首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important goal of forest restoration is to increase native plant diversity and abundance. Thinning and burning treatments are a common method of reducing fire risk while simultaneously promoting understory production in ponderosa pine (Pinus ponderosa) forests. In this study we examine the magnitude and direction of understory plant community recovery after thinning and burning restoration treatments in a ponderosa pine forest. Our objective was to determine if the post-treatment community was a diverse, abundant, and persistent assemblage of native species or if ecological restoration treatments resulted in nonnative species invasion. This project was initiated at the Grand Canyon-Parashant National Monument, Arizona, USA in 1997. We established four replicated blocks that spanned a gradient of soil types. Each block contained a control and a treated unit. Treated units were thinned to emulate pre-1870 forest stand conditions and prescribed-burned to reintroduce fire to a system that has not burned since ∼1870. We measured plant cover using the point-line intercept method and recorded species richness and composition on 0.05 ha belt transects. We examined the magnitude of treatment responses using Cohen's d effect size analysis. Changes in community composition were analyzed using nonmetric multidimensional scaling (NMS). Native plant species cover and richness increased in the thinned and burned areas compared to the controls. By the last year of the study, annual species comprised nearly 60% of the understory cover in the treatment units. Cheatgrass (Bromus tectorum), a nonnative annual grass, spread into large areas of the treated units and became the dominant understory species on the study site. The ecological restoration treatments did promote a more diverse and abundant understory community in ponderosa pine forests. The disturbances generated by such treatments also promoted an invasion by an undesirable nonnative species. Our results demonstrate the need to minimize disturbances generated by restoration treatments and argue for the need to proactively facilitate the recovery of native species after treatment.  相似文献   

2.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

3.
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We examined effects of varying prescribed fire-return intervals (1, 2, 4, 6, 8, and 10 years, plus unburned) on the abundance and composition of understory vegetation in 2007 and 2008 after 30+ years of fall prescribed burning at two ponderosa pine sites. We found that after 30 years, overstory canopy cover remained high, while understory plant canopy cover was low, averaging <12% on all burn intervals. We attributed the weak understory response to a few factors – the most important of which was the high overstory cover at both sites. Graminoid cover and cover of the major grass species, Elymus elymoides (squirreltail), increased on shorter fire-return intervals compared to unburned plots, but only at one site. Community composition differed significantly between shorter fire-return intervals and unburned plots at one site, but not the other. For several response variables, precipitation levels appeared to have a stronger effect than treatments. Our findings suggest that low-severity burn treatments in southwestern ponderosa pine forests, especially those that do not decrease overstory cover, are minimally effective in increasing understory plant cover. Thinning of these dense forests along with prescribed burning is necessary to increase cover of understory vegetation.  相似文献   

4.
Alternative strategies for stand density management in even-aged coniferous forests may increase plant species and functional diversity. We examined the effects of fixed and variable density thinning on tree seedling regeneration as well as on abundance (indexed by cover) and richness of understory vascular plants 11 years after harvesting 45- to 66-year old forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) or western hemlock (Tsuga heterophylla (Raf.) Sarg.) at three sites in western Oregon. Each site contained an unthinned control (CON), and thinning treatments selected to enhance overstory structural diversity and spatial variability within stands (HD, high density treatment at 300 trees ha−1; MD, moderate density treatment at 200 trees ha−1; VD300, VD200 and VD100, variable density treatments at 300, 200 and 100 trees ha−1). Leave islands are included in HD and the other thinning treatments contain both leave islands and gap openings. Tree seedling regeneration was highly variable and generally increased with thinning. Cover of all understory species was greater in VD100 than in the control whereas richness was greater in HD and MD. Cover and richness of early seral species were greater in most thinning treatments than in the control. Understory plant communities were overwhelmingly dominated by native species. In general, vegetation dynamics was accelerated by thinning, especially in variable density treatments. Cover of N-fixing understory species was greater in VD200 than in the other treatments, and in MD and VD300 than in the control, whereas richness of understory N-fixing species increased in all thinning treatments. Cover of understory species with intermediate soil water requirements was greater in MD, VD200 and VD100 than in the control, whereas richness of these species increased in VD200 compared to the control, HD and VD300. Thinning promoted higher diversity of understory conditions without reducing density and species richness of crop tree regeneration, and seemed to increase functional effect and response diversity.  相似文献   

5.
Tree plantations can be an important tool for restoration of abandoned pasturelands in the tropics. Plantations can help speed up secondary forest succession by improving soil conditions, attracting seed-dispersal agents, and providing shade necessary for understory growth. In this study, abundance and richness of understory regeneration was measured in three native tree plantations 15–16 years of age at La Selva Biological Station in the Costa Rican Caribbean lowlands. Each plantation contained tree species in pure plots, a mixture of the species, and natural regeneration plots (no trees planted). The greatest abundance of regeneration was found in the understory of pure plots of Jacaranda copaia (Aubl.) D.Don., Vochysia guatemalensis Donn.Sm., Dipteryx panamensis Benth, Vochysia ferruginea Mart., and in two mixed stands, while the lowest was found in the natural regeneration treatments with about half the values as in the plantation stands. There was a significant negative correlation between percent canopy openness and abundance of regeneration in the understory. Two distinctive clusters separated the regeneration treatments from the mixed and pure plantations at a very low Bray–Curtis similarity value. The natural regeneration treatments are separated from mixed and pure plantations in the two-dimensional ordination. The lack of difference between the understory make-up of pure and mixed plantations in abundance, species richness, and seed-dispersal syndromes of understory species suggests that planting mixed stands is not necessarily superior to planting pure stands for promoting understory diversity of woody species. While regeneration of woody species can be faster under pure- or mixed-species plantations than in open pastures, the abundance, richness and species composition depends on each plantation species, or species assemblages in case of the mixtures.  相似文献   

6.
The aim of this study was to assess the effect of different slash management practices on understory biodiversity and biomass in Eucalyptus globulus coppices in Central Portugal. The experiment consisted of four treatments: (a) removal of slash (R), (b) broadcast over the soil (S), (c) as in S but concentrating woody residues between tree rows (W) and (d) incorporation of slash into soil by harrowing (I). Understory vegetation was surveyed during 1–6, 9, and 10 years, the proportion of soil cover by plant species estimated, and diversity and equitability indexes determined. Above ground understory biomass was sampled in years 2–6, 9, and 10. The highest number of species in most years occurred in plots where slash was removed. Differences between treatments in the proportion of plant soil cover were never significant, whereas differences in diversity index were only occasionally significant and apparently related to the number of species. Thus, differences in the equitability index were not significant. Understory biomass did not decrease during the rotation period, and was usually highest in R and I, and lowest in S, but not significantly different. At the end of the rotation period, understory biodiversity indices and biomass were apparently independent of slash treatment.  相似文献   

7.
Mexican montane rainforests and adjacent disturbed areas were studied for disturbance-related spatio-temporal changes to the arbuscular mycorrhizal fungal (AMF) community and soil glomalin concentration. The AMF community functions to both improve plant growth and soil conditions and is thus an important component to the restoration of this forest type to disturbed areas. The study areas included mature rainforests that were converted to pine forests, milpas, pastures and shrub/herbaceous plant communities via burning and logging. Seasonal patterns in AMF spore species richness and sporulation significantly differed across disturbance types at two of the three sites surveyed. Contrasting patterns of sporulation among AMF families across different disturbance types helped to explain how species richness and composition were maintained despite dramatic changes to the host plant community. Meaning, in most cases, disturbance induced changes in when different AMF taxa sporulated but not what taxa sporulated. Only conversion from mature pine–oak–LiquidambarPersea forests to pine-dominated stands severely reduced AMF spore richness and total sporulation. Surprisingly, in pine-dominant stands no concomitant negative impacts on soil glomalin (MAb32B11 immunoreactive soil protein) concentrations were detected. However, soils of mature forests containing no pines had the highest concentration of glomalin. Conversion to pasture and milpa (diverse cornfield) had a strong negative impact on the concentration of soil glomalin concentrations. In sharp contrast, the same disturbance types improved AMF sporulation and AMF spore richness. It appears that disturbance type, and not AMF community measures used herein, best predicts changes in soil glomalin concentration.  相似文献   

8.
Studies within and outside the U.S. indicate recurring oak (Quercus spp.) regeneration problems. In deciduous forests of the eastern U.S., a prevailing explanation for this trend is fire suppression leading to high competitor abundance and low understory light. In response, prescribed fire is increasingly used as a management tool to remedy these conditions and encourage future oak establishment and growth. Within eastern Kentucky, we implemented single and repeated (3×) prescribed fires over a 6-yr period (2002–2007). Pre- and post-burn, we quantified canopy cover and oak seedling survival and growth compared to other woody seedlings deemed potential competitors, primarily red maple (Acer rubrum L.) and sassafras (Sassafras albidum (Nutt.) Nees.). Burning temporarily decreased canopy cover 3–10%, but cover rebounded the subsequent growing season. Repeated burning ultimately produced canopy cover about 6% lower than sites unburned and burned once, suggesting a cumulative effect on understory light. Red maple exhibited low survival (∼40%) following single and repeated burns, but growth remained similar to unburned seedlings. Burning had little impact on sassafras survival and led to total height and basal diameters 2× greater than unburned seedlings. A single burn had no impact on red oak (Erythrobalanus spp.) survival and increased height and basal diameters 25–30%, but this positive growth response was driven by seedlings on several plots which experienced high burn temperatures and consequently high overstory mortality. White oaks (Leucobalanus spp.), however, exhibited twice as high mortality compared to those unburned, with no change in growth parameters. Repeated burning negatively impacted survival and growth of both oak groups compared to unburned seedlings. With both burn regimes, oaks with smaller pre-burn basal diameters exhibited the lowest post-burn survival. Thus, despite the ability of prescribed burns to temporarily increase understory light and reduce red maple survival, neither single or repeated burns placed oaks in an improved competitive position. These findings result from a combination of highly variable yet interdependent factors including the (1) life history traits of oaks compared to their co-occurring competitors, (2) pre-burn stature of pre-existing oak seedlings, and (3) variability in fire temperature and effects on understory light.  相似文献   

9.
Concerns about the long-term sustainability of overstocked dry conifer forests in western North America have provided impetus for treatments designed to enhance their productivity and native biodiversity. Dense forests are increasingly prone to large stand-replacing fires; yet, thinning and burning treatments, especially combined with other disturbances such as drought and grazing, may enhance populations of colonizing species, including a number of non-native species. Our study quantifies plant standing crop of major herbaceous species across contrasting stand structural types representing a range in disturbance severity in northern Arizona. The least disturbed unmanaged ponderosa pine stands had no non-native species, while non-native grasses constituted 7–11% of the understory plant standing crop in thinned and burned stands. Severely disturbed wildfire stands had a higher proportion of colonizing native species as well as non-native species than other structural types, and areas protected from grazing produced greater standing crop of native forbs compared to grazed unmanaged stands. Standing crop of understory plants in low basal area thinned and burned plots was similar to levels on wildfire plots, but was comprised of fewer non-native graminoids and native colonizing plants. Our results also indicate that size of canopy openings had a stronger influence on standing crop in low basal area plots, whereas tree density more strongly constrained understory plant standing crop in dense stands. These results imply that treatments resulting in clumped tree distribution and basal areas <10 m2 ha−1 will be more successful in restoring native understory plant biomass in dense stands. Multiple types and severity of disturbances, such as thinning, burning, grazing, and drought over short periods of time can create greater abundance of colonizing species. Spreading thinning and burning treatments over time may reduce the potential for non-native species colonization compared to immediately burning thinned stands.  相似文献   

10.
Identifying effective management operations for plantations is important for conservation of biodiversity in a plantation-dominated landscape. We tested whether pre-commercial thinning influenced community structures and could be an effective strategy for increasing diversity and abundance of plants and animals in plantations. We designated thinned and unthinned study stands in Japanese cedar (Cryptomeria japonica) plantations and compared the communities of understory vegetation, bees, butterflies, hoverflies, and longhorn beetles 1 and 3 years after thinning. The analyses of vegetation showed that pre-commercial thinning affected community structure, but species richness and vegetation abundance were not significantly affected. Thinning affected insect community structure, and both species richness and abundance of all insect groups increased 1 year after thinning. However, 3 years after thinning, significant differences only remained in the species richness of bees and the abundance of bees, butterflies, and hoverflies. These results suggest that pre-commercial thinning in plantation stands influences the community structure of understory vegetation and can be an effective way to increase the diversity and abundance of some insect groups in the short term. However, the results also suggest that the duration of the operational effects of pre-commercial thinning varies among insect groups; thus, the variable effects of pre-commercial thinning should be carefully considered in the conservation-based management of plantation stands.  相似文献   

11.
SYNOPSIS

Monitoring plots were established in two mountain catchment areas in the Western Cape to assess the impacts of dense alien plant stands and alien plant clearance on indigenous Fynbos vegetation. In both areas Pinus pinaster was the dominant alien species with Hakea sericea also common. Indigenous vegetation persisted in the understorey of invaded stands, indicating that the high density of aliens was of recent development. Species richness of indigenous vegetation was lower in invaded, compared to uninvaded plots.

After clearance by felling and burning, the aliens were effectively controlled, except for pines at Genadendal, where unfelled, older generation pines released seeds to recruit in the post-fire environment. The post-fire recovery of indigenous vegetation at both sites was rapid, with no significant differences measured in projected canopy cover, plant density and functional guild richness between invaded and uninvaded control plots. This improved condition of the indigenous vegetation was reflected in an increase in community similarity between invaded and uninvaded plots after fire. However, species richness and diversity remained lower for invaded plots compared to controls two and a half years post-fire and guild structure also differed between treatments.

Clearance of serotinous alien species by felling and burning is an effective method for controlling the aliens and initiating Fynbos recovery in relatively young vegetation (8 years in this study). It is recommended that alien clearance teams are coordinated to reduce time lags between the clearance of younger generation aliens and older established or inaccessible trees. Biological control should be developed, where not already available, to lower the re-invasion risk from clearance escapes. At sites where soil damage may result from fire through heavy slash (e.g, older vegetation), steps should be taken to minimize this risk and contingency plans developed to prevent soil erosion and accelerate post-fire vegetation recovery.  相似文献   

12.
Antelope bitterbrush is a dominant shrub in many interior ponderosa pine forests in the western United States. How it responds to prescribed fire is not well understood, yet is of considerable concern to wildlife and fire managers alike given its importance as a browse species and as a ladder fuel in these fire-prone forests. We quantified bitterbrush cover, density, and biomass in response to repeated burning in thinned ponderosa pine forests. Low- to moderate-intensity spring burning killed the majority of bitterbrush plants on replicate plots. Moderately rapid recovery of bitterbrush density and cover resulted from seedling recruitment plus limited basal sprouting. Repeated burning after 11 years impeded the recovery of the bitterbrush community. Post-fire seed germination following the repeated burns was 3–14-fold lower compared to the germination rate after the initial burns, while basal sprouting remained fairly minor. After 15 years, bitterbrush cover was 75–92% lower on repeated-burned compared to unburned plots. Only where localized tree mortality resulted in an open stand was bitterbrush recovery robust. By controlling bitterbrush abundance, repeated burning eliminated the potential for wildfire spread when simulated using a customized fire behavior model. The results suggest that repeated burning is a successful method to reduce the long-term fire risk imposed by bitterbrush as an understory ladder fuel in thinned pine stands. Balancing the need to limit fire risk yet provide adequate bitterbrush habitat for wildlife browse will likely require a mosaic pattern of burning at the landscape scale or a burning frequency well beyond 11 years to allow a bitterbrush seed crop to develop.  相似文献   

13.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

14.
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2–4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while woody shrubs gained understory dominance. In 2001, a research study was installed in southern Alabama to develop management options that could be used to reduce fuel loads and restore the ecosystem. As part of a nationwide fire and fire surrogates study, treatments included a control (no fire or other disturbance), prescribed burning only, thinning of selected trees, thinning plus prescribed burning, and herbicide plus prescribed burning. After two cycles of prescribed burning, applied biennially during the growing season, there were positive changes in ecosystem composition. Although thinning treatments produced revenue, while reducing midstory hardwoods and encouraging growth of a grassy understory, burning was needed to discourage regrowth of the hardwood midstory and woody understory. Herbicide application followed by burning gave the quickest changes in understory composition, but repeated applications of fire eventually produced the same results at the end of this 8-year study. Burning was found to be a critical component of any restoration treatment for longleaf communities of this region with positive changes in overstory, midstory and understory layers after just three or four burns applied every 2 or 3 years.  相似文献   

15.
We examined the response of understory plants in mature maple-dominated forests of southern Québec, Canada, following about 30 years of high deer densities, using a deer exclosure experiment. An exclosure and a paired control of 625 m2 each were established on six sites in 1998. An exclosure and a paired control of 16 m2 were added at each of the same sites in 2003 but under a recent canopy gap to determine if light could enhance plant responses. We measured plant richness and abundance, and aboveground biomass of different plant groups for 8 years in the understory plots and for 3 years in the canopy gaps. Four herbaceous species were also monitored individually in the same plots. No significant differences between treatments were found in plots under forest cover, except for lateral obstruction at 0–50 cm height which was higher in the exclosures. Under canopy gaps, however, tree seedling and total plant abundance were higher in deer exclosures than in control plots. Trillium erectum recovered partially as individuals were taller, had larger leaves and more frequently produced a flower or a fruit in the absence of deer browsing under forest cover. To a lesser extent, Erythronium americanum and Maianthemum canadense also exhibited signs of recovery but were still at the single-leaf stage after 8 years of recovery. In general, the different plant groups exhibited little recovery following deer exclusion, possibly because of the low light levels that prevailed in the understory of undisturbed maple-dominated forests. The higher latitude of the present study could also contribute to the slow recovery rates of the different groups of plants compared to studies conducted in northeastern USA. Variability among sites and years had an effect on detection of statistically significant differences. Trends are however appearing over time, suggesting that many understory plants are recovering very slowly following deer exclusion. Our results emphasize the importance of studying large herbivore–forest interactions on different groups of plants, but also on specific species, and under different latitudes to be fully understood.  相似文献   

16.
We compared the effects of three fuel reduction techniques and a control on the relative abundance and richness of reptiles and amphibians using drift fence arrays with pitfall and funnel traps. Three replicate blocks were established at the Green River Game Land, Polk County, North Carolina. Each replicate block contained four experimental units that were each approximately 14 ha in size. Treatments were prescribed burn (B); mechanical understory reduction (M); mechanical + burn (MB); and controls (C). Mechanical treatments were conducted in winter 2001–2002, and prescribed burns in March 2003. Hot fires in MB killed about 25% of the trees, increasing canopy openness relative to controls. Leaf litter depth was reduced in B and MB after burning, but increased in M due to the addition of dead leaves during understory felling. The pre-treatment trapping period was short (15 August–10 October 2001) but established a baseline for post-treatment comparison. Post-treatment (2002–2004), traps were open nearly continuously May–September. We captured a total of 1308 species of 13 amphibians, and 335 reptiles of 13 species. The relative abundance of total salamanders, common salamander species, and total amphibians was not changed by the fuel reduction treatments. Total frogs and toads (anurans) and Bufo americanus were most abundant in B and MB; however, the proximity of breeding sites likely affected our results. Total reptile abundance and Sceloporus undulatus abundance were highest in MB after burning, but differed significantly only from B. Mean lizard abundance in MB was highest in 2004 and higher than in other treatments, but differences were not statistically significant. Our results indicate that a single application of the fuel reduction methods studied will not negatively affect amphibian or reptile abundance or diversity in southern Appalachian upland hardwood forest. Our study further suggests that high-intensity burning with heavy tree-kill, as in MB, can be used as a management tool to increase reptile abundance – particularly lizards – with no negative impact on amphibians, at least in the short-term.  相似文献   

17.
Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at multiple spatial scales, while studies of restoration treatment effects often only examine local species richness at one or two spatial scales. We studied experimental thinning and prescribed fire treatment effects on understory plant species richness and community heterogeneity at three spatial scales using additive diversity partitioning. We also evaluated treatment effects on understory plant species colonization and extirpation at two spatial scales. There was no evidence that active restoration treatments reduced species richness or increased local extirpation of species. Restoration treatments significantly increased herbaceous species richness at the treatment-unit level primarily by increasing community heterogeneity among sampling points within the units. The combination of thinning and burning produced the greatest increase in community heterogeneity, and increased colonization by species that were not sampled prior to treatment. These results suggest that restoration treatments designed primarily to reduce fire hazard and promote sustainable conditions in these fire-adapted ecosystems can also increase community heterogeneity and facilitate colonization by new understory species without significant local extirpation of extant species.  相似文献   

18.
We studied the effects of six levels of dispersed green-tree retention (GTR) harvesting (clearcut (0%), 10%, 20%, 50%, and 75%, and unharvested reference (100%)) on understory plant communities in the 8th growing season post-harvest in the mixedwood boreal forest in northwestern Alberta. For the partial harvest treatments (10%, 20%, 50%, 75%) sample plots were located in the partially harvested (retention) strips as well as in the intervening machine corridors used by the harvesting equipment. The understory plant community was significantly influenced by the gradient of retention level. The cover of understory vegetation, especially graminoids, increased with increasing harvesting intensity for the retention strips and overall considering both plots types. Species richness was unaffected by retention level but did decrease as tree density increased. Lower levels of retention lead to increased abundance of early successional, shade-intolerant species. The results suggest a threshold in understory response to GTR harvesting between the 10% and 20% retention treatments. In terms of understory cover and composition, machine corridors within partially harvested forests resembled clearcuts. The results suggest that retaining more than 10% during GTR harvesting could have significant benefits in terms of maintaining understory plant communities more similar to unharvested reference forest.  相似文献   

19.
Since the advent of widespread suppression in the mid-20th century, fire has been relatively rare in deciduous forests of the eastern United States. However, widespread prescribed burning has recently been proposed as a management tool to favor oak (Quercus spp.) regeneration. To examine the potential effects of fire introduction on the understory community, we experimentally burned small plots and simulated aspects of fire at a forested site in southeastern Ohio. Treatments included two burn intensities, litter removal, increased soil pH, and a control. Treatments were arranged in a randomized block design in two landscape positions (dry upland and moist lowland) and two canopy conditions (gap, no gap). Post-fire vegetation was identified to species, and stems were counted 1, 3, and 14 months after burning. Community composition was more strongly affected by fire in upland plots than in lowlands, but was not affected by canopy openness. Both cool and hot burns reduced post-fire seedling emergence of Acer rubrum, a common overstory tree. Hot burns facilitated germination of Vitis spp., Rhus glabra, and Phytolacca americana, species common in disturbed habitats, and increased graminoid abundance. Cool burns and litter removal facilitated germination of Erechtites hieracifolia and Liriodendron tulipifera suggesting that litter removal is the mechanism by which fire favors colonization. These results suggest that fire applied frequently in the Central Hardwoods Region would cause compositional shifts to graminoids and disturbance-adapted forbs by increasing germination from the seed bank. Fire did not favor species with dormant underground buds, as studies in other ecosystems would suggest. Vegetational responses were noticeably weaker in the second year after burning, indicating that a single fire has only a short-term effect.  相似文献   

20.
Mechanical thinning for fire mitigation has become increasingly widespread in recent years throughout the western United States. A common practice in fire-mitigation procedures is the conversion of slash into chipped mulch (referred to as “woodchips”) that is spread on-site. Here, we investigated: (1) the effect of woodchip amendments on soil nitrogen availability, and (2) the influence of potential interactions between woodchip amendments and soil nitrogen availability on patterns of understory plant establishment in a thinned montane forest in the Front Range of Colorado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号