首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The efficiency of a sample-based inventory can be greatly improved if lower cost information on the study area is utilized. It has been observed that the use of airborne laser scanning (ALS) data in the design phase may improve the efficiency of dead wood (coarse woody debris, CWD) volume inventory notably, i.e. a smaller standard error of the mean is observed with the same inventory costs. In the present case, several auxiliary data sources were employed in the design phase by using ‘probability proportional to size’ sampling to select the sample units to be inventoried in the field. It was observed that a combination of ALS data with either aerial photographs or stand-register data can improve the sampling efficiency even more than the use of ALS as a single data source. Since these additional data sources are often gathered for the inventory of living trees, their use does not incur extra expenses for CWD assessment. Thus, the use of these data separately or together with ALS data can greatly improve the cost-efficiency of a CWD volume inventory. It was also observed that the size of the sample units has a slight effect on the sampling efficiency. Even though the improvement in the sampling efficiency was usually greater with larger sample unit sizes, the CWD volume inventory was most efficient with moderate grid cell sizes.  相似文献   

2.
The leaf area index (LAI) of 16 sample plots was estimated based on terrestrial three-dimensional laser scanning. The point-cloud data of stand canopy were first scaled and projected onto a hemisphere according to Lambert azimuthal equal-area projection or stereographic projection, and the resulting hemispherical point-cloud images were used to extract the canopy porosity coefficients. Then, single-angle inversion and Miller formula inversion methods were used, respectively, to calculate the effective leaf area indices with canopy porosity coefficients. Results showed that the effective LAIs estimated by single-angle inversion method with Lambert projection and stereographic projection were within the range of 2.14~5.36 and 1.83~4.67, respectively. The effective LAIs obtained by Miller formula inversion method with Lambert projection and stereographic projection were within the range of 1.84~4.67 and 1.68~4.34, respectively. As a comparison, the LAI measured with a fish-eye camera ranged from 1.55 to 3.87. The LAI values estimated with four different calculation methods were linearly correlated with those measured by a fish-eye camera. The highest coefficient of determination (R2) 90.28% was obtained by the Miller formula inversion method combined with stereographic projection, and Duncan’s new multiple range test also further showed that this method had a relatively higher precision compared to other three methods.  相似文献   

3.
This article compares three methods for forest resource estimation based on remote sensing features extracted from Airborne laser scanning and CIR orthophotos. The estimation was made exemplarily for the total stem volume of trees for a given area, measured in cubic metres per hectare [m3 ha−1] (as one of the most important quantitative parameters to characterise a forest stand). The following methods were compared: Regression Analysis (RA), k-NN (nearest neighbour) method and a method that utilises regional yield tables, referred to as the yield table method (YT-method). The estimation of stem volume was examined in a mixed forest in Southern Germany using 300 circular inventory plots, each with a size of 452 m2. Remote sensing features relating to vegetation height and structures were extracted and used as input variables in the different approaches. The accuracy of the estimation was analysed using scatter plots and quantified using absolute and relative root mean square errors (RMSE). The comparison was made for all plots, as well as for averaged plot values located within forest stands that have the same age class. On “plot level” the RMSE yielded 79.79 m3 ha−1 (RA), 81.93 m3 ha−1 (k-NN) and 81.78 m3 ha−1 (YT-method) and for the averaged values 35.75 m3 ha−1 (RA), 35.06 m3 ha−1 (k-NN) and 42.98 m3 ha−1 (YT-method). Advantages and disadvantages, as well as requirements, of the methods are discussed.  相似文献   

4.
ABSTRACT

Forest productivity is a crucial variable in forest planning, usually expressed as site index (SI). In Nordic commercial forest inventories, SI is commonly estimated by a combination of aerial image interpretation, field assessment and information obtained from previous inventories. Airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) data can alternatively be used for SI estimation, however the economic utilities of the inventory methods have not been compared. We compared seven methods of SI estimation in a cost-plus-loss analysis, by which we added the expected economic losses due to sub-optimal treatment decisions to the inventory costs. The methods comprised direct and indirect estimation from combinations of ALS, DAP and stand register data, and manual interpretation from aerial imagery supported by field assessment and information from previous inventories (conventional practices). The choice of method had great impact on both the accuracy and the economic value of the produced estimates. Direct methods using bitemporal ALS and DAP data gave the best accuracy and the smallest total cost. DAP was a suitable and low-cost data source for SI estimation. Estimation from single-date ALS and DAP data and age obtained from the stand register provided practical alternatives when applied to even-aged stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号