首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in the Earth's atmosphere are expected to influence the growth, and therefore, carbon accumulation of European forests. We identify three major changes: (1) a rise in carbon dioxide concentration, (2) climate change, resulting in higher temperatures and changes in precipitation and (3) a decrease in nitrogen deposition. We adjusted and applied the hydrological model Watbal, the soil model SMART2 and the vegetation model SUMO2 to asses the effect of expected changes in the period 1990 up to 2070 on the carbon accumulation in trees and soils of 166 European forest plots. The models were parameterized using measured soil and vegetation parameters and site-specific changes in temperature, precipitation and nitrogen deposition. The carbon dioxide concentration was assumed to rise uniformly across Europe. The results were compared to a reference scenario consisting of a constant CO2 concentration and deposition scenario. The temperature and precipitation scenario was a repetition of the period between 1960 and 1990. All scenarios were compared to the reference scenario for biomass growth and carbon sequestration for both the soil and the trees.  相似文献   

2.
本文综述了国内外关于森林土壤碳动态过程对氮沉降响应机制的研究进展,概述了大气氮沉降对土壤碳释放及其影响因子的作用机制,从土壤生物学特性、凋落物动态、土壤碳释放等方面揭示大气氮沉降对土壤碳平衡过程影响机制和机理,探讨了森林土壤碳动态过程对氮沉降响应的不确定性因素,并指出未来该领域研究重点。  相似文献   

3.
Land management in tropical woodlands is being used to sequester carbon (C), alleviate poverty and protect biodiversity, among other benefits. Our objective was to determine how slash-and-burn agriculture affected vegetation and soil C stocks and biodiversity on an area of miombo woodland in Mozambique, and how C stocks and biodiversity responded once agriculture was abandoned. We sampled twenty-eight 0.125 ha plots that had previously been cleared for subsistence agriculture and had been left to re-grow for 2 to ∼25 years, and fourteen 0.25 ha plots of protected woodlands, recording stem diameter distributions and species, collecting wood for density determination, and soil from 0 to 0.3 m for determination of %C and bulk density. Clearance for agriculture reduced stem wood C stocks by 19.0 t C ha−1. There were significant relationships between period of re-growth and basal area, stem numbers and stem biomass. During re-growth, wood C stocks accumulated at 0.7 t C ha−1 year−1. There was no significant difference in stem C stocks on woodlands and on abandoned farmland 20–30 years old. Soil C stocks in the top 0.3 m on abandoned land had a narrower range (21–74 t C ha−1) than stocks in woodland soils (18–140 t C ha−1). There was no discernible increase in soil C stocks with period of re-growth, suggesting that the rate of accumulation of organic matter in these soils was very slow. The re-growing plots did not contain the defining miombo species, and total stem numbers were significantly greater than in woodland plots, but species richness and diversity were similar in older abandonments and miombo woodlands. Wood C stocks on abandoned farmland were capable of recovery within 2–3 decades, but soil C stocks did not change on this time-scale. Woodland soils were capable of storing >100 t C ha−1, whereas no soil on a re-growing area exceeded 74 t C ha−1, so there is a potential for C sequestration in soils on abandoned farmland. Management should focus on identifying C-rich soils, conserving remaining woodlands to protect soil C and preserve defining miombo species, and on investigating whether fire control on recovering woodland can stimulate accumulation of soil C and greater tree biomass, and restore defining miombo species.  相似文献   

4.
In this study, we present estimated ranges in carbon (C) sequestration per kg nitrogen (N) addition in above-ground biomass and in soil organic matter for forests and heathlands, based on: (i) empirical relations between spatial patterns of carbon uptake and influencing environmental factors including nitrogen deposition (forests only), (ii) 15N field experiments, (iii) long-term low-dose N fertilizer experiments and (iv) results from ecosystem models. The results of the various studies are in close agreement and show that above-ground accumulation of carbon in forests is generally within the range 15–40 kg C/kg N. For heathlands, a range of 5–15 kg C/kg N has been observed based on low-dose N fertilizer experiments. The uncertainty in C sequestration per kg N addition in soils is larger than for above-ground biomass and varies on average between 5 and 35 kg C/kg N for both forests and heathlands. All together these data indicate a total carbon sequestration range of 5–75 kg C/kg N deposition for forest and heathlands, with a most common range of 20–40 kg C/kg N. Results cannot be extrapolated to systems with very high N inputs, nor to other ecosystems, such as peatlands, where the impact of N is much more variable, and may range from C sequestration to C losses.  相似文献   

5.
Changes in temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration that are expected in the coming decades will have profound impacts on terrestrial ecosystem net primary production (NPP). Nearly all models linking forest NPP with soil carbon (C) predict that increased NPP will result in either unchanged or increased soil C storage, and that decreased NPP will result in decreased soil C storage. However, linkages between forest productivity and soil C storage may not be so simple and direct. In an old-growth coniferous forest located in the H.J. Andrews Experimental Forest, OR, USA, we experimentally doubled needle litter inputs, and found that actual soil respiration rates exceeded those expected due to the C added by the extra needles. Here, we estimated that this ‘priming effect’ accounted for 11.5–21.6% of annual CO2 efflux from litter-amended plots, or an additional 137–256 g C m−2 yr−1 loss of stored C to the atmosphere. Soil priming was seasonal, with greatest amounts occurring in June–August coincident with peaks in temperature and dry summer conditions. As a result of priming, mineral soil was more resistant to further mineralization during laboratory incubations. Soil lignin-derived phenols in the Double Litter plots were more oxidized than in the control, suggesting that the soil residue was more degraded. Our hypothesis that excess dissolved organic C produced from the added litter provided the link between the forest floor and mineral soil and a substrate for soil priming was not supported. Instead, the rhizosphere, and associated mycorrhizal fungi, likely responded directly to the added aboveground litter inputs. Our results revealed that enhanced NPP may lead to accelerated processing of some stored soil C, but that the effects of increased NPP on ecosystem C storage will be based on a net balance among all ecosystem C pools and are likely to be ecosystem-dependant. Forest C models need to include these complex linkages between forest productivity and soil C storage.  相似文献   

6.
以四川盆地西缘山地典型地段的桦木林、柳杉林、杉木林、竹林和天然常绿阔叶为研究对象,从土壤剖面特征、土壤机械组成、酸碱性和土壤养分含量等方面对比分析了林地土壤质量。结果显示:牛尾竹林土壤各项指标处于较低水平,土壤质量很差;人工栽植的针叶林(柳杉林),其人工林土壤表现出很好的发育和熟化特征,其有机质含量和速效N、P、K总量也仅次于天然林,且团聚体数量较多,但水稳性能较差,表土的养分淋溶特征明显;而盐基交换量和盐基饱和度以桦木幼林最大,其次为天然常绿阔叶林、竹林、杉木林,最小为柳杉林。表明以木材为主要经营目标的人工针叶林(柳杉林和杉木林)加速了盐基离子的流失,最终导致了土壤的酸化,因此合理的植被构成及林分经营模式是维持土壤质量的关键技术。  相似文献   

7.
A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains,Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var.alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass=-237.3 In(Elevation) 494.36; R2=0.8092; P<0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p<0.05). The nutrient stock of five vegetations was averagely 72.46 kg·hm-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p<0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t·hm-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm-2, respectively.  相似文献   

8.
A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.  相似文献   

9.
IntroductionSoilpropertiesdependonclimate,vegetationtypes,parentmaterials,landformandsoilderivedage(Bei-jingForestryCoIlege1982).VegetationpIaysasig-nificantroIeintheformationofsoiIparticuIarIyforthepropertiespfSurfBcesoil.PlantsabsorbselectivelynutrientfromsoilandbuiIdtheirbodies.ThenutrientpartofIitterdecomposedgradualIybymicrobeswouldraturntoground-TheroOtsystemOfplantaIsoplaysasignificantroleinsoiIproperties.EffectofpIantsonsoildependonthevegdstiontype,speciescomposi-tion,age,dens…  相似文献   

10.
通过对人工针阔混交林的培育试验,结果表明:培育人工针阔混交林改变了生态环境,调整了林种结构,涵养了水源,提高了林地的营养含量,调节了气候,保护了物种多样性,充分展现了混交林功能效益和潜在的性能。  相似文献   

11.
氮沉降过量会导致一系列严重的全球性生态问题,研究氮沉降对土壤动物群落结构的影响,对于明晰土壤动物群落受大气氮沉降加剧产生的响应机理有重要意义.通过模拟氮沉降试验,研究了不同氮沉降浓度下土壤动物群落特征的变化规律.试验结果表明:甲螨亚目(Oribatida),前气门亚目(Prostigmata),弹尾纲(Collembola),寡毛纲(Oligocllaeta),膜翅目(Hymenoptera)及盲蜘目(Opiliones)6个类群在不同龄级,不同氮沉降梯度下所占比例较高,为典型的优势类群;土壤动物类群丰富度及数量在不同氮沉降梯度下呈现先升后降的趋势;幼龄林土壤动物多样性指数普遍较高,且随氮沉降浓度的增加波动明显,老龄林与之相反;土壤甲螨随着氮沉降增加呈现先增后减的趋势,具有环境指示作用.  相似文献   

12.
13.
Cumulative losses from shifting cultivation in the tropics can affect the local to regional to global balance of carbon and nutrient cycles. We determined whether shifting cultivation in the Southern Yucatán causes feedbacks that limit future forest productivity and carbon sequestration potential. Specifically, we tested how the recovery of carbon stocks changes with each additional cultivation-fallow cycle. Live aboveground biomass, coarse woody debris, fine woody debris, forest floor litter and soil were sampled in 53 sites (39 secondary forests 2–25 years old, with one to four cultivation-fallow cycles, and 14 mature forests) along a precipitation gradient in Campeche and Quintana Roo, Mexico. From the first to the third or fourth cultivation-fallow cycle, mean carbon stocks in live aboveground biomass debris declined 64%. From the first to the third cycle, coarse woody debris declined by 85%. Despite declining inputs to soil with each cultivation-fallow cycle, soil carbon stocks did not further decline after the initial conversion from mature to secondary forest. The combined aboveground and soil carbon stock declined almost 36% after conversion from mature forest, however two additional cultivation cycles did not promote further significant decline, largely because of the stability of the soil carbon pool. Although age was the dominant factor in predicting total carbon stocks of secondary forests under shifting cultivation, the number of cultivation-fallow cycles should not be neglected. Understanding change beyond the first cycle of deforestation will enhance forest management at a local scale by improving predictions of secondary forest productivity and related agricultural productivity. A multi-cycle approach to deforestation is critical for regional and national evaluation of forest-based carbon sequestration. Finally, models of the global carbon cycle can be better constrained with more accurate quantification of carbon fluxes from land-use change.  相似文献   

14.
The simulation of forest production until 2100 under different environmental scenarios and current management practices was performed using a process-based model BIOME-BGC previously parameterized for the main Central-European tree species: spruce, pine, beech and oak and adapted to include forest management practices. Climatic scenario HadCM3 used in the simulations was taken from the IPCC database created within the 3rd Assessment Report. It was combined with a scenario of CO2 concentration development and a scenario of N deposition. The control scenario considered no changes of climatic characteristics, CO2 concentration and N deposition. Simulation experiment was performed for the test region - South Bohemia - using a 1 km × 1 km grid. The actual data on the regional forest cover were aggregated for each grid cell in such a way that each cell represented an even-aged single-dominant species stand or non-forested area, and a standard management scenario depending on the stand age and species was applied to each cell. The effect of environmental variables was estimated as the difference of simulated carbon pools and fluxes in 2050 under environmental changes and under control scenario.The model simulation for the period to 2050 with only climate change under constant CO2 concentration and N deposition indicated a small decrease of NPP (median values by species reached −0.9 to −1.7% for different species), NBP (−0.3 to −1.7%) and vegetation carbon (−0.3 to −0.7%), whereas soil C slightly increased. Separate increase of N deposition gave small positive effect on carbon pools (0.8-2.9% for wood C and about 0.5% for soil C) and more expressed effect on carbon fluxes (1.8-4.3% for NPP and 1.0-9.7% for NBP). Separate increase of CO2 concentration lead to 0.6-2.4% increase of wood C pool and 0.1-0.5% increase of soil C. The positive effects of CO2 concentration and N deposition were more pronounced for coniferous than for deciduous stands.Replacement of 0.5% of coniferous plantations every year by natural broadleaved stands evoked 10.5% of increase of wood carbon pool due to higher wood density of beech and oak compared to spruce and pine, but slightly decreased soil and litter carbon pools.  相似文献   

15.
煤矿废弃地植被恢复对土壤质量的影响及评价   总被引:3,自引:0,他引:3  
按不同植被恢复模式,对汾西集团矿区煤矸石山植被恢复2年的土壤养分进行分析,采用综合评价方法对土壤养分质量进行定量评价。结果显示,植被恢复对煤矸石山土壤速效氮和有机质改良效果较差,对速效磷和速效钾改良效果较好。4种植被模式中,恢复土壤养分综合指数的大小依次为:高羊茅—紫花苜蓿混交模式,紫穗槐纯林,高羊茅—紫花苜蓿—紫穗槐,高羊茅—黑心菊—波斯菊。  相似文献   

16.
中国CDM林业碳汇项目的管理政策研究   总被引:2,自引:0,他引:2  
气候变化是当前全球面临的共同挑战,《京都议定书》规定了三种灵活机制,以促进发达国家在2008~2012年的第一承诺期内率先采取行动来缓解气候变暖趋势。其中,实施清洁发展机制(CDM)下的造林再造林碳汇项目是发达国家和发展中国家共同应对气候变化的一种选择。文章介绍了林业碳汇项目产生的背景,阐述了国内外对林碳汇概念的不同表述,分析了在我国对林业碳汇政策的研究,提出了我国林业碳汇管理政策的不足。  相似文献   

17.
为了探讨森林碳汇能力、森林碳汇贮存量,该研究利用IPCC(政府间气候变化专门委员会)制定计算方法,通过对岛东林场2009年森林资源二类清查数据进行分析,得出目前岛东林场碳汇蓄积量约31.4万t。数据分析结果表明,当前岛东林场森林经营方式不能满足国家层面上以应对全球气候变化为目的的多功能森林经营要求,也不能满足海南国际旅游岛建设中对森林游憩资源开发需求,在这基础上提出对岛东林场人工林科学合理的近自然化改造模式。  相似文献   

18.
Carbon sequestered in biomass is not necessarily stored infinitely, but is exposed to human or natural disturbances. Storm is the most important natural disturbance agent in Swiss forests. Therefore, if forests are taken into account in the national carbon budget, the impact of windthrow on carbon pools and fluxes should be included. In this article the forest scenario model MASSIMO and the soil carbon model YASSO were applied to assess the effect of forest management and an increased storm activity on the carbon sequestration in Swiss forests. First, the soil model was adapted to Swiss conditions and validated. Second, carbon fluxes were assessed applying the two models under various forest management scenarios and storm frequencies. In particular, the influence of clearing after a storm event on the carbon budget was analyzed. The evaluation of the model results showed that the soil model reliably reproduces the amount of soil carbon at the test sites. The simulation results indicated that, within the simulated time period of 40 years, forest management has a strong influence on the carbon budget. However, forest soils only react slightly to changes in the above-ground biomass. The results also showed that a storm frequency increase of 30% has a small impact on the national carbon budget of forests. To develop effective mitigation strategies for forest management, however, longer time periods must be regarded.  相似文献   

19.
按照森林生态系统服务功能评估规范,分不同林分类型对河南省森林的固碳、释氧动态进行了研究。结果表明:全省森林总固碳量及其价值、总释氧量及其价值的年际变化情况一致,即在2006年都是最小,2007—2009年都连续增加。而不同类型林分的固碳量及其价值、释氧量及其价值的变化是不同的;不同类型林分单位面积固碳量是不同的,单位面积释氧量也不同;不同类型林分单位面积释氧量与固碳量由大到小排序一致。  相似文献   

20.
吉林市森林固碳释氧生态效益评价   总被引:1,自引:0,他引:1  
以吉林市现有森林资源面积和各林龄组面积、蓄积为基础数据,按国家林业行业标准规定的方法,测算森林年净生产力、固碳量与释氧量和货币价值量.结果表明:森林净生产力为1 822 783.3 t·a-1,固碳量为2 835 277.2 t·a-1,释氧量为2 168 711.2 t·a-1;固碳价值为34.02亿元·a-1,释氧...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号