首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.  相似文献   

2.
Prescribed burning is used in many fire-prone ecosystems for wildfire mitigation and conservation of biodiversity. However, there is limited information about how biota responds to long-term fire management, especially at a whole-of-community level. We studied community responses to different fire interval sequences resulting from planned and unplanned fires in Mediterranean-climate ecosystems in the Warren bioregion of south-west Western Australia (SWA) to determine the resilience of the biota to contrasting fire regimes. Fire history data were used to identify contrasting fire interval sequences in forest and shrubland communities for the period 1972-2004. We surveyed vascular plants, ants, beetles, vertebrates and macrofungi at 30 sites to investigate community-level responses to consecutive short (SS: ≤5 years), consecutive long (LL: ≥10 years), one very long (VL: 30 years), or mixed/moderate (M: 6-9 years) fire interval(s). All sites had a common time-since-fire of ∼4 years at the commencement of sampling which was conducted over two years. Species richness and composition differed between forest and shrubland communities, but the influence of fire interval sequences on taxonomic groups was minimal and difficult to detect. There was weak evidence of compositional differences between SS and LL/VL regimes for plants, ants, beetles and macrofungi but no difference between these regimes and the intermediate disturbance M-regime. These results demonstrate the resilience of the biota in open forests and shrublands of SWA to contrasting fire interval sequences over the past 30 years. We conclude that occasional short (3-5 years) intervals between fires are unlikely to have a persistent effect on community composition, though maintaining a regime of short or long intervals may alter species composition and/or abundance. We suggest that variability in fire intervals is important for long-term conservation of the biota. For the Warren Region, prescribed burning at an intermediate level of disturbance and incorporating variability in interval length is recommended to achieve the dual objectives of wildfire mitigation and biodiversity conservation.  相似文献   

3.
Alcoa World Alumina Australia has been rehabilitating bauxite mines in the jarrah (Eucalyptus marginata) forest of Western Australia for more than 35 years. It is a requirement of Alcoa’s completion criteria that rehabilitated areas can be incorporated into the prescribed burning program implemented in the surrounding forest. Rehabilitated areas may be more susceptible to nutrient losses following burning because of their relatively young age and reliance on N fixation from a legume understorey. The objective of this study was to assess the impact that prescribed burning has on the nutrient pools within rehabilitated ecosystems 5 and 8 years after fire, and compare these responses to unburnt rehabilitated areas and the unmined forest. The nutrient status of sites established in previous studies were assessed five (burnt and unburnt forest, 1989 and 1992 rehabilitation) and 8 (spring, autumn and unburnt 1981/1982 rehabilitation) years after burning. Soil, litter and understorey samples were collected and analysed for nutrient content. Burning 1981/1982 rehabilitation in either season 8 years earlier had no long-term negative effect on the nutrient status of the rehabilitation compared to the unburnt controls. Spring burning increased the nitrogen status of the rehabilitated areas by 52 kg ha−1 compared with the unburnt control. Sites rehabilitated in 1989 and burnt 5 years ago showed similar post-fire recovery of nitrogen status to that of the burnt native forest sites (77–85%), while 1992 rehabilitation sites had only recovered 52% of the of the nitrogen of the unburnt sites. Therefore, the impact of burning on nitrogen status was greatest in the 5-year-old rehabilitation and least in the 12–13-year-old sites. Phosphorus was less affected by burning than nitrogen largely because the majority of P is bound in the soil in the jarrah forest. It is recommended that rehabilitated sites are burnt under low intensity in spring when they are 12–15-year-old to ensure rapid post-fire recovery of nutrients.  相似文献   

4.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

5.
The effect of fire severity and post-fire management on Pinus pinaster recruitment was evaluated in three burnt areas in Galicia (NW Spain) exhibiting different levels of serotiny. Three sites were sampled, each of which had two of the following levels of fire severity: combusted crown, scorched crown and unaffected crown. Viable seed rain was closed related to the canopy cone bank and stand serotiny level. Soil burn severity also favoured seed dispersal. Relative germination success increased with soil burn severity whereas initial and final seedling density depended on both the canopy cone bank and soil burn severity. A positive influence of fire severity on the final/initial seedling density and final density/total seed dispersal ratios was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号