首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The annual growth and the thickness of cork are known to be highly variable between trees located in the same geographical location. Researching how climate variables affect different trees within the same site is a step forward for the management of cork production since current knowledge focusses only on the average tree response. Quantile regression methodology was applied for the first time to a large data set containing measurements of cork growth, sampled in 35 stands across the cork oak distribution area in Portugal. This methodology proved to be useful for testing the hypothesis raised: does climate affect differently the annual cork growth, and ultimately cork thickness of individual trees located in the same stand? Estimating the amount of cork produced by one stand that has the required thickness for the production of natural cork stoppers is essential to support cork oak management. However, no model, before this work, had been developed to provide managers with this information. A downward parabolic relationship between annual cork growth and annual precipitation was determined for all quantiles, with optimum annual average precipitation value ranging from 1103 to 1007 mm. April to August monthly temperatures, spring average temperature or summer average temperature, showed a negative relationship with annual cork growth, in particular for lower quantiles. Maximum annual temperature was shown to negatively affect annual cork thickness, in particular for the trees under the 6th quantile. The ratio between annual precipitation and average temperature, that define the Lang index (LI), showed a downward parabolic relationship with annual cork growth. Best cork growth conditions are found for Lang index values around 60, corresponding for the transition between semi-arid climate and humid climate. The application of the final model developed for estimating cork thickness of an eight years’ cork growth period allowed the prediction and mapping of the percentage of cork suitable for natural cork stopper production. It showed that higher values are expected in the Southern and Central coastal regions and along the Tagus River basin. The Northern coastal and mountain regions, characterised by Lang index values higher to 60 (humid climates), present lower estimated values for the percentage of cork suitable for natural cork stopper production. The estimated values are expected to be reduced under climate change scenarios in the Southern and Central coastal regions.

  相似文献   

2.
New Forests - Mediterranean holm oak forests are subjected to chronic seasonal droughts coinciding with the warmest conditions during the summer. Importantly, climate change projections support...  相似文献   

3.
Mediterranean ecosystems are characterized by large arid areas where the patchy distribution of trees offers little protection against harsh climate conditions for seedling establishment. Climate change is predicted to result in an increase in these arid regions, with pronounced effects on vegetation. Production of seedlings with developed ectomycorrhizas is a promising strategy for minimizing the initial transplant shock, thereby increasing plant survival and growth during the first, most critical years of a plantation. One important species in the Mediterranean basin is Quercus suber (cork oak), which occurs, together with other evergreen oak species, in an agro-silvo-pastoral system that represents an example of sustainable land use in Europe. In this study, a Pisolithus tinctorius isolate was used for ectomycorrhizal colonization of cork oak nursery seedlings, and the effects on aboveground plant growth and leaf structural and physiological parameters were investigated. Ectomycorrhizal development resulted in a significant increase in leaf area, dry weight, nitrogen content, and photosynthetic pigments, and mycorrhizal plants showed a higher photosynthetic capacity and water use efficiency. Nursery-inoculated plants established in the field showed increased survival and growth during the first year after transplant. These results indicate a potential for further enhancing the use of mycorrhizal inoculation as a cultivation practice in forest nurseries. Considering the difficulty of soil restoration under limiting environmental conditions, nursery inoculation with ectomycorrhizal fungi can be an important advantage for improving the quality of seedling stock and its performance after out-planting in the field, benefiting the regeneration of arid regions and the reintroduction of inocula of ectomycorrhizal fungi into these areas.  相似文献   

4.
This study compiles and summarizes the existing knowledge about observed and projected impacts of climate change on forests in Europe. Forests will have to adapt not only to changes in mean climate variables but also to increased variability with greater risk of extreme weather events, such as prolonged drought, storms and floods. Sensitivity, potential impacts, adaptive capacity, and vulnerability to climate change are reviewed for European forests. The most important potential impacts of climate change on forest goods and services are summarized for the Boreal, Temperate Oceanic, Temperate Continental, Mediterranean, and mountainous regions. Especially in northern and western Europe the increasing atmospheric CO2 content and warmer temperatures are expected to result in positive effects on forest growth and wood production, at least in the short–medium term. On the other hand, increasing drought and disturbance risks will cause adverse effects. These negative impacts are very likely to outweigh positive trends in southern and eastern Europe. From west to east, the drought risk increases. In the Mediterranean regions productivity is expected to decline due to strongly increased droughts and fire risks.  相似文献   

5.
  • ? Cork oak mortality is a recurrent problem in southwestern Portugal. Despite the perception of increasingly visible damage in oak woodlands on drought-prone sites, the role of the various environmental factors in their decline is not clear.
  • ? To describe the spatial patterns of cork oak (Quercus suber L.) mortality, a cork oak mortality index (MI) was determined for each landscape feature (agroforestry system, soil type, slope and aspect) using a GIS approach. To achieve this goal, a logistic regression model was formulated analyzing interactions between landscape attributes and allowing a prediction of cork oak mortality.
  • ? Maximum values of MI were found in (i) shrublands and open woodlands with shrub encroachment (MI 6 and 3, respectively), where competition for soil water between tree and understory increases; and (ii) on lower slopes in the rounded hilltops and smooth hillsides or shallow soils where access to groundwater resources during summer drought is difficult.
  • ? The model highlighted the importance of the agroforestry systems on cork oak mortality and may be used to identify sensitive areas where mitigation actions should be employed in a scenario of increasing drought severity in these Mediterranean ecosystems.
  •   相似文献   

    6.
    A potentially confounding radial-growth interaction exists at the intersection of two well-known principles, one in the field of dendrochronology and the other in quantitative genetics. From a dendrochronology perspective, tree populations growing in climatically marginal environments are expected to be more sensitive to seasonal and annual climate than those growing in optimal climate zones. From a genetics perspective, marginal populations may be adapted to grow a small amount each year and then shut down to prevent climate-induced mortality, or they may be adapted to respond to favourable climate conditions when available. We examined the relative strength of these forces using data from 12 populations of 34-year-old lodgepole pine (Pinus contorta) trees growing in 16 provenance-trial sites in western Canada. Growth generally correlated positively with annual temperature and negatively with summer aridity. The sensitivity of radial-growth to interannual climate fluctuations was both site and provenance-related, with the highest sensitivities occurring among populations from warm, central provenances growing at cold, marginal sites, and among populations from cold, marginal provenances growing at warm, central sites. The correlations between climate and growth varied regionally; notably, populations from warm provenances growing at warm sites responded more strongly to summer aridity, while populations from cold provenances growing at warm sites responded more to annual temperature. Our finding that sensitivity varied among populations growing under similar climate conditions indicates that sensitivity is influenced by genetics as well as by site climate, but the regional specificity of the growth responses did not support a single hypothesis for the influence of genetics on growth among populations from marginal vs. central locations. Implications of our study for forest productivity under climate change are more positive for trees growing in cool locations, where overall warmer temperatures will lead to increased growth, than in warm locations, where the negative effects of arid summers may counteract the positive effects of warmer annual temperatures.  相似文献   

    7.
    We investigated the potential of Fraxinus americana L. to adapt to climate change by comparing diameter growth, survival and physiological status of 44 populations of 30-year-old trees originating from throughout the species range and grown in a common garden. Populations originating closest to the latitude of the common garden had the most rapid diameter growth and the highest survival. Among populations originating within a narrow latitudinal band along an east-west gradient of decreasing precipitation, those from the drier western end were best adapted to the dry climate of the common garden site, as judged by survival, stem circumference, leaf and wood carbon isotope ratios, leaf mass per area and leaf nitrogen concentration. These findings suggest that eastern populations may not perform well under the hotter and drier conditions predicted by climate change scenarios. Moreover, in the event of significant climate change, the short-term acclimation responses (within a generation) of F. americana may be insufficient to ensure the continued vigor or survival of this species throughout much of its present range.  相似文献   

    8.
    Climate change resulting from increased concentrations of atmospheric carbon dioxide ([CO2]) is expected to result in warmer temperatures and changed precipitation regimes during this century. In the northwestern U.S., these changes will likely decrease snowpack, cause earlier snowmelt, increase summer evapotranspiration, and increase the frequency and severity of droughts. Elevated [CO2] and warmer temperatures may have positive effects on growth and productivity where there is adequate moisture or growth is currently limited by cold. However, the effects of climate change are generally expected to reduce growth and survival, predispose forests to disturbance by wildfire, insects, and disease; and ultimately change forest structure and composition at the landscape scale. Substantial warming will likely decrease winter chilling resulting in delayed bud burst, and adversely affect flowering and seed germination for some species. The extent of these effects will depend on the magnitude of climate change, the abilities of individual trees to acclimate, and for tree populations to adapt in situ, or to migrate to suitable habitats. These coping mechanisms may be insufficient to maintain optimal fitness of tree populations to rapidly changing climate. Physiological responses to climatic stresses are relatively well-understood at the organ or whole-plant scale but not at the stand or landscape scale. In particular, the interactive effects of multiple stressors is not well known. Genetic and silvicultural approaches to increase adaptive capacities and to decrease climate-related vulnerabilities of forests can be based on ecophysiological knowledge. Effective approaches to climate adaptation will likely include assisted migration of species and populations, and density management. Use of these approaches to increase forest resistance and resilience at the landscape scale requires a better understanding of species adaptations, within-species genetic variation, and the mitigating effects of silvicultural treatments.  相似文献   

    9.
    Climate changes induced by the anthropogenic alteration of the atmospheric radiative balance are expected to change the productivity and composition of forest ecosystems. In Europe, the Mediterranean is considered one of the most vulnerable regions according to climatic forecasts and simulations. However, although modifications in the inter-specific competition are envisaged, we still lack a clear understanding of the ability of the Mediterranean vegetation to adapt to climate changes. We investigated how two co-occurring tree species commonly used in afforestation programmes, the native Abies alba Mill. and the nonnative Picea abies L. Karst., adapt to climate change by assessing their growth performance and physiological responses in relation to past climate variability. Growth was addressed by analysing tree-ring width and carbon and oxygen stable isotopes. Statistical relationships between isotopic value and monthly climate data suggest that the two species underwent ecophysiological adaptation to Mediterranean climatic constraints. These adaptations are also expressed in the ring-width data. Based on the carbon isotope ratio reflecting the stomatal response to drought, we found that the precipitation in the first period of the growing season, i.e. early spring, is a major factor influencing the annual growth of A. alba, which although native, proved to be sensitive to drought. P. abies, on the other hand, showed a higher tolerance to summer drought stress. These findings should help define criteria for sustainability and effective forest conservation in the Mediterranean region.  相似文献   

    10.
    In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn leaf water potential showed a maximum in spring followed by a decline through the rainless summer and a recovery with autumn rainfall. Although the observed decrease in predawn leaf water potential in summer indicates soil water depletion, trees maintained transpiration rates above 0.7 mm day(-1) during the summer drought. By that time, more than 70% of the transpired water was being taken from groundwater sources. The daily fluctuations in soil water content suggest that some root uptake of groundwater was mediated through the upper soil layers by hydraulic lift. During the dry season, Q. ilex maintained higher predawn leaf water potentials, canopy conductances and transpiration rates than Q. suber. The higher water status of Q. ilex was likely associated with their deeper root systems compared with Q. suber. Whole-tree hydraulic conductance and minimum midday leaf water potential were lower in Q. ilex, indicating that Q. ilex was more tolerant to drought than Q. suber. Overall, Q. ilex seemed to have more effective drought avoidance and drought tolerance mechanisms than Q. suber.  相似文献   

    11.

    ? Context

    The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

    ? Aims

    The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

    ? Material and methods

    Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

    ? Results

    The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

    ? Conclusion

    Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

    12.
    For north-eastern Germany regional climate models project rising temperatures in combination with decreasing summer and increasing winter precipitation. The resulting overall drier conditions during the growing season will considerably impact forest growth there. We evaluate the consequences of increasing drought on the growth of the two locally most important broadleaf tree species common beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.). Three mixed forests of beech and oak were sampled along a west-east gradient of declining precipitation. In total we used 257 ring-width samples from 133 trees to build six species and site specific chronologies. Additionally, we modelled the soil water budget for each site. We performed continuous and discontinuous (pointer year) analysis of climate-tree-growth relationships with particular emphasis on inter-annual-variations and their dependence upon climatic factors (temperature, precipitation, soil moisture) and on the stability of the obtained relationships. Results of climate-growth correlations together with pointer year analysis indicate a strong dependency of growth of both species from water availability, especially during early summer (June and July). General correlation pattern between growth and climate are similar for both species, but climate sensitivity of beech is generally higher. We identified drought as the main driver of negative growth depressions in both species. Increasing drought stress along the gradient is expressed in higher correlations to climatic variables, higher sensitivity (variance) of growth, and a higher number of negative pointer years for both species. For beech we also found a significant trend of decreasing average growth rates along the gradient. Growth superiority of beech compared to oak declines with decreasing precipitation. The relationships were generally stable throughout the 20th century. A rise of sensitivity together with a higher frequency of negative pointer years during the last decades suggests that increasing climatic variability together with rising temperatures might be influencing growth of Fagus at the more humid sites. If we substitute space by time it seems that already small changes in precipitation regime can have considerable impact, especially on the growth of beech. Other, more drought tolerant species like oak might gain competitive advantages under the projected climatic changes.  相似文献   

    13.
    Species distribution models are feasible methods for projecting theoretical responses of living organisms’ occurrence under several future climate change scenarios. The major interest is focused on trees, which regulate the equilibrium within ecosystems and guarantee the survival of many life forms on the Earth. The repercussions of climatic drivers are expected to pose the strongest threats for the Mediterranean biome, an acknowledged hotspot of biodiversity. Here, we focused on cork oak (Quercus suber L.), a keystone species of many landscapes, sustaining a rich biodiversity, ecological processes and economic incomes. Results of 8 combined ecological modelling techniques and two Global Circulation Models highlight a broad contraction of the species potential range over the twenty-first century, both under intermediate and high emissions scenarios. Coupled northward and upward shifts are predicted, mostly pertaining Iberia and North Africa. The potential areas detected at Levantine will likely undergo disappearance. To exacerbate the impacts of climate change, the future of the ecosystems linked to cork oak remains uncertain, because of the expected implications on the phenotypic plasticity or evolutionary responses. A synergy among niche-based, physiological and eco-genetic investigations is strongly needed in the field of applied research, to improve the assessment of conservation and reforestation actions.  相似文献   

    14.
    The phenotypic responses of functional traits in natural populations are driven by genetic diversity and phenotypic plasticity. These two mechanisms enable trees to cope with rapid climate change. We studied two European temperate tree species (sessile oak and European beech), focusing on (i) in situ variations of leaf functional traits (morphological and physiological) along two altitudinal gradients and (ii) the extent to which these variations were under environmental and/or genetic control using a common garden experiment. For all traits, altitudinal trends tended to be highly consistent between species and transects. For both species, leaf mass per area displayed a positive linear correlation with altitude, whereas leaf size was negatively correlated with altitude. We also observed a significant increase in leaf physiological performance with increasing altitude: populations at high altitudes had higher maximum rates of assimilation, stomatal conductance and leaf nitrogen content than those at low altitudes. In the common garden experiment, genetic differentiation between populations accounted for 0-28% of total phenotypic variation. However, only two traits (leaf mass per area and nitrogen content) exhibited a significant cline. The combination of in situ and common garden experiments used here made it possible to demonstrate, for both species, a weaker effect of genetic variation than of variations in natural conditions, suggesting a strong effect of the environment on leaf functional traits. Finally, we demonstrated that intrapopulation variability was systematically higher than interpopulation variability, whatever the functional trait considered, indicating a high potential capacity to adapt to climate change.  相似文献   

    15.
    Climate extremes are expected to increase in frequency and magnitude as a consequence of global warming, threatening the functioning, services and goods of forest ecosystems. Across Europe, the ecologically and economically important tree species Fagus sylvatica is expected to suffer particularly under such conditions. The regional introduction of provenances from drier and warmer climates is one option to adapt beech forest ecosystems to these adverse effects of climate change. Marginal populations from the drought-prone southern and north-eastern edges of the species’ distribution come into focus in search of suitable candidates for Central European deciduous forests. Here, we test three marginal provenances (Spain, Bulgaria and Poland) and three provenances from the centre of the distribution range (Germany) for their response to drought in two different soil types (sand, loam) in a full factorial common garden experiment in Landau, Germany. Drought impacted all growth parameters negatively (leaf damage +22 % (percentage points), height ?40 % and diameter increment ?41 %), and the sandy substrate exacerbated this effect. However, provenances differed in their response to drought and soil type. Evidence for a local adaptation to summer drought was detected, especially in terms of mortality rates. The Bulgarian and Spanish provenance showed a stable performance under drought conditions (BG ?27 % in diameter increment; ES ?32 %), compared to the Polish (?48 %) or the most sensitive German provenances (?57 %), yet for Bulgaria on a low level of total increment. This may indicate a trade-off between drought tolerance and growth. Therefore, a sole focus on drought-resistant marginal provenances seems to not be conducive, as they might be less adapted to other climatic factors, e.g. frost, as well. However, intermixed with local Central European provenances, these may act as functional insurance in future drought-prone forest stands.  相似文献   

    16.
    Regeneration by seeds for cork oak (Quercus suber) and companion oaks (holm oak Quercus ilex and downy oak Quercus pubescens) is likely to be poor in the fire-prone Maures massif (southern France) but the causes are poorly known. Our objective was to assess the effective recruitment for these three oak species and their temporal pattern of recruitment, in order to determine the main limitation factors and the regeneration window of each species. We studied oak recruits (height <3 m) in naturally regenerated populations according to a gradient of fire recurrence and in five main vegetation types including shrublands and mixed mature woodlands. Fire recurrence was the main explanatory factor of oak recruitment, either directly or through vegetation type and microsite characteristics. The results indicate nil to low recruitment for holm oak and downy oak in shrublands, especially those recurrently burned and dominated by Cistus species. Cork oak recruited better than the other oaks in medium and high shrublands dominated by Erica arborea. In contrast, recruitment was high for holm and downy oak in mixed oak stands and mixed pine-oak stands that have not burned for decades. Microsite conditions such as coverage by litter and shrubs influenced oak recruitment, whereas landscape configuration and stand basal area had no influence. Our results suggest that strategic shrub-clearing, oak planting and protection of mixed oak woodlands as seed sources would help maintaining oak populations in the woodland–shrubland mosaic.  相似文献   

    17.
    Comparison of basal area increments of paired healthy and declined oak trees shows a marked disjuncture beginning in the early 1950′ at 3 of 4 sample locations across the southeastern United States. An argument is presented that the change in growth was caused (or accelerated) by a series of severe regional droughts in the early 1950′s that impacted the trees which then responded by forming two distinct populations consisting of: 1. relatively healthy trees, and 2. declined trees. Both populations produced less annual basal area increment after several subsequent short-term droughts, but marked crown deterioration and death appeared in the declined population after a moderately severe drought in the early 1980′s.  相似文献   

    18.
    Under climate change, severe and recurrent droughts can reduce forest production and cause widespread tree dieback. The response of different vegetation types to climate change can vary greatly and, therefore, must be individually assessed. This study was carried out in a Mediterranean oak forest (Quercus pyrenaica) subject to seasonal summer drought. To examine the response of the forest to the climate conditions predicted under climate change, a Soil–Vegetation–Atmosphere Transfer model [SPA, Williams, M., Rastetter, E.B., Fernandes, D.N., Goulden, M.L., Wofsy, S.C., Shaver, G.R., Melillo, J.M., Munger, J.W., Fan, S.M., Nadelhoffer, K.J. 1996. Modelling the soil-plant-atmosphere continuum in a QuercusAcer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell, Environment 19, 911–927] was used. The model was parameterized using mostly local measurements (independent of the verification data) and tested against in situ sap flow measurements obtained during year 2007. The predictions of the model were broadly consistent with the observed dynamics of sap flow (the model explained 71% of the variance in daily transpiration and 75% of half-hourly sap flow), leaf water potentials and soil water content. Once the model had been validated, simulations were carried out under warmer and dryer conditions. Predicted warmer conditions (4 °C) caused a moderate increase in total simulated transpiration. Less frequent precipitation (40% longer dry periods between rainfall events) had very little effect on transpiration. In contrast, transpiration was reduced by 17% when the soil water reserves at the beginning of the summer were lower than in 2007, corresponding to those measured in a very dry year (2005). The reduction was exacerbated when changes in temperature and rainfall were also considered (up to 28% decline in transpiration). The higher atmospheric CO2 concentrations (712 ppm) simulated together with climate change, did not prevent the decline in tree water use or soil water storage at the end of the summer. All scenarios caused the soil water storage to reach extremely low values at the end of the dry season (a minimum of 25 mm). It is concluded that climate change is likely to have a negative impact on tree water use and soil water resources in the study area, increasing the water deficit by as much as 30%.  相似文献   

    19.
    Cork is a natural product that is extracted from the outer bark of the cork oak tree. According to Portuguese legislation, the interval between two consecutive cork extractions on the same tree must be equal or greater than 9 years. Although the majority of the cork oak stands are debarked at the end of this period, this rotation may not be the optimum in many cases. The existing models for cork weight prediction can only be used for trees debarked at a 9 years or, in one model, at a 10-years rotation period, since the data used for its development was limited to these growth periods. The development of a method that allows for the prediction of the mature cork biomass with t years of growth, based in one measurement taken at any other age, was the main objective of this work. The method is based on the knowledge that the density of the cork tissue is constant between the inner and outer cork rings, being significantly different from density of the cork back. It can be implemented using two different equations that were developed during this work: a model to estimate cork biomass with 9 years of age and a model to estimate the cork back weight proportion at 9 years of age. For the first model, four different alternative models were developed, considering different levels of information collected during forest inventory. The model to estimate the cork back weight proportion leads to the biomass of cork tissue. Cork biomass at t years is obtained by decreasing or increasing the biomass of cork tissue according to the difference in cork thickness between t and 9 years of growth. The proposed method was evaluated by comparing the observed and estimated values of cork biomass from an independent data set with corks with 9, 10 and 11 years of age. The results showed similar precision for corks with 9, 10 or 11 years of age. As expected the precision of the predictions increases when the model to estimate cork biomass with 9 years of age uses more information. The presented method should be an important tool for cork oak stand management, for the prediction of the evolution of carbon stocks in cork oak stands, and will allow analyzing the impact in cork biomass production of decreasing or extending the interval between two consecutive cork extractions.  相似文献   

    20.
    Severe droughts may increase physiological stress on long-lived woody vegetation, occasionally leading to rapid defoliation and progressive increase in mortality of overstorey trees. Over the last few years, episodes of drought-induced tree dieback have been documented in a variety of woodlands and forests around the world. However, the factors determining tree survival and subsequent recovery are still poorly understood, especially in resprouter species. We have studied the effects of a single drought episode on crown condition in a holm oak (Quercus ilex L.) forest located in NE Spain 7 years after the drought event. Generalized linear models were used to study the environmental correlates of forest crown condition 7 years after the drought event. Additionally, we evaluated the association between crown condition and the carbon and nutrient reserves stored in lignotubers 7 years after the drought. Our study reveals the multifactor nature of a drought-driven forest dieback in which soil depth and the characteristics of individual trees, particularly their number of stems, determined a complex spatial pattern of tree-level responses. This dieback was associated with a depletion of the carbon reserves in lignotubers 7 years after the episode, representing a reduction of up to 60% in highly drought-damaged trees. Interestingly, in the absence of new acute droughts, successive surveys in 2007-11 showed a direct association between carbon reserves depletion and further deterioration of crown condition. More frequent droughts, as predicted by climate change projections, may lead to a progressive depletion of carbon reserves and to a loss of resilience in Mediterranean resprouter species.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号