首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large wildfire events in coniferous forests of the western United States are often followed by postfire timber harvest. The long-term impacts of postfire timber harvest on fire-associated cavity-nesting bird species are not well documented. We studied nest-site selection by cavity-nesting birds over a 10-year period (1994–2003), representing 1–11 years after fire, on two burns created by mixed severity wildfires in western Idaho, USA. One burn was partially salvaged logged (the Foothills burn), the other was primarily unlogged (the Star Gulch burn). We monitored 1367 nests of six species (Lewis’s Woodpecker Melanerpes lewis, Hairy Woodpecker Picoides villosus, Black-backed Woodpecker P. arcticus, Northern Flicker Colaptes auratus, Western Bluebird Sialia mexicana, and Mountain Bluebird S. currucoides). Habitat data at nest and non-nest random locations were characterized at fine (field collected) and coarse (remotely sensed) spatial scales. Nest-site selection for most species was consistently associated with higher snag densities and larger snag diameters, whereas wildfire location (Foothills versus Star Gulch) was secondarily important. All woodpecker species used nest sites with larger diameter snags that were surrounded by higher densities of snags than at non-nest locations. Nests of Hairy Woodpecker and Mountain Bluebird were primarily associated with the unlogged wildfire, whereas nests of Lewis’s Woodpecker and Western Bluebird were associated with the partially logged burn in the early years after fire. Nests of wood-probing species (Hairy and Black-backed Woodpeckers) were also located in larger forest patch areas than patches measured at non-nest locations. Our results confirm previous findings that maintaining clumps of large snags in postfire landscapes is necessary for maintaining breeding habitat of cavity-nesting birds. Additionally, appropriately managed salvage logging can create habitat for some species of cavity-nesting birds that prefer more open environments. Our findings can be used by land mangers to develop design criteria for postfire salvage logging that will reserve breeding habitat for cavity-nesting birds.  相似文献   

2.
Vegetation and birds were inventoried on the same plot before and after a severe windstorm in 1999 disturbed a mature black spruce (Picea mariana)–jack pine (Pinus banksiana) forest in northern Minnesota. Following the storm, another plot was established in an adjacent portion of the forest that was salvage-logged. Birds were inventoried on both plots through 2002. The original unsalvaged plot was prescribed-burned in 2004, but vegetation was surveyed through 2003, and through 2005 on the salvaged plot. We examined the effects of wind disturbance by comparing the pre-storm bird and vegetation communities with those developing afterwards through 2002 and 2003, respectively, and the effects of salvage logging by comparing vegetation and the bird community on the unsalvaged plot with those in the salvaged area. Wind reduced the canopy of the forest by over 90% with a temporary increase in the shrub layer, mostly resulting from tip-ups. Several plant species, including jack pine and beaked hazel (Corylus americana), appeared temporarily in the ground layer (<1 m height), but did not persist through 2003. Quaking aspen (Populus tremuloides) root sprouts were abundant in 2001, but decreased dramatically by 2003. Delayed mortality of tipped trees resulted in reduction of the shrub layer to pre-storm levels, and release of advanced regeneration black spruce and balsam fir (Abies balsamea). Bird species using the forest changed from dominance by canopy-foraging species to ground-brush foraging species, with an overall increase in bird diversity. Salvage logging resulted in significant reduction in coarse woody debris, and successful recruitment of jack pine seedlings. Quaking aspen sprouts were nearly 30 times more abundant in the salvage-logged area compared to the unsalvaged control. Ruderal species, especially red raspberry (Rubus ideaus), fringed bindweed (Polygonum cilinode), and several sedges (Carex spp.), were significantly more abundant after salvage logging. The bird community, on the other hand, was greatly diminished by salvage logging, with a reduction in diversity, density, and overall richness of species.  相似文献   

3.
The effects of fire, post-fire salvage logging, and revegetation on nutrient budgets were estimated for a site in the eastern Sierra Nevada Mountains that burned in a wildfire in 1981. Approximately two decades after the fire, the shrub (former fire) ecosystem contained less C and more N than the adjacent forest ecosystem. Reconstruction of pre-fire nutrient budgets suggested that most C was exported in biomass during salvage logging and will not be recovered until forest vegetation occupies the site again. Salvage logging may have resulted in longer-term C sequestration in wood products than would have occurred had the logs been left in the field to decay, however. Reconstructed budgets suggested that most N was lost via volatilization during the fire rather than in post-fire salvage logging (assuming that foliage and O horizons were combusted). Comparisons of the pre-fire and present day N budgets also suggested that the lost N was rapidly replenished in O horizons and mineral soils, probably due to N-fixation by snowbush (Ceanothus velutinus Dougl.), the dominant shrub on the former fire site. There were no significant differences in ecosystem P, K, or S contents and no consistent, significant differences in soil extractable P or S between the shrub and forested plots. Exchangeable K+, Ca2+, and Mg2+ were consistently and significantly greater in shrub than in adjacent forested soils, however, and the differences were much larger than could be accounted for by estimated ash inputs. In the case of Ca, even the combustion of all aboveground organic matter could not account for more than a fraction of the difference in exchangeable pools. We speculate that the apparent large increased in soil and ecosystem Ca content resulted from either the release of Ca from non-exchangeable forms in the soil or the rapid uptake and recycling of Ca by post-fire vegetation.  相似文献   

4.
Salvage logging after natural disturbance has received increased scrutiny in recent years because of concerns over detrimental effects on tree regeneration and increased fine fuel levels. Most research on tree regeneration after salvage logging comes from fire-prone systems and is short-term in scope. Limited information is available on longer term responses to salvage logging after windstorms or from forests outside of fire-prone regions. We examined tree and shrub regeneration after a stand-replacing windstorm, with and without salvage logging and prescribed fire. Our study takes place in northern Minnesota, USA, a region where salvage logging impacts have received little attention. We asked the following questions: (i) does composition and abundance of woody species differ among post-disturbance treatments, including no salvage, salvage alone, and salvage with prescribed burning, 12 years after the windstorm?; (ii) is regeneration of Populus, the dominant pre-blowdown species, inhibited in unsalvaged treatments?; and (iii) how do early successional trajectories differ among post-blowdown treatments? Twelve years after the wind disturbance, the unsalvaged forest had distinctly different composition and abundance of trees and woody shrubs compared to the two salvage treatments, despite experiencing similar wind disturbance severities and having similar composition immediately after the blowdown. Unsalvaged forest had greater abundance of shade tolerant hardwoods and lower abundance of Populus, woody shrubs, and Betulapapyrifera, compared to salvage treatments. There was some evidence that adding prescribed fire after the blowdown and salvage logging further increased disturbance severity, since the highest abundances of shrubs and early successional tree species occurred in the burning treatment. These results suggest that salvage treatments (or a lack thereof) can be used to direct compositional development of a post-blowdown forest along different trajectories, specifically, towards initial dominance by early successional Populus and B.papyrifera with salvage logging or towards early dominance by shade tolerant hardwoods, with some Populus, if left unsalvaged.  相似文献   

5.
Old growth forest has become a major and increasingly prevalent research topic over the past two decades. However, there is no generic definition that can be applied uncritically to all forest types. This is because a precise definition of old growth is ecologically meaningful only when it is applied to a specific vegetation type. This is demonstrated in this paper using the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, south-eastern Australia as a case study. These forests have been the target of extensive and intensive research over the past 25 years. That work has shown that a number of attributes of stand structure and composition can be crudely used to distinguish old growth forest from other age cohorts of Mountain Ash forest. However, it is not unusual for some of these characteristics also to be recorded in regrowth stands.  相似文献   

6.
Long-term effects of salvage logging on coarse woody debris were evaluated on four stand-replacing wildfires ages 1, 11, 17, and 35 years on the Okanogan-Wenatchee National Forest in the eastern Cascades of Washington. Total biomass averaged roughly 60 Mg ha−1 across all sites, although the proportion of logs to snags increased over the chronosequence. Units that had been salvage logged had lower log biomass than unsalvaged units, except for the most recently burned site, where salvaged stands had higher log biomass. Mesic aspects had higher log biomass than dry aspects. Post-fire regeneration increased in density over time. In a complementary experiment, soils heating and surrogate-root mortality caused by burning of logs were measured to assess the potential site damage if fire was reintroduced in these forests. Experimentally burned logs produced lethal surface temperatures (60 °C) extending up to 10 cm laterally beyond the logs. Logs burned in late season produced higher surface temperatures than those burned in early season. Thermocouples buried at depth showed mean maximum temperatures exponentially declined with soil depth. Large logs, decayed logs, and those burned in late season caused higher soil temperatures than small logs, sound logs, and those burned in early season. Small diameter (1.25 cm), live Douglas-fir branch dowels, buried in soil and used as surrogates for small roots, indicated that cambial tissue was damaged to 10 cm depth and to 10 cm distance adjacent to burned logs. When lethal soil temperature zones were projected out to 10 cm from each log, lethal cover ranged up to 24.7% on unsalvaged portions of the oldest fire, almost twice the lethal cover on salvaged portions. Where prescribed fire is introduced to post-wildfire stands aged 20–30 years, effects of root heating from smoldering coarse woody debris will be minimized by burning in spring, at least on mesic sites. There may be some long-term advantages for managers if excessive coarse woody debris loads are reduced early in the post-wildfire period.  相似文献   

7.
Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow plus salvage logging as to wind disturbance alone, by most vegetative measures.  相似文献   

8.
Selective logging is one of the main economical activities in tropical and subtropical forests. While most of the effects of this activity on bird communities have been studied by comparing exploited vs. non-exploited areas; the use of human-created treefall gaps by birds is relatively unknown. We studied habitat structure, resource abundance (fruits, flowers and arthropods) and bird activity in logging gaps of different age (1-year-old and 10- to 20-year-old) in a mountain forest (Yungas) of northwest Argentina in both dry and wet seasons. In less than a year after creation, short herbs colonize logging gaps increasing the abundance of arthropods in the ground and the activity of understory insectivores. During dry seasons recently created gaps become an important source of resources for understory frugivores-insectivores. Later on in succession logging gaps are invaded by exotic graminoid vegetation and tall herbs (dispersed through extraction tracks) which can impede the colonization and development of pioneer trees and natural regeneration. Probably as a consequence of a high abundance of fruits and flowers in the understory and a very low abundance of these resources in the canopy, old gaps were mainly used by understory frugivores-insectivores while arboreal frugivores were rare. Because arboreal frugivores disperse most tree seeds in tropical and subtropical forests, the low activity of this guild in logging gaps contribute to the low observed regeneration. Sustainable timber harvest in tropical and subtropical forests should include gap and logging track management to minimize the invasion by exotic graminoid vegetation and facilitate natural succession.  相似文献   

9.
Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.  相似文献   

10.
11.
The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part of salvage logging operations will minimize these structural impacts and may allow for greater ecosystem recovery following these disturbance combinations.  相似文献   

12.
Across western North America, current ecosystem structure has been determined by historical interactions between climate, fire, livestock grazing, and logging. Climate change could substantially alter species abundance and composition, but the relative weight of the legacy of historical factors and projected future conditions in informing management objectives remains unresolved. We integrated land use histories with broad scale climatic factors to better understand how inland Pacific Northwest ecosystems may develop under projected climates. We measured vegetation structure and age distributions in five vegetation types (shrub steppe to subalpine forest) along an elevation gradient in the eastern Cascades of Washington. We quantitatively assessed compositional changes, and qualitatively summarized the environmental history (climate, fire and fire suppression, grazing, and logging) of each site. Little change was evident in woody species composition at the shrub steppe site. At the shrub steppe/forest ecotone, densities of drought-tolerant Artemisia tripartita and Pinus ponderosa increased. In the dry conifer, montane, and subalpine forest sites, increases in Pseudotsuga menziesii, Abies grandis, and Abies lasiocarpa, respectively, and decreases in Pinus ponderosa, Larix occidentalis, and Pinus contorta, respectively, have shifted species composition from fire and drought-tolerant species to shade-tolerant species. Fire suppression, grazing, and logging explain changes in species composition more clearly than climate variation does, although the relative influence of these factors varies with elevation. Furthermore, some of the observed changes in composition are opposite what we expect would be most suited to projected future climates. Natural resource managers need to recognize that the current state of an ecosystem reflects historical land uses, and that contemporary management actions can have long-term effects on ecosystem structure. Understanding the processes that generated an ecosystem's current structure will lead to more informed management decisions to effectively respond to projected climate changes.  相似文献   

13.
A study has been undertaken to investigate the extent to which poverty is a determinant (final cause) of illegal logging, and to identify valid short-term policy variables for the control of illegal logging in Central and Eastern European (CEE) countries. The study identifies the main features of illegal logging and forest-related and rural-related conditions in the CEE region, and uses principal components analysis and cluster analysis to obtain a typology of the CEE region according to the above conditions. Regional differences within Lithuania and Romania are specifically examined. The analysis reveals that the occurrence of illegal logging is explained by poverty, but also by the reform on land ownership and by weak law enforcement. Implications of these results for policies to cope with the illegal logging phenomenon are discussed.  相似文献   

14.
张敬雄 《热带林业》2010,38(1):32-33,41
阐述限额采伐的概念,分析目前采伐制度的存在的一些问题,并归纳出原因,提出改进措施及具体做法,以寻求最佳的森林采伐的管理制度,切实保护好国家珍贵而有限的森林资源,达到科学经营的目的,同时实现商品林经营者利益最大化。  相似文献   

15.
Vegetation plots originally sampled in Grand Canyon National Park (GCNP), Arizona, USA in 1935 are the earliest-known, sample-intensive, quantitative documentation of forest vegetation over a Southwest USA landscape. These historical plots were located as accurately as possible and resampled in 2004 to document multi-decadal changes in never-harvested Southwestern forests. Findings for ponderosa pine forest (PPF) differed among three forest subtypes (dry, mesic, and moist PPF), indicating that understanding the ecology of PPF subtypes is essential for development of ecologically based management practices. Dry PPF, which is transitional with pinyon-juniper vegetation at low elevation, exhibited no changes from 1935 to 2004. Mesic PPF, the core subtype of PPF, had increased densities of total trees, ponderosa pine (Pinus ponderosa), and white fir (Abies concolor) in the 10-29.9 cm diameter class from 1935 to 2004 that may have induced decreased densities of larger ponderosa pines and total tree and ponderosa pine basal areas. Moist PPF, which is transitional with mixed conifer forest at high elevation, was the most dynamic PPF subtype with decreases from 1935 to 2004 in total density and total basal area that are largely attributable to decreases in quaking aspen (Populus tremuloides). Graphical synthesis of datasets with historical and modern values for density and basal area indicates that overall PPF (all subtypes combined) increased in sapling density of all species combined and conifers with canopy potential and decreased in density of quaking aspen trees since the late 19th century. PPF of GCNP has passed through an accretion phase of forest development with increases in density and, depending on PPF subtype and variable being examined, is at or past the point of inflection to recession of density and basal area. Increases in small diameter ponderosa pine and white fir from 1935 to 2004 portend potential additional accretion, but decreases in total basal area, density and basal area of quaking aspen, basal area of ponderosa pine, and density of larger diameter ponderosa pine indicate PPF has passed the inflection point from accretion to recession. Uncertainties about 19th-century PPF structure and composition and about future ecological and societal environments lead to the conclusion that resource managers of GCNP and other natural areas should consider a change in focus from the objective of achieving desired future conditions to an objective of avoiding undesired future conditions.  相似文献   

16.
Selective logging is an important socio-economic activity in the Congo Basin but one with associated environmental costs, some of which are avoidable through the use of reduced-impact logging (RIL) practices. With increased global concerns about biodiversity losses and emissions of carbon from forest in the region, more information is needed about the effects of logging on forest structure, composition, and carbon balance. We assessed the consequences of low-intensity RIL on above-ground biomass and tree species richness in a 50 ha area in northwestern Gabon. We assessed logging impacts principally in 10 randomly located 1-ha plots in which all trees ?10 cm dbh were measured, identified to species, marked, and tagged prior to harvesting. After logging, damage to these trees was recorded as being due to felling or skidding (i.e., log yarding) and skid trails were mapped in the entire 50-ha study area. Allometric equations based on tree diameter and wood density were used to transform tree diameter into biomass.Logging was light with only 0.82 trees (8.11 m3) per hectare extracted. For each tree felled, an average of 11 trees ?10 cm dbh suffered crown, bole, or root damage. Skid trails covered 2.8% of the soil surface and skidding logs to the roadside caused damage to an average of 15.6 trees ?10 cm dbh per hectare. No effect of logging was observed on tree species richness and pre-logging above-ground forest biomass (420.4 Mg ha−1) declined by only 8.1% (34.2 Mg ha−1). We conclude from these data that with harvest planning, worker training in RIL techniques, and low logging intensities, substantial carbon stocks and tree species richness were retained in this selectively logged forest in Gabon.  相似文献   

17.
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in time after one or two high-severity fires. Time points included 2 and 3 years after a single fire, 17 and 18 years after a single fire, 2 and 3 years after a repeat fire (15 year interval between fires), and >100 years since stand-replacement fire (mature/old-growth forest). Avian species richness did not differ significantly among habitats. Bird density was highest 17 and 18 years after fire, lowest 2 years after fire, and intermediate in repeat burns and unburned forest. Bird community composition varied significantly with habitat type (A = 0.24, P < 0.0001) with two distinct gradients in species composition relating to tree structure (live to dead) and shrub stature. Using indicator species analysis, repeat burns were characterized by shrub-nesting and ground-foraging bird species while unburned mature forests were characterized by conifer-nesting and foliage-gleaning species. Bird density was not related to snag basal area but was positively related to shrub height. Contrary to expectations, repeated high-severity fire did not reduce species richness, and bird densities were greater in repeat burns than in once-burned habitats. Broad-leaved hardwoods and shrubs appear to play a major role in structuring avian communities in the Klamath-Siskiyou region. In light of these results, extended periods of early seral broadleaf dominance and short-interval high-severity fires may be important to the conservation of avian biodiversity.  相似文献   

18.
我国当今生态性采伐的综述   总被引:2,自引:0,他引:2  
为制订今后我国实现生态性采伐的方针政策和技术路线,综述了当今一些学和企业家对今后发展生态采伐的意见、建议和设想。从生态性的作业系统、生态性采伐的主导思想及其范围、生态性采伐的内容与措施、生态性采伐作业技术、采伐方式与集材方式、营林与采运的管理体制以及生态观的建立等方面综述了各家的观点。  相似文献   

19.
We selected a warm/dry mixed conifer forest (ponderosa pine, white fir, Douglas-fir, and aspen) in southwestern Colorado to reconstruct historical conditions of fire regime and forest structure in preparation for an experiment in ecological restoration. Although mixed conifer forests are of high ecological and social value in the Southwest, they have been less studied than ponderosa pine forests. Fire-scar analysis on a 150-ha area showed recurring fires at mean intervals of 24 years (all fires with minimum of 2 sample trees scarred) to 32 years (fire scarring 25% or more of sample trees) from the 16th century until the abrupt cessation of fire after 1868, concurrent with European settlement. There was no evidence in age or species-specific data of severe burning at the scale of the study blocks (approximately 200 ha). The forest remained unharvested throughout most of the 20th century, until a cut in the early 1990s removed approximately equal basal areas of ponderosa pine and white fir. Forest structure had already changed substantially, however. Total basal area increased from an average of 11 m2 ha−1 in 1870 to 27 m2 ha−1 in 2003, despite harvesting of at least 8.4 m2 ha−1. Ponderosa pine declined from representing nearly two-thirds of basal area in 1870 to one-third in 2003. The other species increased dramatically, especially white fir, which went from 12% to 35% of basal area and dominated stand density with an average of 392 trees ha−1. Total tree density increased from 142 trees ha−1 in 1870 to 677 trees ha−1 in 2003. The ecological changes that occurred here since the 19th century have been in exactly the opposite direction considering the warm, fire-favoring climate expected in the 21st century. If warm/dry mixed conifer forests of southern Colorado are to have a reasonable chance for persistence under the future climate regime, restoring conditions more similar to the frequently burned, open forests of the past is likely to be a useful starting point.  相似文献   

20.
This article describes the transformation of old-growth forest to managed forests, in North (N) Sweden and boreal regions of North-West (BNW) Russia, from economic, social and ecological perspectives. Whereas in BNW Russia, the logging frontier could be kept moving into unharvested regions, N Sweden earlier had to develop solutions where large-scale logging had already taken place. In 1950–1990, Swedish strategies included rationing of old forest, effective regeneration and also precommercial and commercial thinning. Supporting means were legislation, government-funded subsidies and collaboration among enterprises, researchers and political leaders. BNW Russia is currently facing similar challenges and N Swedish experiences should be analysed and used where applicable. In N Sweden, a too low proportion of representative productive old forests remains, but in the last decades, N Swedish forests exempted from economic use have been significantly increased. Ongoing discussions of also defining areas with more intensive forest management would lead to a zoning, bearing some resemblance to the Russian system, in use since 1943. Russian experience should, therefore, be of interest to Swedish forest policy-makers. Both countries have problems with rural social issues. Both can benefit from collaboration on these aspects of sustainable forest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号