首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prescribed burning is used to reduce fuel loads and return ponderosa pine forests of the Western U.S. to their historical structure and function. The impact of prescribed burning on soil is dependent on fire severity which is largely managed by burning in the fall or the spring; frequency of fire will also regulate long-term fire impacts. The objective of this study was to determine if soils and soil organic matter (SOM) were affected by prescribed burning in the fall or the spring using singular or multiple prescribed burns. Prescribed burning was initiated in the spring of 1997 and fall of 1997 at 5-year intervals and once during a 15-year period on a study site located within the Malheur National Forest of the southern Blue Mountains of eastern Oregon. Soils were sampled by major genetic horizon in 2004. The 5-year interval plots had burned twice with 1–2 years of recovery while the 15-year interval plots had burned only once with 6–7 years of recovery. Samples were analyzed for pH, carbon (C), nitrogen (N), C/N ratio, cation exchange capacity, base saturation, water repellency, and humic substance composition by alkali extraction. Fall burning decreased C and N capital of the soil (O horizon +30 cm depth mineral soil) by 22–25%. Prescribed burning did not have an effect on fulvic or humic acid C concentration (FA and HA, respectively) of the mineral soil and only a minor effect on FA and HA concentration of the O horizon. One or two fall burns decreased humin and the alkali non-soluble C (NS) content of O horizon by 15 and 30%, respectively. Initiating fall burning in fire-suppressed stands may not preserve soil C, N, humin, and NS content, but may replicate the natural fire regime. Spring burning using a return interval of 5 or more years reduces the fuel load while having little impact on soil C, N, and SOM composition and may be used to prepare a site for subsequent fall burns.  相似文献   

2.
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

3.
An important goal of forest restoration is to increase native plant diversity and abundance. Thinning and burning treatments are a common method of reducing fire risk while simultaneously promoting understory production in ponderosa pine (Pinus ponderosa) forests. In this study we examine the magnitude and direction of understory plant community recovery after thinning and burning restoration treatments in a ponderosa pine forest. Our objective was to determine if the post-treatment community was a diverse, abundant, and persistent assemblage of native species or if ecological restoration treatments resulted in nonnative species invasion. This project was initiated at the Grand Canyon-Parashant National Monument, Arizona, USA in 1997. We established four replicated blocks that spanned a gradient of soil types. Each block contained a control and a treated unit. Treated units were thinned to emulate pre-1870 forest stand conditions and prescribed-burned to reintroduce fire to a system that has not burned since ∼1870. We measured plant cover using the point-line intercept method and recorded species richness and composition on 0.05 ha belt transects. We examined the magnitude of treatment responses using Cohen's d effect size analysis. Changes in community composition were analyzed using nonmetric multidimensional scaling (NMS). Native plant species cover and richness increased in the thinned and burned areas compared to the controls. By the last year of the study, annual species comprised nearly 60% of the understory cover in the treatment units. Cheatgrass (Bromus tectorum), a nonnative annual grass, spread into large areas of the treated units and became the dominant understory species on the study site. The ecological restoration treatments did promote a more diverse and abundant understory community in ponderosa pine forests. The disturbances generated by such treatments also promoted an invasion by an undesirable nonnative species. Our results demonstrate the need to minimize disturbances generated by restoration treatments and argue for the need to proactively facilitate the recovery of native species after treatment.  相似文献   

4.
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We examined effects of varying prescribed fire-return intervals (1, 2, 4, 6, 8, and 10 years, plus unburned) on the abundance and composition of understory vegetation in 2007 and 2008 after 30+ years of fall prescribed burning at two ponderosa pine sites. We found that after 30 years, overstory canopy cover remained high, while understory plant canopy cover was low, averaging <12% on all burn intervals. We attributed the weak understory response to a few factors – the most important of which was the high overstory cover at both sites. Graminoid cover and cover of the major grass species, Elymus elymoides (squirreltail), increased on shorter fire-return intervals compared to unburned plots, but only at one site. Community composition differed significantly between shorter fire-return intervals and unburned plots at one site, but not the other. For several response variables, precipitation levels appeared to have a stronger effect than treatments. Our findings suggest that low-severity burn treatments in southwestern ponderosa pine forests, especially those that do not decrease overstory cover, are minimally effective in increasing understory plant cover. Thinning of these dense forests along with prescribed burning is necessary to increase cover of understory vegetation.  相似文献   

5.
Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine, the pine engraver beetle, Ips pini (Say), Ips calligraphus (Germar), Ips latidens (LeConte), Ips knausi Swaine and Ips integer (Eichhoff) were the primary bark beetle species associated with ponderosa pine mortality. In this study we examine stand conditions and physiographic factors associated with bark beetle-caused tree mortality in ponderosa pine forests across five National Forests in Arizona. A total of 633 fixed-radius plots were established across five National Forests in Arizona: Apache-Sitgreaves, Coconino, Kaibab, Prescott, and Tonto. Prior to the bark beetle outbreak, plots with mortality had higher tree and stocking compared with plots without pine mortality. Logistic regression modeling found that probability of ponderosa pine mortality caused by bark beetles was positively correlated with tree density and inversely related with elevation and tree diameter. Given the large geographical extent of this study resulting logistic models to estimate the likelihood of bark beetle attack should have wide applicability across similar ponderosa pine forests across the Southwest. This is particularly true of a model driven by tree density and elevation constructed by combining all forests. Tree mortality resulted in significant reductions in basal area, tree density, stand density index, and mean tree diameter for ponderosa pine and for all species combined in these forests. Most of the observed pine mortality was in the 10–35 cm diameter class, which comprise much of the increase in tree density over the past century as a result of fire suppression and grazing practices. Ecological implications of tree mortality are discussed.  相似文献   

6.
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2–4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while woody shrubs gained understory dominance. In 2001, a research study was installed in southern Alabama to develop management options that could be used to reduce fuel loads and restore the ecosystem. As part of a nationwide fire and fire surrogates study, treatments included a control (no fire or other disturbance), prescribed burning only, thinning of selected trees, thinning plus prescribed burning, and herbicide plus prescribed burning. After two cycles of prescribed burning, applied biennially during the growing season, there were positive changes in ecosystem composition. Although thinning treatments produced revenue, while reducing midstory hardwoods and encouraging growth of a grassy understory, burning was needed to discourage regrowth of the hardwood midstory and woody understory. Herbicide application followed by burning gave the quickest changes in understory composition, but repeated applications of fire eventually produced the same results at the end of this 8-year study. Burning was found to be a critical component of any restoration treatment for longleaf communities of this region with positive changes in overstory, midstory and understory layers after just three or four burns applied every 2 or 3 years.  相似文献   

7.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

8.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

9.
Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

10.
We review current knowledge about the use of management treatments to reduce human-induced threats to old ponderosa pine (Pinus ponderosa) trees. We address the following questions: Are fire-induced damage and mortality greater in old than younger trees? Can management treatments ameliorate the detrimental effects of fire, competition-induced stress, and drought on old trees? Can management increase resistance of old trees to bark beetles? We offer the following recommendations for the use of thinning and burning treatments in old-growth ponderosa pine forests. Treatments should be focused on high-value stands where fire exclusion has increased fuels and competition and where detrimental effects of disturbance during harvesting can be minimized. Fuels should be reduced in the vicinity of old trees prior to prescribed burns to reduce fire intensity, as old trees are often more prone to dying after burning than younger trees. Raking the forest floor beneath old trees prior to burning may not only reduce damage from smoldering combustion under certain conditions but also increase fine-root mortality. Thinning of neighboring trees often increases water and carbon uptake of old trees within 1 year of treatment, and increases radial growth within several years to two decades after treatment. However, stimulation of growth of old trees by thinning can be negated by severe drought. Evidence from young trees suggests that management treatments that cause large increases in carbon allocation to radial xylem growth also increase carbon allocation to constitutive resin defenses against bark beetle attacks, but evidence for old trees is scarce. Prescribed, low-intensity burning may attract bark beetles and increase mortality of old trees from beetle attacks despite a stimulation of bole resin production.  相似文献   

11.
Fire is an important component of the historic disturbance regime of oak and pine forests that occupy sandy soils of the coastal outwash plain of the northeastern US. Today prescribed fire is used for fuel reduction and for restoration and maintenance of habitat for rare plant and animal, animal species. We evaluated the effects of the frequency and seasonality of prescribed burning on the soils of a Cape Cod, Massachusetts's coastal oak-pine forest. We compared soil bulk density, pH and acidity, total extractable cations and total soil carbon (C) and nitrogen (N) in unburned plots and in plots burned over a 12-year period, along a gradient of frequency (every 1–4 years), in either spring (March/April) or summer (July/August). Summer burning decreased soil organic horizon thickness more than spring burning, but only summer burning every 1–2 years reduced organic horizons compared with controls. Burning increased soil bulk density of the organic horizon only in the annual summer burns and did not affect bulk density of mineral soil. Burn frequency had no effect on pH in organic soil, but burning every year in summer increased pH of organic soil from 4.01 to 4.95 and of mineral soil from 4.20 to 4.79. Burning had no significant effect on organic or mineral soil percent C, percent N, C:N, soil exchangeable Ca2+, Mg2+, K+ or total soil C or N. Overall effects of burning on soil chemistry were minor. Our results suggest that annual summer burns may be required to reduce soil organic matter thickness to produce conditions that would regularly allow seed germination for oak and for grassland species that are conservation targets. Managers may have to look to other measures, such as combinations of fire with mechanical treatments (e.g., soil scarification) to further promote grasses and forbs in forests where establishment of these plants is a high priority.  相似文献   

12.
After a century of fire suppression, conifer forests in the western United States have dramatically departed from conditions that existed prior to Euro-American settlement, with heavy fuel loads and an increased incidence of wildfire. To reduce this threat and improve overall forest health, land managers are designing landscape-scale treatments that strategically locate thinning and burning treatments to disrupt fuel continuity, allowing managed wildfires to burn the remaining area. A necessary step in designing and evaluating these treatments is understanding their ecological effects on wildlife. We used meta-analysis to compare effects of small-diameter removal (thinnings and shelterwoods) and burning treatments, selective harvesting, overstory removal (including clearcutting), and wildfire on wildlife species in southwestern conifer forests. We hypothesized that small-diameter removal and burning treatments would have minimal effects on wildlife compared to other treatments. We found 33 studies that met our criteria by (1) comparing density or reproductive output for wildlife species, (2) using forest management or wildfire treatments, (3) implementing control-impact or before-after control-impact design using unmanaged stands as controls, and (4) occurring in Arizona or New Mexico ponderosa pine (Pinus ponderosa) or mixed conifer (Abies/Picea/Pinus) forest. The 22 studies suitable for meta-analysis occurred ≤20 years post-treatment on sites <400 ha. Small-diameter harvest and burning treatments had positive effects but thin/burn and selective harvest treatments had no detectable effect on most small mammals and passerine bird species reported in studies; overstory removal and wildfire resulted in an overall negative response. We examined foraging guild responses to treatments; ground-foraging birds and rodents had no strong response. Aerial-, tree-, and bole-foraging birds had positive or neutral responses to the small-diameter removal and burning treatments, but negative responses to overstory removal and wildfire. Small-diameter removal and burning treatments as currently being implemented in the Southwest do not negatively impact most of the wildlife species in the studies we examined in the short-term (≤10 years). We believe a combination of treatments in a patchy arrangement across the landscape will result in the highest diversity and density. We recommend that managers implement thinning and burning treatments, but that future research efforts focus on long-term responses of species at larger spatial scales, use reproductive output as a more informative response variable, and target species for which there is a paucity of data.  相似文献   

13.
14.
To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5–6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire treatments were applied in 1999, 2001, 2003, and 2005. All prescribed fires were intense and averaged 700 kJ/s/m of fire front across all 12 burns. Using pretreatment variables as covariates, longleaf pine survival and volume per hectare were significantly less on the three prescribed fire treatments than on checks. Least-square means in 2006 for survival were 70, 65, 64, 58, and 56% and volume per hectare was 129, 125, 65, 84, and 80 m3/ha on the check, herbicide, March-, May-, and July-burn treatments, respectively. A wildfire in March 2007 disproportionately killed pine trees on the study plots. In October 2007, pine volume per hectare was 85, 111, 68, 98, and 93 m3/ha and survival was 32, 41, 53, 57, and 55% on the check, herbicide, March-, May-, and July-burn treatments, respectively, after dropping trees that died through January 2009 from the database. Understory plant cover was also affected by treatment and the ensuing wildfire. In September 2006, herbaceous plant cover averaged 4% on the two unburned treatments and 42% on the three prescribed fire treatments. Seven months after the wildfire, herbaceous plant cover averaged 42% on the two previously unburned treatments and 50% on the three prescribed fire treatments. Before the wildfire, understory tree cover was significantly greater on checks (15%) than on the other four treatments (1.3%), but understory tree cover was similar across all five treatments 7 months after the wildfire averaging 1.1%. The greater apparent intensity of the wildfire on the previously unburned treatments most likely resulted from a greater accumulation of fuels on the check and herbicide plots that also collectively had a higher caloric content than fuels on the biennially prescribed burned plots. These results showed the destructive force of wildfire to overstory trees in unburned longleaf pine stands while also demonstrating the rejuvenating effects of wildfire within herbaceous plant communities. They caution for careful reintroduction of prescribed fire even if fire was excluded for less than a decade.  相似文献   

15.
Concerns about the long-term sustainability of overstocked dry conifer forests in western North America have provided impetus for treatments designed to enhance their productivity and native biodiversity. Dense forests are increasingly prone to large stand-replacing fires; yet, thinning and burning treatments, especially combined with other disturbances such as drought and grazing, may enhance populations of colonizing species, including a number of non-native species. Our study quantifies plant standing crop of major herbaceous species across contrasting stand structural types representing a range in disturbance severity in northern Arizona. The least disturbed unmanaged ponderosa pine stands had no non-native species, while non-native grasses constituted 7–11% of the understory plant standing crop in thinned and burned stands. Severely disturbed wildfire stands had a higher proportion of colonizing native species as well as non-native species than other structural types, and areas protected from grazing produced greater standing crop of native forbs compared to grazed unmanaged stands. Standing crop of understory plants in low basal area thinned and burned plots was similar to levels on wildfire plots, but was comprised of fewer non-native graminoids and native colonizing plants. Our results also indicate that size of canopy openings had a stronger influence on standing crop in low basal area plots, whereas tree density more strongly constrained understory plant standing crop in dense stands. These results imply that treatments resulting in clumped tree distribution and basal areas <10 m2 ha−1 will be more successful in restoring native understory plant biomass in dense stands. Multiple types and severity of disturbances, such as thinning, burning, grazing, and drought over short periods of time can create greater abundance of colonizing species. Spreading thinning and burning treatments over time may reduce the potential for non-native species colonization compared to immediately burning thinned stands.  相似文献   

16.
Since the advent of widespread suppression in the mid-20th century, fire has been relatively rare in deciduous forests of the eastern United States. However, widespread prescribed burning has recently been proposed as a management tool to favor oak (Quercus spp.) regeneration. To examine the potential effects of fire introduction on the understory community, we experimentally burned small plots and simulated aspects of fire at a forested site in southeastern Ohio. Treatments included two burn intensities, litter removal, increased soil pH, and a control. Treatments were arranged in a randomized block design in two landscape positions (dry upland and moist lowland) and two canopy conditions (gap, no gap). Post-fire vegetation was identified to species, and stems were counted 1, 3, and 14 months after burning. Community composition was more strongly affected by fire in upland plots than in lowlands, but was not affected by canopy openness. Both cool and hot burns reduced post-fire seedling emergence of Acer rubrum, a common overstory tree. Hot burns facilitated germination of Vitis spp., Rhus glabra, and Phytolacca americana, species common in disturbed habitats, and increased graminoid abundance. Cool burns and litter removal facilitated germination of Erechtites hieracifolia and Liriodendron tulipifera suggesting that litter removal is the mechanism by which fire favors colonization. These results suggest that fire applied frequently in the Central Hardwoods Region would cause compositional shifts to graminoids and disturbance-adapted forbs by increasing germination from the seed bank. Fire did not favor species with dormant underground buds, as studies in other ecosystems would suggest. Vegetational responses were noticeably weaker in the second year after burning, indicating that a single fire has only a short-term effect.  相似文献   

17.
Forest thinning and prescribed fire practices are widely used, either separately or in combination, to address tree stocking, species composition, and wildland fire concerns in western US mixed conifer forests. We examined the effects of these fuel treatments alone and combined on dwarf mistletoe infection severity immediately after treatment and for the following 100 years. Thinning, burning, thin + burn, and control treatments were applied to 10 ha units; each treatment was replicated three times. Dwarf mistletoe was found in ponderosa pine and/or Douglas-fir in all units prior to treatment. Stand infection severity was low to moderate, and severely infected trees were the largest in the overstory. Thinning produced the greatest reductions in tree stocking and mistletoe severity. Burning reduced stocking somewhat less because spring burns were relatively cool with spotty fuel consumption and mortality. Burning effects on vegetation were enhanced when combined with thinning; thin + burn treatments also reduced mistletoe severity in all size classes. Stand growth simulations using the Forest Vegetation Simulator (FVS) showed a trend of reduced mistletoe spread and intensification over time for all active treatments. When thinned and unthinned treatments were compared, thinning reduced infected basal area and treatment effects were obvious, beginning in the second decade. The same was true with burned and unburned treatments. Treatment effects on infected tree density were similar to infected basal area; however, treatment effects diminished after 20 years, suggesting a re-treatment interval for dwarf mistletoe.  相似文献   

18.
We used pre- and post-burn fire effects data from six prescribed burns to examine post-burn threshold effects of stand structure (understory density, overstory density, shrub cover, duff depth, and total fuel load) on the regeneration of yellow pine (Pinus subgenus Diploxylon) seedlings and cover of herbaceous vegetation in six prescribed-fire management units located within western Great Smoky Mountains National Park (GSMNP) in east Tennessee, USA. We also evaluated the utility of the Keetch-Byram Drought Index (KBDI) as a predictor of post-burn stand and fuel conditions by comparing post-burn stand variables for different ranges of KBDI (23-78; more wet, and 328-368; more dry). We found that yellow pine seedlings were effectively absent in post-burn forests until overstory density was reduced over 40%, understory density was reduced over 80%, and post-burn shrub cover was 10% or less. We also observed that a reduction in total fuels of 60% and a post-burn duff layer depth of less than four cm were required for successful regeneration of yellow pine. Total herbaceous species cover exhibited near identical responses with increased cover following an 80% reduction in understory density and a post-burn duff depth of less than 4 cm. We observed strong positive relationships between high KBDI values and burn severity, changes in forest structure, reductions in fuels, and post-burn yellow pine reproduction. We observed continuous recruitment of yellow pine seedlings 5 years after fire in high KBDI burns while low KBDI burns showed little change in yellow pine density through time. An intense outbreak of the southern pine beetle (SPB; Dendroctonus frontalis) occurred within 2 years of our high KBDI burns and reduced shading resulting from overstory mortality likely enhanced the survival of yellow pine seedlings. The results of this study provide targets for the application of prescribed fire to restore yellow pine in the southern Appalachians. Continued research and monitoring will help determine how prescribed fire can best be applied in combination with other disturbance agents such as SPB to perpetuate yellow pine forests.  相似文献   

19.
Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in unmanaged units. Prescribed fire (either in the spring or in the fall) in addition to thinning, had no measurable effect on the mid-term physiological performance and wood growth of second growth ponderosa pine.  相似文献   

20.
Studies within and outside the U.S. indicate recurring oak (Quercus spp.) regeneration problems. In deciduous forests of the eastern U.S., a prevailing explanation for this trend is fire suppression leading to high competitor abundance and low understory light. In response, prescribed fire is increasingly used as a management tool to remedy these conditions and encourage future oak establishment and growth. Within eastern Kentucky, we implemented single and repeated (3×) prescribed fires over a 6-yr period (2002–2007). Pre- and post-burn, we quantified canopy cover and oak seedling survival and growth compared to other woody seedlings deemed potential competitors, primarily red maple (Acer rubrum L.) and sassafras (Sassafras albidum (Nutt.) Nees.). Burning temporarily decreased canopy cover 3–10%, but cover rebounded the subsequent growing season. Repeated burning ultimately produced canopy cover about 6% lower than sites unburned and burned once, suggesting a cumulative effect on understory light. Red maple exhibited low survival (∼40%) following single and repeated burns, but growth remained similar to unburned seedlings. Burning had little impact on sassafras survival and led to total height and basal diameters 2× greater than unburned seedlings. A single burn had no impact on red oak (Erythrobalanus spp.) survival and increased height and basal diameters 25–30%, but this positive growth response was driven by seedlings on several plots which experienced high burn temperatures and consequently high overstory mortality. White oaks (Leucobalanus spp.), however, exhibited twice as high mortality compared to those unburned, with no change in growth parameters. Repeated burning negatively impacted survival and growth of both oak groups compared to unburned seedlings. With both burn regimes, oaks with smaller pre-burn basal diameters exhibited the lowest post-burn survival. Thus, despite the ability of prescribed burns to temporarily increase understory light and reduce red maple survival, neither single or repeated burns placed oaks in an improved competitive position. These findings result from a combination of highly variable yet interdependent factors including the (1) life history traits of oaks compared to their co-occurring competitors, (2) pre-burn stature of pre-existing oak seedlings, and (3) variability in fire temperature and effects on understory light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号