首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Great Smoky Mountains National Park is using systemic imidacloprid to treat eastern hemlocks (Tsuga canadensis [L.] Carr.) infested with the exotic insect, hemlock woolly adelgid (Adelges tsugae Annand). This study investigated effects of these treatments on insectivorous birds and hemlock canopy arthropod assemblages in the context of food availability for insectivorous birds. Six pairs of treated and untreated hemlock sites were studied in 2007. Territories of three hemlock-associated Neotropical migratory foliage-gleaning bird species were mapped in these six sites, and relationships between bird territory density and hemlock foliar density were examined. Canopy arthropods were sampled by clipping mid-canopy hemlock branches in each paired site. Arthropods were identified to order or suborder and categorized into bird prey guilds and non-target herbivorous insect guilds. Despite being treated within the previous two years, there were no differences in hemlock woolly adelgid infestation between treated and untreated sites. This may reflect recovery or because the imidacloprid is slow-acting. Bird densities also did not differ between treated and untreated sites but were positively related to branch foliage mass, implying a preference in these birds for well-foliated hemlocks. A total of 10,219 hemlock woolly adelgids, and a total of 906 other arthropods from 16 orders were collected. There were no differences in species richness, abundance, or species composition between treated and untreated sites for total arthropods, or for immature arthropods ≥ 3 mm. In contrast, non-target herbivorous Hemiptera and larval Lepidoptera were significantly reduced in treated hemlocks. Although larval Lepidoptera are primary prey for insectivorous foliage-gleaning birds, the similarity in bird densities between treated and untreated sites suggests the birds are able to find other food resources in the mixed hemlock-deciduous stands where the study sites were located. Therefore, controlling hemlock woolly adelgid-induced defoliation through use of imidacloprid may have short-term benefits for hemlock-associated birds. While imidacloprid treatments did not appear to be currently affecting most arthropods, primary prey guilds should be monitored for long-term declines that could impact hemlock-associated birds.  相似文献   

2.
Liana-dominated forest patches constitute 15–20% of old-growth forests in the Eastern Amazon but are generally excluded from management for timber production. Here we ask if liana-dominated patches may be brought into production by clearing lianas and conducting enrichment planting (EP) of native timber species. We present growth results from 8 years of such EP trials. Rapid growth and low mortality of all species in this study suggest that EP in cleared liana patches can contribute to timber stocks in second and third harvests of managed forests. The most vigorous individuals of Parkiagigantocarpa and Schizolobium amazonicum in each enrichment site grew more than 1 cm diameter per year (rates were initially >2 cm yr−1), and attained dominant canopy positions and diameters equal to those of small canopy trees in the surrounding forest within 8 years of planting (mean dbh ∼18 cm and ∼20 cm, respectively, at year 8). Limited data on Ceiba pentandra plantings indicate a similar trajectory for this species (dbh ∼40 cm in 8 years). The most vigorous Swietenia macrophylla grew at least 1 cm per year in enrichment plots (mean dbh ∼10 cm in 8 years), but take longer to attain dominant positions. Tabebuia serratifolia may take much longer to reach the canopy than other species tested (rates <1 m yr−1). We attribute the excellent performance to light availability; planting in intact soil with minimal compaction and abundant organic material; and low competition rates maintained by periodic thinning of competing vegetation.  相似文献   

3.
The exotic invasive insect, hemlock woolly adelgid (Adelges tsugae Annand), is causing mortality in eastern hemlocks (Tsuga canadensis [L.] Carr.) throughout the eastern U.S. Because hemlocks produce dense shade, and are being replaced by hardwood species that produce less shade, their loss may increase understory light levels. In the southern Appalachians, increases in light could increase stream temperatures, threatening species such as brook trout (Salvelinus fontinalis). We studied changes in light and stream temperature with eastern hemlock decline at a headwater southern Appalachian brook trout stream. Our results indicate that stream light levels have increased significantly with adelgid infestation. Leaf-on light levels are currently significantly higher (P < 0.02) in plots containing high basal areas of hemlock (mean global site factor (GSF)(SE) = 0.267(0.01)) compared with plots containing no hemlock (mean GSF(SE) = 0.261(0.01)), suggesting that increases in light have occurred with hemlock decline. The Normalized Difference Vegetation Index (NDVI), a remotely sensed metric of vegetation density, decreased with hemlock decline from 2001 to 2008. In 2001, NDVI showed no relationship (R2 = 0.003; F = 0.14; P = 0.71) with hemlock basal area, but by 2008, there was a significant negative relationship (R2 = 0.352; F = 19.55; P < 0.001) between NDVI and hemlock basal area. A gap experiment showed that light levels may increase by up to 64.7% more (mean increase in GSF = 27.5%) as hemlocks fall, creating gaps in the canopy. However, stream temperatures did not increase with hemlock decline during the study period, and we found that ground water inputs have a stronger influence on water temperature than light levels at this site. Linear regression showed a significant negative relationship between water temperature and proximity to ground water sources (R2 = 0.451; F = 13.14; P = 0.002), but no relationship between water temperature and light levels (R2 < 0.02; P > 0.05). In addition, by comparing light levels between plots containing hemlock and those containing only hardwoods, we found that if hemlocks are replaced by hardwoods, light levels under an all-hardwood canopy (mean GSF(SE) = 0.240(0.005)) are unlikely to be higher than they are under the current forest (mean GSF(SE) = 0.254(0.007)). These results suggest that loss of hemlock along southern Appalachian headwater streams could have short-term impacts on light levels, but that long-term changes in light levels, increases in water temperature, and adverse effects on brook trout may be unlikely.  相似文献   

4.

? Context

Hemlock woolly adelgid (Adelges tsugae) is an invasive insect that is defoliating and killing eastern hemlock (Tsuga canadensis) in the USA.

? Aims

We quantified changes in tree-ring growth rates and wood anatomy for living trees infested with hemlock woolly adelgid across six sites from Massachusetts (42°41′N) to Georgia (34°53′N) to identify growth responses of eastern hemlock that had survived infestation.

? Methods

Annual ring widths from infested eastern hemlocks were cross-dated and measured. Growth rates before and after infestation were compared. Two infested trees from Virginia were cut, and thin sections were prepared to identify changes in cell properties.

? Results

At three sites, trees experienced a significant decrease in radial growth after hemlock woolly adelgid arrival; however, the other three sites showed no change or increase in growth. Latewood produced after hemlock woolly adelgid infestation had significantly smaller cells with reduced cell wall thickness compared to latewood prior to infestation.

? Conclusion

At half the sites where hemlock woolly adelgid infested eastern hemlock trees were sampled, radial growth increased or remained unchanged. This unexpected response may be due to reduced competition due to mortality of other eastern hemlocks or physiological compensatory responses of increased photosynthetic rate and increased water use efficiency experienced by eastern hemlock infested with hemlock woolly adelgid.  相似文献   

5.
Secondary cavity-nesting birds (SCN), which cannot create their own breeding cavities, are expected to be influenced by habitat alteration caused by forest management practices, but the mechanisms underlying the distribution pattern of SCN subjected to different management systems are poorly known. To improve our knowledge on these mechanisms, we examine cavity abundance, cavity occupation and reproductive performance of SCN in Pyrenean oak (Quercus pyrenaica) forests subjected to two management systems: (i) dense “young forests”, maintained at such stage by clear-cuttings and burns, and (ii) “old forest”, subjected to extensive traditional grazing and scarce firewood extraction by selective cutting. Young forests had considerably lower density of cavities (1.29 ± 0.71 vs 15.09 ± 2.00 cavities ha−1), SCN species (0.18 ± 0.11 vs 0.61 ± 0.07 species ha−1) and nests (0.40 ± 0.27 vs 2.67 ± 0.25 nests of all SCN ha−1) than old forests, indicating that a low availability of cavities may limit SCN assemblages in young oak forests. However, reproductive parameters of great (Parus major) and blue (Cyanistes caeruleus) tits associated with the availability of food (laying date, clutch size, nestling number and weight, adult weight) did not differ between both forest types, suggesting that food supply was not reduced in young forests, at least for tits during the breeding season. Large diameter (up to 170 cm dbh) decayed trees were the most likely to hold cavities, but birds preferred smaller living cavity-trees for nesting (90% of nests in 21-65 cm dbh trees). The preservation of cavity-trees within traditionally managed old oak forests is crucial in providing nesting opportunities to SCN. Besides, the protection of these traditionally managed forests would also benefit to other forest organisms that depend on old and open oak forests.  相似文献   

6.
ABSTRACT

The hemlock woolly adelgid (HWA, Adelges tsugae Annand) an invasive exotic insect, may extirpate eastern hemlock (Tsuga canadensis (L.) Carrière) trees from native forests, but other hemlock species could be planted to occupy their ecological niche. This study tests two of the most likely replacement species candidates: western hemlock (T. heterophylla (Raf.) Sargent) and Chinese hemlock (T. chinensis (Franchet) Pritzel). Low survival rates, slow growth, and infestation by HWA of western hemlock in eastern hemlock forests shows that the western hemlock is not a likely candidate for planting in the northern portion of eastern hemlock's range. In contrast, Chinese hemlock grew at rates similar to eastern hemlock and did not show any signs of HWA infestation. In this study, damage from deer was a much bigger problem than growth reductions from HWA.  相似文献   

7.
Wild pistachio (Pistacia atlantica Desf.) is the most economically important tree species in many rural areas in the west of Iran. The species produces resin used for a wide variety of traditional uses. Because the resin can be harvested non-destructively, the trees are maintained until mortality occurs from natural causes. The result is that natural, managed stands include a variety of age classes. In recent years, a lack of smaller size classes has been observed in the Qalajeh forest, which is located in the Zagros Mountain region of western Iran. We established a series of plots in an area typical of Qalajeh forest to characterize the diameter distribution of the wild pistachio component. We confirmed a deficit of stems <30 cm dbh, based in the expectation that the landscape-level diameter distribution should be characterized by a negative exponential curve. For trees ≥30 cm dbh, de Liocourt's equation closely fit the diameter distribution (r2 = 0.93), translating to a q-factor of 1.34. We used this curve to estimate the deficit number of stems in diameter classes <30 cm. We estimate that this forest should have 19–24 wild pistachio trees/ha in the 5–25 cm classes, as compared to about 5 trees/ha found currently. Based on local conditions, we recommend that at least 30 seedlings/ha should be planted to allow 6–8 trees to reach to the 5 cm class.  相似文献   

8.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

9.
Selective logging is an important socio-economic activity in the Congo Basin but one with associated environmental costs, some of which are avoidable through the use of reduced-impact logging (RIL) practices. With increased global concerns about biodiversity losses and emissions of carbon from forest in the region, more information is needed about the effects of logging on forest structure, composition, and carbon balance. We assessed the consequences of low-intensity RIL on above-ground biomass and tree species richness in a 50 ha area in northwestern Gabon. We assessed logging impacts principally in 10 randomly located 1-ha plots in which all trees ?10 cm dbh were measured, identified to species, marked, and tagged prior to harvesting. After logging, damage to these trees was recorded as being due to felling or skidding (i.e., log yarding) and skid trails were mapped in the entire 50-ha study area. Allometric equations based on tree diameter and wood density were used to transform tree diameter into biomass.Logging was light with only 0.82 trees (8.11 m3) per hectare extracted. For each tree felled, an average of 11 trees ?10 cm dbh suffered crown, bole, or root damage. Skid trails covered 2.8% of the soil surface and skidding logs to the roadside caused damage to an average of 15.6 trees ?10 cm dbh per hectare. No effect of logging was observed on tree species richness and pre-logging above-ground forest biomass (420.4 Mg ha−1) declined by only 8.1% (34.2 Mg ha−1). We conclude from these data that with harvest planning, worker training in RIL techniques, and low logging intensities, substantial carbon stocks and tree species richness were retained in this selectively logged forest in Gabon.  相似文献   

10.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

11.
In the Pacific Northwest, USA, red-tree voles (Arborimus longicaudus) are of conservation and management interest owing to their apparent association with late-seral forests and the relatively small extent of such forests, largely a function of timber harvest, fire, and conversion of forests to non-forest uses during the past century. We created and evaluated a series of red-tree vole habitat association models, and applied the best model to evaluate tree vole habitat quality within and outside of reserves throughout most of their range in Oregon and northern California. We modeled presence and absence of tree vole nests across a gradient of biotic, abiotic, and spatial features; and within and outside of reserves. The best model included spatial coordinates, percent slope, basal area of trees with diameter at breast height (dbh) between 45 and 90 cm, maximum tree dbh, and standard deviation of conifer dbh. Plots with tree vole nests contained many late-seral/old-growth forest attributes such as large diameter, older, and variably sized trees. Evaluation of the best model, including rigorous cross-validation, showed the model to be statistically robust and to have very good/excellent predictive ability. Reserves had significantly higher mean habitat quality than non-reserved lands, and reserves had much more high quality habitat than non-reserves.  相似文献   

12.
Stand-level tree diameter growth patterns were explored for evergreen moist forests in the southern Cape, South Africa. Results of standard multiple regression analyses, involving 934 permanent sample plots with data spanning a 10-year interval, revealed that stand-level increment of canopy species in the canopy layer (>30 cm dbh) was significantly determined by inherent species-specific growth capacities (species composition of the stand), water availability, forest matrix crowding and tree condition impairment (age-related manifestations of reduced vitality indicated by signs of crown die-back, damage and stem rot). In contrast, stand-level increment of trees of canopy species in the subcanopy layer (10-20 cm dbh) was prominently shaped by light availability, as mainly determined by the degree of canopy-level disturbance (mortality rate of trees >30 cm dbh), crowding (canopy-level overhead and forest matrix crowding) and proximity to conspecific adults (within 6-8 m). In addition to species-inherent and resource factors, considerable variation in stand-level growth resulted from site-climate interactions. For 507 of the permanent sample plots, increment data was available for two consecutive 10-year intervals; permitting the analysis of spatiotemporal interactions of growth patterns (repeated measures ANOVA). In the Knysna forests higher canopy-level increment rates were associated with the moister southerly facing slope sites in comparison with the drier northerly facing and ridge sites during the first increment period. During the second increment period, increment rates on the drier, but better illuminated sites had increased disproportionately. In contrast, in the Tsitsikamma forests, higher increment rates during the second increment period were encountered on moister flat bottomland sites (with extended periods of subsoil wetness) than on the comparatively drier southerly facing slope sites (increment period × site-based water availability × forests interaction). In both forests relatively higher growth performance of subcanopy-level trees during the second increment period was associated with stands experiencing conditions of enhanced light availability. Atmospheric temperatures were higher during the second increment period (mean periodic Tmax: + 0.64 °C). The detected spatiotemporal interactions were interpreted as site × climate interactions where site-related conditions of favourable light or water availability resulted in enhanced temperature-linked growth responses during the second increment period. A metabolic performance trade-off model provided a framework for the interpretation of these complex site-climate interactions by placing the patterns of forest growth into an ecophysiological explanatory context.  相似文献   

13.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

14.
We document for the first time the epiphytic composition and biomass of canopy emergent trees from temperate, old-growth coastal rainforests of Chile (42°30′S). Through tree-climbing techniques, we accessed the crown of two large (c. 1 m trunk diameter, 25–30 m tall) individuals of Eucryphia cordifolia (Cunoniaceae) and one large Aextoxicon punctatum (Aextoxicaceae) to sample all epiphytes from the base to the treetop. Epiphytes, with the exception of the hemi-epiphytic tree Raukaua laetevirens (Araliaceae), were removed, weighed and subsamples dried to estimate total dry mass. We recorded 22 species of vascular epiphytes, and 22 genera of cryptogams, with at least 30 species of bryophytes, liverworts and lichens. The dominant vascular epiphytes were Fascicularia bicolor (Bromeliaceae), Raukaua laetevirens, Sarmienta repens (Gesneriaceae), and filmy ferns (Hymenophyllaceae). Epiphyte loads per tree ranged between 134 and 144 kg dry mass, with 60–70% water. The hemi-epiphytic tree R. laetevirens added between 1 and 2.6 t of dry mass to each host tree. A main component of epiphyte biomass, making 70% of the weight, was detritus and roots, while leaves, stems, and fronds made up the remaining 30%. Emergent trees hold a high proportion of the regional diversity of epiphytes: 33% of all flowering epiphytes, and 50% of all filmy ferns described for Chilean temperate forests. Dry epiphyte biomass associated only with the emergent E. cordifolia trees in coastal forests was estimated in 10 t/ha. Epiphyte biomass may store up to 300 l of water in each emergent tree, and add 40–150% of photosynthetic biomass to the tree crowns. Based on this evidence, epiphytes may play key but generally neglected roles in ecosystem carbon uptake, water storage, and nutrient cycling. Moreover, emergent trees represent nuclei of biodiversity and ecosystem functions distributed throughout mature forests. Forest management should recognize large trees as significant management units for the preservation of biodiversity and ecological functions.  相似文献   

15.
Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988–2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 ± 4.6% (range = 1.5–17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1–5 cm dbh, elephant-herbivory in stems 5–10 cm dbh, and other natural causes in stems >10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2–3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.  相似文献   

16.
Many forests that historically experienced frequent low-intensity wildfires have undergone extensive alterations during the past century. Prescribed fire is now commonly used to restore these fire-adapted forest ecosystems. In this study, we examined the influence of prescribed burn season on levels of tree mortality attributed to prescribed fire effects (direct mortality) and bark beetles (Coleoptera: Curculionidae, Scolytinae) (indirect mortality) in ponderosa pine, Pinusponderosa Dougl. ex Laws., and Jeffrey pine, Pinusjeffreyi Grev. and Balf., forests in California, USA. A total of 816 trees (9.9% of all trees) died during this 3-yr study. Significantly higher levels of tree mortality (all sources) occurred following early and late season burns compared to the untreated control, but no significant difference was observed between burn treatments. The majority (461 trees) of tree deaths were attributed to direct mortality from prescribed burns and was strongly concentrated (391 trees) in the smallest diameter class (<20.2 cm diameter at breast height, dbh). For the largest trees (>50.7 cm dbh), significantly higher levels of tree mortality occurred on early season burns than the untreated control, most of which resulted from indirect mortality attributed to bark beetle attacks, specifically western pine beetle, Dendroctonus brevicomis LeConte, and mountain pine beetle, D. ponderosae Hopkins. Red turpentine beetle, D. valens LeConte, was the most common bark beetle species found colonizing trees, but tree mortality was not attributed to this species. A total of 355 trees (4.3% of all trees) were killed by bark beetles. Dendroctonus brevicomis (67 trees, 18.9%) and D. ponderosae (56 trees, 15.8%), were found colonizing P. ponderosa; and Jeffrey pine beetle, D. jeffreyi Hopkins, was found colonizing P. jeffreyi (seven trees, 2.0%). We also found pine engraver, Ips pini (Say) (137 trees, 38.6%), and, to a much lesser extent, Orthotomicus (=Ips) latidens (LeConte) (85 trees, 23.9%) and emarginate ips, I. emarginatus (LeConte) (3 trees, 0.8%) colonizing P. ponderosa and P. jeffreyi. Few meaningful differences in levels of indirect tree mortality attributed to bark beetle attack were observed between early and late season burns. The incidence of root and root collar pathogens (Leptographium and Sporothrix spp.), including species known to be vectored by bark beetles, was low (18% of trees sampled). The implications of these and other results to management of P. ponderosa and P. jeffreyi forests are discussed in detail.  相似文献   

17.
There are conflicting reports on the role of disturbances in maintaining liana community structure, and in determining their relationship with trees. The effects of plant invasion on these attributes of lianas are not known. The study investigated the effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana, in three distinct forest types to reflect both human disturbances and invasion: Undisturbed, Disturbed-Invaded and Disturbed Forests (UF, DIF and DF respectively). Trees ≥10 cm dbh were identified and their dbh measured in two 0.25 ha plots in each forest type. The trees were examined for the presence of lianas (≥2 cm dbh) and their dbh measured. A total of 380 lianas ≥2 cm dbh belonging to 20 genera and 12 families were identified in the 1.5 ha forest. Twelve liana species were unique to the DIF suggesting the probable positive influence of plant invasion on their colonisation. Liana density differed significantly across the forest types (df = 2, p = 0.043) with the UF recording the greatest number. The mean liana stem diameter and basal area were greater in the DF. Large diameter lianas were absent in the UF. Tree density and number of trees hosting lianas were greater in the UF followed by the DIF and DF. Liana infestation was generally high with 90% in the DF, 88.2% in the UF, and 85.7% in the DIF. Both liana load per tree species and mean liana load per infested tree were highest in the UF followed by the DIF and then the DF. Liana density was highly dependent on tree density in all the forest types (df = 1, r2 = 0.50, p = 0.007; df = 1, r2 = 0.99, p = 0.000 and df = 1, r2 = 0.72, p = 0.000 in the UF, DIF and DF respectively). There was a significant positive relationship between liana dbh and host dbh in the UF (df = 1, r2 = 0.096, p = 0.000), DIF (df = 1, r2 = 0.11, p = 0.000) and DF (df = 1, r2 = 0.16, p = 0.008). There was no significant relationship between host dbh and liana loads in all the forest types.  相似文献   

18.
Midcanopy layers are essential structures in “old-growth” forests on the Olympic Peninsula. Little is known about which stand and tree factors influence the ability of midcanopy trees in young-growth forests to respond to release; however, this information is important to managers interested in accelerating development of late-successional structural characteristics. We examined basal area growth response of midcanopy trees following variable-density thinning in an effort to determine the effect of thinning and local environment on the release of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and western redcedar (Thuja plicata ex. D. Don) on the Olympic Peninsula in western Washington. Release was measured as the difference between average annual basal area growth over the 5-year prior to thinning and the 3-to-6 year period following thinning. Results indicate that while growth rates were similar prior to thinning (5.4 cm2 year−1in both thinned and unthinned patches) midcanopy trees retained in a uniformly thinned matrix grew significantly more (8.0 cm2 year−1) than those in unthinned patches (5.4 cm2 year−1) for western hemlock and for western redcedar. Crown fullness and crown crowding affected the release of western hemlock in the thinned matrix. Initial tree size, relative age, local crowding and measures of crown size and vigor affected the release of western redcedar in the thinned matrix. Our results indicate that midcanopy western hemlock and western redcedar retain the ability to respond rapidly with increased growth when overstory competition is reduced and the magnitude of response is related to neighborhood variables (intracohort competition, overstory competition, and tree vigor), thus suggest that variable-density thinning can be an effective tool to create variability in the growth of midcanopy trees in young-growth stands. We expect that this rapid response will produce even greater variability over time.  相似文献   

19.
Snags are important both as structural components and as animal habitat in forests, but abundance is often low and their dynamics poorly understood in young, managed stands. Using a large data set of 19,622 snags from permanent plots in second-growth forests of coastal British Columbia, we modeled snag longevity (time from tree mortality to snag fall) for three species: Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western redcedar (Thuja plicata). Snag longevity was strongly related to species and snag size (diameter): the median snag longevity was 16 years for Douglas-fir, 11 years for hemlock and 5 years for redcedar. Western redcedar was predominantly in the subcanopy and its rapid fall rate was related to the small size of its snags. In addition to diameter, other attributes (height to diameter ratio, height, and live crown ratio before death) contributed significantly to models for one or two of the species. However, site level variables did not contribute significantly to any of the models. Snags greater than 50 cm diameter, especially Douglas-fir snags, have the potential for persistence well beyond 20 years in these second-growth forests, and could be important for wildlife.  相似文献   

20.
Forest management practices which may represent various forms of disturbance regimes could influence liana species richness, abundance and relationship with their hosts. The study sought to determine the impacts of three management systems, namely, the Selection, Tropical Shelterwood and Post Exploitation Systems (SS, TSS and PES respectively) on liana species richness, abundance and relationship with trees in the Bobiri forest reserve, Ghana. Lianas with dbh ≥ 2 cm found on trees with dbh ≥ 10 cm were enumerated in 1 ha plot each in the SS, TSS and PES. All trees (dbh ≥ 10 cm) within the plots that did not carry lianas were also enumerated. A total of 640 liana individuals belonging to 27 species, 22 genera and 13 families were identified in the management systems. Griffonia simplicifolia (Vahl ex DC.) Baill., Motandra guineensis (Thonn.) A.DC. and Calycobolus africanus (G.Don) Heine were the abundant species in all the management systems. Unlike in SS, lianas in the TSS and PES were dominated by a few species. Larger diameter lianas were more abundant in the PES (32%) compared with the SS (18.3%) and the PES (13.1%). Liana diversity (H′) (species richness and abundance) was quantitatively higher in the SS (2.8) than the TSS (2.2) and the PES (2.0). The numbers of lianas carried by tree species differed significantly in the management systems (p < 0.001 each). Liana infestation in the forest was high. The level of liana infestation did not reflect the extent of liana load per tree in the management systems. Larger trees carried significantly more liana individuals than smaller trees in the PES (p = 0.019, r2 = 0.15). There was a positive significant relationship between host dbh and liana dbh in the PES (p < 0.001, r2 = 0.23) and TSS (p = 0.024, r2 = 0.11). Tree diversity appeared to have influenced liana species richness and abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号