首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competition for canopy space is a fundamental structuring feature of forest ecosystems and remains an enduring focus of research attention. We used a spatial neighborhood approach to quantify the influence of local competition on the size of individual tree crowns in north-central British Columbia, where forests are dominated by subalpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta) and interior spruce (Picea glauca × engelmanii). Using maximum likelihood methods, we quantified crown radius and length as functions of tree size and competition, estimated by the species identity and spatial arrangement of neighboring trees. Tree crown size depended on tree bole size in all species. Given low levels of competition, pine displayed the widest, shortest tree crowns compared to the relatively long and narrow crowns found in spruce and fir. Sensitivity to crowding by neighbors declined with increasing tree height in all but the pine crown radius model. Five of the six selected best models included separate competition coefficients for each neighboring tree species, evidence that species generally differ in their competitive effects on neighboring tree crowns. The selected crown radius model for lodgepole pine, a shade-intolerant species, treated all neighbors as equivalent competitors. In all species, competition from neighbors exerted an important influence on crown size. Per-capita effects of competition across different sizes and species of neighbors and target trees varied, but subalpine fir generally displayed the strongest competitive effects on neighbors. Results from this study provide evidence that species differ both in their response to competition and in their competitive influence on neighbors, factors that may contribute to maintaining coexistence.  相似文献   

2.
【目的】对Kozak方程进行修正,采用树木易测因子为预测变量,构建人工樟子松树冠外部轮廓预估模型,为研究树木生理和树木竞争提供依据,为模拟单木树冠表面积和树冠体积奠定基础。【方法】基于黑龙江省14块固定样地70株人工樟子松解析木907个最大枝条数据,以Kozak方程基本形式为基础并对其进行修正,选出构建人工樟子松树冠外部轮廓基础模型的最优模型形式。在最优模型基础上,建立分别考虑样地效应、样木效应及同时考虑样地和样木效应两水平的非线性混合效应模型。利用R软件的nlme软件包求解非线性混合效应模型参数,采用AIC、BIC、-2LL对混合效应模型中不同随机效应参数组合形式、不同随机效应矩阵、方差-协方差矩阵和方差函数进行比较,选出最优模型形式,并对人工樟子松外部轮廓随树木因子的变化规律进行探讨。以林分密度为哑变量,构建不同密度的人工樟子松树冠外部轮廓预估模型。【结果】人工樟子松树冠外部轮廓预估模型因子包含胸径(DBH)、冠长率(CR)和高径比(HD)。与基础模型相比,分别考虑样地效应、样木效应的混合模型能够显著提高模型拟合效果,外部轮廓模型差异主要来源于样木效应。以样木为单水平的混合效应模型中,a2、a6为随机参数,对角矩阵为方差-协方差矩阵形式,ARMA(1,1)为解释组内方差的矩阵,采用幂函数消除异方差的模型形式为最优模型。同时考虑样地和样木效应两水平混合模型的拟合效果较单水平混合模型有所提高。以两水平混合模型的固定效应部分模拟外部轮廓与树木因子之间的关系,在分别固定另外2个变量的情况下,树冠半径随着DBH、CR增大均逐渐增大,树冠上半部分半径随着HD增大而增大,下半部分半径随着HD增大而减小。外部轮廓拐点的变化范围为0.6250~0.9170,拐点平均位置为0.8413,随着林木在林分中被压强度增大,拐点位置向树冠基部移动。密度小于1000株·hm^-2林分中单木的冠形与1000~2000株·hm^-2和大于2000株·hm^-2林分中单木的冠形区别很大。【结论】修正后的Kozak模型满足梢头处半径为0、在整个树冠范围内存在拐点且拐点唯一的特性,能够对人工樟子松树冠外部轮廓进行合理模拟及预测。两水平非线性混合效应模型可显著提高模型拟合效果,能够在树冠外部轮廓模型中应用。  相似文献   

3.
Crown dimensions are important for the quantification of tree interactions in some growth models. This study investigates the potential for structural indices and other spatial measures to improve the prediction of crown radius and crown length for birch (Betula spp.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in forests in Wales. Crown dimensions were measured for 125 birch and 154 spruce in six fully stem-mapped research plots. These data were used to test the performance of a crown radius model and a crown length model which estimated crown dimensions on the basis of allometric relationships with stem dimensions. Spatial data from the six plots were used to calculate the structural indices mean directional index, diameter correlation index, species mingling, dbh and height dominance, and dbh differentiation, as well as the Hegyi competition index, and basal area of neighbours and larger neighbours, for each crown measurement sample tree, using various numbers of nearest neighbours. Two non-spatial indices, BAL and BALMOD, were also calculated for all sample trees for comparison. These spatial and non-spatial variables were then incorporated into modified crown dimension models. Model performances, in terms of efficiency and relative bias, were compared to determine whether the inclusion of spatial or non-spatial variables resulted in any improvements over models using tree dimensions alone. Crown length and radius were found to be correlated with most of the spatial measures studied. Models incorporating spatial variables gave improvements in performance over allometric models for every data set, and performed more consistently than models containing non-spatial variables. The greatest improvements were achieved for suppressed birch in unthinned forests which had irregularly shaped and strongly displaced crowns. The spatial variable contributing to the most efficient model for each data set varied widely. This points to the complexity of tree spatial interactions and indicates that there is a great deal of scope for investigating other structural indices and crown dimension model forms.  相似文献   

4.
Crown shyness or canopy disengagement, the phenomenon wherein gaps around trees develop from swaying, whipping and shading, has been identified in the literature since the 1920s. Recent results by researchers at the University of Alberta have clearly described many of the processes involved for lodgepole pine [e.g. Rudnicki, M., Silins, U., Lieffers, V.J., Josi, G., 2001. Measure of simultaneous tree sways and estimation of crown interactions among a group of trees. Trees 15, 83–90; Rudnicki, M., Lieffers, V.J., Silins, U., 2003. Stand structure governs the crown collisions of lodgepole pine, Canadian Journal of Forestry Research 33, 1238–1244; Rudnicki, M., Silins, U., Lieffers, V.J., 2004. Crown cover is correlated with relative density, tree slenderness, and tree height in lodgepole pine. Forest Science 50, 356–363; Fish, H., Lieffers, V.J., Silins, U., Hall, R.J., 2006. Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta. Canadian Journal of Forestry Research 9, 2104–2111]. However, explicit models of crown shyness are sparse in the literature. This paper describes the development of empirical models of crown shyness in lodgepole pine for British Columbia (BC). We measured crown area and neighbour locations on 60 trees growing in 13 stands in central BC. We estimated potential crown area (AV) using stem maps and Voronoi polygons constrained by estimates of maximum crown width, and then related observed crown area (AC) to AV and additional individual tree variables. One of the nine prediction equations was coded into a spatially explicit tree growth model modified to evaluate the effects of crown shyness at the stand level. Crown shyness models validated well against two independent sources and when linked with a light model tRAYci [Brunner, A., 1998. A light model for spatially explicit forest stand models. Forest Ecology and Management 107, 19–46], increased the below-canopy light by 0.07–0.11.  相似文献   

5.
Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN a...  相似文献   

6.
The crown profile, volume, and surface area obtained from 25 trees in a stand of 29-year-old Japanese cypress (Chamaecyparis obtusa Endl.) using a Spiegel relascope were compared with those obtained by direct measurement after tree felling. In 17 of the 25 trees, the crown profile measured with the relascope was identical to the crown profile obtained by direct measurement. For the 17 trees, the mean relative errors of crown volume and surface area tended to be unbiased. On the other hand, the crown profiles obtained by the two methods were different in five of the 25 trees, while it could not been judged whether the crown profiles obtained by the two methods were identical or different in three of the 25 trees. However, for each group of five or three trees, the mean relative errors of crown volume and surface area were also unbiased. Moreover, for both crown volume and surface area, no significant differences were detected in variance of error among the groups of 17, five, and three trees. Therefore, the discrepancy between crown profiles obtained by the two methods for the five and three trees might be negligible in terms of the accuracy and precision of crown volume and surface area measurements. The standard errors for both crown volume and surface area were larger in each of the five and three trees than in the 17 trees. However, even for the five and three trees, the crown volume and surface area obtained using the relascope were more precise than those based on the assumption that crown form was a cone or paraboloid. We concluded that using a Spiegel relascope would enable us to obtain an accurate and precise crown profile, volume, and surface area of Japanese cypress trees for practical use, especially when the main objective of measurement is determining crown volume or surface area.  相似文献   

7.
Crown profile models were developed for Chinese fir (Cunninghamia lanceolata) in Shunchang County, Fujian Province. We used data from 360 trees located in 65 pure, even-aged, and unthinned temporary plots. The data were divided into three groups according to site index. Nine models, including models for upper crown, lower crown, and entire crown, were fit; the optimal ones in each group were validated and chosen to estimate crown shape. The optimal models explained at least 70% variability in crown radius (CR). In addition, models for crown width, height above ground to crown base, and height above ground to largest CR were also developed to facilitate the convenient simulation of crown profile models. These three models explained 85.4%, 85.1%, and 86.9% variability. All models also passed the F-test and residual test. The 3D images of a single tree and stands were presented by OpenGL technology on visual c++ platform based on the proposed models. Tree growth was compared and analyzed using crown profile curves under constrained conditions. The analysis results accorded with plant growth.  相似文献   

8.
Static models of individual tree crown attributes such as height to crown base and maximum branch diameter profile have been developed for several commercially important species. Dynamic models of individual branch growth and mortality have received less attention, but have generally been developed retrospectively by dissecting felled trees; however, this approach is limited by the lack of historic stand data and the difficulty in determining the exact timing of branch death. This study monitored the development of individual branches on 103 stems located on a variety of silvicultural trials in the Pacific Northwest, USA. The results indicated that branch growth and mortality were significantly influenced by precommercial thinning (PCT), commercial thinning, fertilization, vegetation management, and a foliar disease known as Swiss needle cast [caused by Phaeocryptopus gaeumannii (T. Rohde) Petr.]. Models developed across these datasets accounted for treatment effects through variables such as tree basal area growth and the size of the crown. Insertion of the branch growth and mortality equations into an individual-tree modeling framework, significantly improved short-term predictions of crown recession on an independent series of silvicultural trials, which increased mean accuracy of diameter growth prediction (reduction in mean bias). However, the static height to crown base equation resulted in a lower mean square error for the tree diameter and height growth predictions. Overall, individual branches were found to be highly responsive to changes in stand conditions imposed by silvicultural treatments, and therefore represent an important mechanism explaining tree and stand growth responses.  相似文献   

9.
Crown size is a good indicator of the growth potential of trees and is often used in forest management for outlining thinning guidelines or constructing forest growth models. The aim of this study was to analyse mean crown radius as a function of stem size, stand density and site productivity in even-aged stands of pedunculate oak (Quercus robur L.). Data included measurements of 620 trees from 53 plots in nine thinning experiments and one operational stand in Sweden, Denmark and Great Britain, representing a wide spectrum of thinning practices ranging from the strictly unthinned control to extremely heavy thinning with essentially solitary trees. Three sets of models were constructed based on different predictor variables, including indicators of individual stem size (diameter at breast height, DBH), stand density/thinning grade (quadratic mean diameter and stand basal area) and site productivity (stand top height). Preliminary results indicated a significant effect of DBH and (nominal) thinning grade on crown radius. The response pattern of the final models indicated an increasing crown radius with increasing DBH, with increasing thinning grade (decreasing stand density) and with decreasing site productivity. The models are valid for predicting the crown radius of pedunculate oak in even-aged forest stands.  相似文献   

10.
长白落叶松人工林树冠形状的模拟   总被引:17,自引:3,他引:17  
李凤日 《林业科学》2004,40(5):16-24
以长白山地区 2 6a生长白落叶松人工林为研究对象 ,采用枝解析的方法 ,测定了 2 5株林木 (直径 10 5~2 4 9cm)的树冠变量 ,并建立了预测树冠外侧形状的冠形模型。基于枝条着枝深度 (DINC)和林木变量所建立的树冠形状模型包括 :基径、枝长、着枝角度和弦长等预估模型。对于大小相同树木的主要枝条来讲 ,这些树冠变量是随着DINC的增加而增大 ;而林木的胸径 (DBH)和树高 (HT)变量很好地反映了不同大小树木的冠形变化。冠形预测模型预测效果良好 ,充分体现了树冠结构的变化趋势 :树冠形状在树冠的中上部呈抛物线体 ,而在树冠的下部则为近圆柱体。文中所建模型 ,可以合理地描述长白落叶松人工林的树冠形状及其变化规律。  相似文献   

11.
Fire injury was characterized and survival monitored for 5677 trees >25 cm DBH from five wildfires in California that occurred between 2000 and 2004. Logistic regression models for predicting the probability of mortality 5-years after fire were developed for incense cedar (Calocedrus decurrens (Torr.) Florin), white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), sugar pine (Pinus lambertiana Douglas), Jeffrey pine (P. jeffreyi Balf.), and ponderosa pine (P. ponderosa C. Lawson). Differences in crown injury variables were also compared for Jeffrey and ponderosa pine. Most mortality (70–88% depending on species) occurred within 2 years post-wildfire and had stabilized by year 3. Crown length and crown volume injury variables predicted tree mortality equally well; however, the variables were not interchangeable. Crown injury and cambium kill rating was significant in predicting mortality in all models. DBH was only a significant predictor of mortality for white fir and the combined ponderosa and Jeffrey pine models developed from the McNally Fire; these models all predicted increasing mortality with increasing tree size. Red turpentine beetle (Dendroctonus valens) was a significant predictor variable for sugar pine, ponderosa pine, and Jeffrey pine; ambrosia beetle (Trypodendron and Gnathotrichus spp.) was a significant predictor variable for white fir. The mortality models and post-fire tree survival characteristics provide improved prediction of 5-year post-wildfire tree mortality for several California conifers. The models confirm the overall importance of crown injury in predicting post-fire mortality compared to other injury variables for all species. Additional variables such as cambium kill, bark beetles, and tree size improved model accuracies, but likely not enough to justify the added expense of data collection.  相似文献   

12.
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.  相似文献   

13.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


14.
Trees are able to respond to their local biotic and abiotic environment with morphological adjustments which improve resource acquisition and, thus, growth. In forests, light is broadly recognised as one of the major factors determining growth, and morphological responses comprise changes in crown architecture and stem stature. On sloping terrain, the interplay of phototropism and gravitropism may further affect morphological growth characteristics. However, different tree species are expected to show species-specific responses. In this study, we analysed three growth characteristics of tree individuals belonging to four species of two functional groups (evergreen: Schima superba, Castanopsis eyrei, deciduous: Quercus serrata var. brevipetiolata, Castanea henryi) in a species-rich Chinese subtropical forest. Crown projection area, relative crown displacement and stem inclination were related to biotic (local species richness, functional richness, competition, stand age) and abiotic (slope aspect and inclination, soil depth) variables in the local neighbourhood of the tree individuals. We hypothesised that (i) there are species-specific differences in the morphological response of crown architecture and stem stature and (ii) that crown size and asymmetry as well as stem inclination are influenced by both, biotic and abiotic factors. In contrast to our expectations we were unable to reveal any species-specific differences in any of the three growth characteristics. The results of mixed effects models showed that crown area was mainly affected by the target tree's dbh and biotic variables related to neighbours (competition, functional diversity), whereas stem inclination was mainly influenced by slope. Relative crown displacement was influenced by both, biotic and abiotic variables. We conclude that growth responses resulting in crown displacement and stem inclination seem to be an important mechanism to ameliorate foraging for light in our study area, but that these responses appear to be species-independent. The interplay of stem inclination and crown displacement allows for a plastic response of tree individuals in biotically and abiotically heterogeneous environments. Our results indicate that forest management in this region should focus on functionally diverse stands which are promoting crown area positively resulting in increased growth rates of individual trees.  相似文献   

15.
目的]比较日本落叶松不同冠层和方位光合生理参数的差异,探讨冠层及方位变化对光合生理参数的影响,为构建冠层生产力模型及估算冠层生产力提供理论参考。[方法]以7年生和19年生日本落叶松单木为研究对象,将树冠分为上、中、下3层,东、西、南、北4个方位,测定冠层每一部位的光响应曲线、CO_2响应曲线和光合色素含量,并分析不同冠层及方位的光合生理特性。[结果]表明:垂直方向上,2种林龄样木冠层对大多数光合生理参数影响显著;最大净光合速率(A_(max))、光饱和点(LSP)、光补偿点(LCP)和暗呼吸速率(R_d)随冠层的升高而增大;最大羧化速率(V_(max))、最大电子传递速率(J_(max))、磷酸丙糖利用率(TPU)和羧化效率(CE)均为下冠层最小,而CO_2补偿点(CCP)均为冠层下部最大;不同冠层针叶光合色素含量差异显著,且叶绿素a(Chla)、叶绿素b(Chlb)和类胡萝卜素(Car)均随冠层的升高而降低。水平方向上,方位对2种林龄树木光合生理参数均影响不显著,南向和东向光合参数均值分别反映了7年生和19年生样木全冠层的光合特性。光合生理参数在林龄间无显著差异。[结论]日本落叶松冠层光合生理参数具有空间异质性,冠层对树木多数光合生理参数的影响显著,而方位和林龄对以上参数影响不显著。  相似文献   

16.
Establishing the competitive relationships at the local neighbourhood level is essential for improving our understanding of tree growth dynamics in structurally heterogeneous and species-rich forests. We studied the competitive interactions influencing individual-tree five-year radial growth of the two species Castanopsis fargesii (Franch.) and Quercus fabri (Hance) in a diverse young secondary evergreen broad-leaved forest (EBLF) in eastern China. Different spatially explicit individual-based competition indices were examined for their effectiveness at predicting radial growth. These indices were based on one of the three tree size variables - diameter at breast height (dbh), total height, and crown projection area - and were combined with different approaches to identify potential competitors. Furthermore, we tested for competitive equivalence of conspecific and heterospecific neighbours and analysed the effects of local diversity, initial dbh (measured at the beginning of the five-year growth period) and abiotic environmental variables on individual-tree radial growth. Competition accounted for up to 78% and 75% of radial growth variation in C. fargesii and Q. fabri, respectively. The best results were provided by competition indices using crown projection area as the variable describing tree size and the angular height method as the approach to identify potential competitors (i.e. neighbours greater than the minimum angular height, measured from the base of the target trees, are selected as competitors). Competitive equivalence of conspecific and heterospecific neighbours was found in C. fargesii, whereas heterospecifics were stronger competitors than conspecifics in Q. fabri. We could not detect diversity effects on radial growth. The addition of initial dbh or abiotic environmental variables as further explanatory variables failed to improve the predictive ability of growth models. Our results indicate that diameter growth in this EBLF is largely a function of local neighbourhood competition and suggest that the mode of competition is primarily size-asymmetric. It appears that there may be high competitive equivalence among different species, but this remains to be experimentally tested.  相似文献   

17.
Cork oak (Quercus suber) forests are acknowledged for their biodiversity and economic (mainly cork production) values. Wildfires are one of the main threats contributing to cork oak decline in the Mediterranean Basin, and one major question that managers face after fire in cork oak stands is whether the burned trees should be coppiced or not. This decision can be based on the degree of expected crown regeneration assessed immediately after fire. In this study we carried out a post-fire assessment of the degree of crown recovery in 858 trees being exploited for cork production in southern Portugal, 1.5 years after a wildfire. Using logistic regression, we modelled good or poor crown recovery probability as a function of tree and stand variables. The main variables influencing the likelihood of good or poor crown regeneration were bark thickness, charring height, aspect and tree diameter. We also developed management models, including simpler but easier to measure variables, which had a lower predictive power but can be used to help managers to identify, immediately after fire, trees that will likely show good crown regeneration, and trees that will likely die or show poor regeneration (and thus, potential candidates for trunk coppicing).  相似文献   

18.
The increment of trees depends, primarily, on the size of the assimilation apparatus of the crown and its efficiency to produce organic matter. That is why this study undertook to determine the size of the assimilation apparatus of single trees of Pinus sylvestris L. The authors used the mass (ugc) and volume (ugo) of twigs covered with needles in order to estimate the size of the assimilation apparatus. The performed analysis revealed a significant correlation between easy-to-determine tree variables: breast height diameter—d1.3, height—h and age—w and the ugc and ugo. This correlation served as a basis for the elaboration of equations which allow determining the size of the assimilation apparatus. The empirical material was provided by the results of measurements carried out on 1808 pine trees growing in mesic forest sites typical for this species in western Poland.  相似文献   

19.
We studied the relationships among 5-year radial (diameter and basal area) growth of red oak (genus Quercus, subgenus Erythrobalanus) crop trees and predictor variables representing individual tree vigor, distance-dependant competition measures, and distance-independent competition measures. The red oaks we examined are representative of the commercially and ecologically important oak species of the bottomland hardwood forests of the southeastern US. The crown class score, a quantitative measure of crown class and tree vigor, performed best in accounting for the variability in tree diameter growth. Plot-level variables failed to account for a significant proportion of the variability in tree radial growth. The basal area of the first-order neighbors that were taller than the crop trees and located within 2.4 times the mean overstory crown radius had the highest negative correlation with crop tree 5-year radial growth. Red oaks were a major part of these competitors and likely exerted the greatest competitive pressure. However, crop tree radial growth was positively associated with the basal area of the red oaks which were indirect (second order) neighbors and which were taller than the crop trees. It is possible that indirect neighbors do not compete with the crop trees, but they likely compete with the direct competitors of the crop trees, thus having an indirect positive influence on crop tree growth. Such reasoning is consistent with previously observed spatial dependence up to four times the mean overstory crown radius. The findings may have implications for thinning hardwoods stands and crop tree management in that foresters need to take into account (1) oak intra-genus competition, (2) the negative competitive effect of direct neighbors, and (3) the potentially positive effect of the indirect neighbors, the competitors’ competitors.  相似文献   

20.
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号