood, waste paper, other fiber) and prior knowledge on the limits of the I–O coefficients. The paper presents observed technical changes from 1993 to 2010 and projections to 2030 with their consequences for the global forest sector in terms of prices, production and consumption, value added, and carbon sequestration in forest biomass.  相似文献   

11.
森林资源管理职能在森林资源可持续发展过程中占有十分重要的地位,林木采伐管理是森林资源管理系统的有机组成部分,是森林资源管理的核心内容,直接关系到森林资源管理的成败。本文作者以南方集林区林木采伐管理的现状及特点,遵循森林资源可持续发展的有关原则,论述集体林区林木采伐管理技术路线取向。  相似文献   

12.
The spatial distribution of forest biomass is closely related with carbon cycle, climate change, forest productivity, and biodiversity. Efficient quantification of biomass provides important information about forest quality and health. With the rising awareness of sustainable development, the ecological benefits of forest biomass attract more attention compared to traditional wood supply function. In this study, two nonparametric modeling approaches, random forest (RF) and support vector machine were adopted to estimate above ground biomass (AGB) using widely used Landsat imagery in the region, especially within the ecological forest of Fuyang District in Zhejiang Province, China. Correlation analysis was accomplished and model parameters were optimized during the modeling process. As a result, the best performance modeling method RF was implemented to produce an AGB estimation map. The predicted map of AGB in the study area showed obvious spatial variability and demonstrated that within the current ecological forest zone, as well as the protected areas, the average of AGB were higher than the ordinary forest. The quantification of AGB was proven to have a close relationship with the local forest policy and management pattern, which indicated that combining remote-sensing imagery and forest biophysical property would provide considerable guidance for making beneficial decisions.  相似文献   

13.
Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008?C2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2?C0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing.  相似文献   

14.
Abstract

Wood supply, the link between roundwood removals and forest resources, is an important component of forest sector models. This paper develops a model of international wood supply within the structure of the spatial equilibrium Global Forest Products Model. The wood supply model determines, for each country, the annual forest harvest, the annual change of forest stock and the annual change of forest area. The results suggest that global forest area would decline by 477 million ha between 1999 and 2030, with the largest decline in Asia and Africa. However, global forest stock would increase by 25 billion?m3, with the largest increase in Europe, and North and Central America. Higher global harvests and lower prices were predicted than those predicted in the past with exogenous timber supply assumptions.  相似文献   

15.
  • ? This study describes the scenarios of likely development of carbon pools in managed forest ecosystems of the Czech Republic. The analysis was based on a matrix scenario model (EFISCEN), adopting a novel parameterization based on forest stand site types and forest typology. The model was constrained by practical management rules as prescribed by the Czech Forestry Act and used to assess production potential for the next five decades under three management and three climate scenarios. The analysis provided data on carbon pool development, including both tree biomass and soil compartments.
  • ? For the tested scenarios of sustainable forest management (wood removals not exceeding increment) the model indicated a slight increase of soil carbon pool. For the possibly largest removals (maximum sustainable felling scenario), soil carbon stabilized within two or three decades reaching a mean value of about 8.1 kg/m2 for. At the same time, the mean carbon stock held in biomass reached about 10.2 kg/m2 including belowground parts. No decline of soil carbon was observed for any of the tested scenarios.
  • ? We conclude that it is reasonable to assume that soil carbon is not a source of carbon under the current management constraints as implemented in the Czech forestry practice.
  •   相似文献   

    16.
    This study uses simulations to investigate the effects of implementing two different Japanese forestry subsidy systems on timber production and carbon stock, and examines the consequences for harvesting strategies. An existing Local Yield Table Construction System (LYCS), a wood conversion algorithm, and a harvesting cost model were used in the simulations to test the applicability of different subsidies to the thinning of stands. Using forest inventory data collected by local government staff, simulation output was used to calculate forestry profits, carbon stocks, subsidies, the amount of labor required, and the cost effectiveness of investing in subsidies. By comparing the output of simulations based on two scenarios, we found that both the clear-cutting area and the amount of harvested timber were larger under Scenario 2, in which the rules governing subsidy allocations are more relaxed, than under Scenario 1, in which the rules are more restrictive. Because the harvested timber under Scenario 1 was mainly produced by clear-cutting, the forestry profits and the subsidy predicted in the early period of the simulation, were larger under Scenario 1 than under Scenario 2. In contrast, the carbon stock was larger under Scenario 2 than under Scenario 1. The simulation model is likely to be useful for improving Plan-Do-Check-Act cyclesimplemented in Japanese forest management systems.  相似文献   

    17.
    Forest management influences several ecosystem processes, including carbon exchange between forest ecosystem and atmosphere. The aim of this paper was to study the carbon cycle over different age classes of two managed forests in the Italian Alps through direct measurements and modelling. For this purpose, ecosystem carbon dynamics of a beech forest (Fagus sylvatica L.) and of a spruce forest (Picea abies (L.) Karst.) were investigated using a chronosequence approach. In both forests, five forest development stages were identified (thicket, pole wood, young forest, mature forest and the regeneration phase) with an age spanning from 42 to 163?years for the beech forest and from 35 to 161?years for the spruce forest. Measured total ecosystem carbon stock increased up to 80–100?years, with a mean of 232?MgC?ha?1 in the beech forest and of 299?MgC?ha?1 in the spruce forest. Calculated net ecosystem production (NEP) was found to decrease linearly with age and had an average value of 2.2 and 4.4?MgC?ha?1?year?1 for beech and spruce forest, respectively. Model simulations reported an increase in NEP till 50–60?years followed by a decrease thereafter. The model also predicted a negative NEP for a short period (8–11?years) after the seed cut. Aboveground biomass was the main driver of carbon accumulation while soil carbon was not significantly influenced by both age and management system. Moreover, measured data and model showed that the applied shelterwood system allowed for a rapid recovery of the ecosystem after the disturbance (i.e. seed cut), bringing back forest to act as C sink in few years.  相似文献   

    18.
    The impact of forest management activities on the ability of forest ecosystems to sequester and store atmospheric carbon is of increasing scientific and social concern. The nature of these impacts varies among forest ecosystems, and spatially and temporally explicit ecosystem models are useful for quantifying the impacts of a number of alternative management regimes for the same forest landscape. The LANDIS-II forest dynamics simulation model is used to quantify changes to the live overstory and coarse woody debris pools under several forest management scenarios in a high-latitude South American forest landscape dominated by two species of southern beech, Nothofagus betuloides and N. pumilio. Both harvest type (clearcutting vs. partial overstory retention) and rotation length (100 years vs. 200 years) were significant predictors of carbon storage in the simulation models. The prompt regeneration of harvest units greatly enhanced carbon storage in clearcutting scenarios. The woody debris pool was particularly sensitive to both harvest type and rotation length, with large decreases noted under short rotation clearcutting. The roles of extended rotations and partial overstory retention are noted for enhancing net carbon storage on the forest landscape.  相似文献   

    19.
    A forest biomass yield table based on an empirical model   总被引:1,自引:0,他引:1  
    We report an empirical model for estimating unutilized wood biomass, and its application to Cryptomeria japonica D. Don and Larix kaempferi in Tohno City, Iwate Prefecture, northeast Japan. Outputs from the model are the quantity of unutilized wood biomass and merchantable volume produced by timber harvest. The unutilized wood biomass is divided into stumps, tops, branches, foliages, small trees, and unutilized stems due to their defects. Inputs to the model are mean diameter at breast height (DBH), mean tree height, trees per unit area, and timber utilization standards. DBH distribution, DBH–height curve, stem form, bark thickness, and relationship of stem biomass to foliage and branch biomass could be described by the proposed model, indicating its validity. The proposed model enables us to develop the forest biomass yield tables modified from the existing stem volume yield tables. The developed forest biomass yield tables indicated that the unutilized wood biomass due to defects accounted for the largest part of the whole unutilized wood biomass, and that the ratio of unutilized parts in stem volume to total stem volume could vary with stand age and site productivity class. Based on a comparison of the developed forest biomass yield tables with those reported previously, we concluded that the proposed model-based forest biomass yield table would be useful for estimating the quantity of unutilized wood biomass.  相似文献   

    20.
    Through carbon offset programs, forest owners can be offered financial incentives to enhance the uptake and storage of carbon on their lands. The amount of carbon that can be claimed by an individual landowner will ultimately depend on multiple factors, including the productivity of the forest, the management history of the stand, and the program in which the landowner is participating. This project presents a modeling framework for forest carbon accounting which is driven by forest yield curves and carbon pool partitioning. Within this model the amount of creditable carbon generated from adjusting the rotation age of multiple forest stands can be estimated for 46 distinct North American forest types. The model also provides a comparison of total creditable carbon generated under three carbon accounting methodologies: the Department of Energy 1605b Registry, the Chicago Climate Exchange, and the Voluntary Carbon Standard. In our evaluation of a 5-year rotation extension across 102 unique modeling scenarios, we find large differences among the carbon accounting schemes. This has implications for both forest landowners and policymakers alike. In particular, methodologies to account for such issues as leakage, permanence, additionality, and baseline establishment, while potentially increasing the overall legitimacy of any forest carbon offset program, can reduce creditable carbon to the forest owner (by up to 70%). Regardless of the protocol used, we also note strong regional differences, with Pacific Northwest forests of fir, spruce, hemlock, alder and maple being the most effective at sequestering carbon on a per area basis.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号