首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of herbaceous and woody vegetation control, either singly or in combination, on leaf gas exchange, water status, and nutrient relations of planted eastern white pine (Pinus strobus L.) seedlings was examined in a central Ontario clearcut over four consecutive growing seasons (GSs). Net carbon assimilation (An), leaf conductance to water vapour (Gwv), water use efficiency (WUE), and midday leaf water potential (ψm) were measured periodically during the second to fourth GSs of vegetation control treatments, while leaf nutrient relations were examined in GS five. Leaf An and Gwv were reduced (p ≤ 0.05) in the presence of herbaceous vegetation in GS two, by both herbaceous and woody vegetation in GS three, and only by woody vegetation (largely trembling aspen (Populus tremuloides Michx.)) in GS four. Leaf WUE was increased (p ≤ 0.05) in all three GSs in which herbaceous vegetation control was applied and where woody vegetation provided partial shading of planted white pine. Leaf water status was comparatively less responsive to vegetation control treatments, but leaf ψm was increased (p ≤ 0.05) in the presence of woody vegetation in GSs two and four, likely due to shading and reduced atmospheric evaporative demand of the white pine seedling environment. Within a given GS, the effects of vegetation control on An, Gwv, and ψm were strongly linked to treatment-induced changes in total vegetative cover, and light and soil moisture availability. Seedling height, diameter, and volume growth rates were positively correlated with An and WUE in GSs two and three, but less so in GS four. Vector analysis suggested that herbaceous competition induced foliar N, P, and K deficiencies in five-year-old white pine seedlings while competition from aspen resulted in foliar Ca deficiency.  相似文献   

2.
We investigated the effects of herbaceous and woody vegetation control on the survival and growth of planted eastern white pine (Pinus strobus L.) seedlings through six growing seasons. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns, and low-shrubs, and was maintained for 0, 2, or 4 years after white pine seedlings were planted. Woody control involved the removal of all tall-shrub and deciduous trees, and was conducted at the time of planting, at the end of the second or fifth growing seasons, or not at all. Seedling height and basal diameter responded positively and proportionally to duration of herbaceous vegetation control. Gains associated with woody control were generally not significant unless some degree of herbaceous vegetation control was also conducted. Only herbaceous control increased pine crown closure and rate of crown closure. Herbaceous control and the presence of 5000–15,000 stems per ha of young overtopping aspen were associated with reduced weevil (Pissodes strobi Peck.) injury and increased pine height growth. The study suggests that white pine restoration strategies on clearcut sites should focus on the proactive, early management of understory vegetation and the gradual reduction of overtopping cover from woody vegetation to create a seedling light environment that supports acceptable growth with minimal weevil damage.  相似文献   

3.
The rejuvenation ecology of three main tree species in anthropogenic pine (Pinus sylvestris L.) forests is explored in our study. We focus on the scale of micro-plots, which provide the safe sites for tree rejuvenation. We thrive on the multi-factorial relationship of tree establishment and driving ecological factors using a large dataset from pine stands in NE Germany and applying multivariate analyses. The success of the establishment of the investigated focal tree species Fagus sylvatica L., Quercus petraea Liebl. and Pinus sylvestris L. is, on general, mostly affected by three factors, i.e. water balance of the upper soil layers, browsing pressure, and diaspore sources. Our investigations on the micro-plot scale revealed species-specific differences. For beech saplings <50 cm growth height, primarily the availability of water, indicated by available water capacity (AWC), thickness, quality, and structure of the organic layer, silt and humus content in the topsoil, and the lack of a dense competitive herb layer, were identified as most important factors. On the contrary, oak seems hardly be restricted by hydrologic and/or trophic deficits in the topsoil or humus layer. In conclusion and comparison to Fagus sylvatica L., we assume for Quercus petraea Liebl. advantages in natural regeneration processes under sub-continental climate conditions and thus under the scenarios of climate change. Pinus sylvestris L. regeneration in our investigation area occurs only in a narrow niche. We conclude with regard to future forest development and the objective of stand conversion with low management intensity that oak should be favoured within natural stand regeneration.  相似文献   

4.
Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important high-elevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function require an improved understanding of the role of disturbance on the population dynamics of both species and environmental conditions that favor seedling establishment. We examined patterns of bristlecone and limber pine regeneration across the perimeters of three, 29-year-old, high-severity burns in northern, central, and southern Colorado: Ouzel, Badger Mountain, and Maes Creek, respectively. Both species exhibited a very protracted regeneration response to these fires. Bristlecone pine regeneration was concentrated near burn edges and beneath surviving seed sources. This spatial pattern is consistent with limitations incurred by wind-dispersal, also borne out by the low occurrence of seedling clusters. Relative to unburned stands, the absolute abundance of bristlecone pine generally increased only on plots retaining some surviving trees. Limber pine regeneration pattern varied between sites: high in the burn interior at Ouzel, concentrated at burn edges at Badger, and mostly in unburned stands at Maes. Clark’s Nutcracker dispersal of limber pine in each study area was indicated by high seedling distance from possible seed sources and high frequencies of clustered stems. Except at Ouzel, the absolute abundance of limber pine decreased in burns. Across sites, establishment by both species was boosted by nearby nurse objects (rocks, fallen logs, and standing tree trunks), a relationship that extended out at least as far as the closest three such objects, usually found within 50 cm. Fire decreased the frequency of Pedicularis but increased Castilleja and Ribes species (alternate hosts of white pine blister rust), though only one species, R. cereum, was positively associated with either pine species. We conclude that regeneration of bristlecone and limber pine may benefit from natural disturbance or proactive management creating appropriately sized openings and microtopographic structure (e.g., abundant fallen logs); however, beneficial responses may require many decades to be achieved.  相似文献   

5.
Early age competition control has been reported to significantly improve the growth and yield of plantation grown loblolly pine. The objective of this paper is to understand the changes in wood properties: basal area weighted whole disk SG, earlywood SG (EWSG), latewood SG (LWSG) and latewood percent (LWP) of 14 year-old trees which received early age herbaceous and hardwood competition control, using data collected from 13-sites across 4-physiographic regions in the southeastern USA. The study was laid out in a randomized complete block design and had four levels of weed control (no weed control; woody vegetation control; herbaceous vegetation control; and woody and herbaceous vegetation control), with four blocks at each site. Increment cores 12 mm in diameter were collected at breast height (1.37 m) from 9-trees in each plot and ring-by-ring SG, EWSG, LWSG and LWP measured using a X-ray densitometer. Whole disk basal area weighted SG and LWP were determined for each tree and used for analysis. A reduction in whole disk SG of 0.039 and 0.0014 and LWP of 7.38% and 3.62% was observed for trees which received total weed control compared to no weed control, for lower and upper Coastal Plain sites, respectively. For trees receiving total weed control compared to no weed control, it was observed that the diameter of the juvenile core increased by 20% on average across all physiographic regions. However, no change in the length of the juvenile period was observed among treatments other than the regional differences.  相似文献   

6.
Survival and growth of planted white spruce was assessed under partial harvest treatments and different site preparation techniques in mixedwood forests of two compositions prior to logging: deciduous dominated (d-dom) – primarily comprised of mature trembling aspen (Populus tremuloides Michx.) and coniferous dominated (c-dom) – primarily comprised of mature white spruce (Picea glauca (Moench) Voss). Levels of overstory retention were 0% (clearcut), 50% and 75% of original basal area, and site preparation techniques were inverted mounding, high speed mixing, scalping and control (no treatment). The survival and growth of white spruce were assessed seven years after planting. The experiment was established as a part of the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment located in northern Alberta, Canada. In the c-dom, the 50% and 75% retention of overstory resulted in reduced growth and survival of white spruce seedlings compared to clearcuts. In contrast, in the d-dom, the seedlings performed best in sites that had 50% of the overstory retained. For the c-dom, the mounding and mixing treatments yielded the best growth of spruce seedlings, while scalping yielded the worst. In the d-dom, spruce growth was highest in sites with the mixing treatment. In the d-dom, growth and survival of the planted spruce was greater than in the c-dom. The natural regeneration of deciduous trees was suppressed by the retention of canopy regardless of original composition.  相似文献   

7.
Decay rates of stems, branches and roots were assessed in Pinus radiata (D. Don) plantation forests located throughout New Zealand. Stem and branch decay rates were obtained using (1) post-harvest material from two central North Island locations (Kaingaroa and Tarawera Forests) based on a 10-year chronosequence (in ground contact or suspended) and (2) post-thinning stems and attached branch material from five sites covering a range of climatic conditions across New Zealand (Woodhill, Puruki, Hokonui, Nemona and Selwyn) with up to 5 years of decay. Stem, stump and root decay rates were determined from two central North Island locations (Kinleith and Puruki) from thinnings with 0, 5, and 10 years of decay (Kinleith) and mature trees at 0 and 11 years of decay (Puruki). Stem and branch post-harvest material decayed faster when in contact with the ground than when elevated above the ground. The proportion of material elevated or in ground contact was not estimated in this study. P. radiata discs from young trees and post-harvest residue showed no significant diameter effect on decay rate and could be used confidently to predict whole stem decay rate. Discs from older trees covering a larger diameter range at Puruki showed a significant effect of diameter on decay rate. Decay rates of coarse roots at the two central North Island sites were faster than above-ground whole stem decay rates. Exponential models incorporating mean annual temperature for P. radiata stems in ground contact arising from thinning and harvest currently provide the best estimate of residue decay in New Zealand. There was no increase in carbon concentration with decay, suggesting that live stem values may be applied to all dead wood for determining the mass of carbon change with decomposition. Nitrogen concentrations increased with decay.  相似文献   

8.
Seed predation and dispersal are key processes in the survival and distribution of plant species. Many animals cache seeds for later consumption, and, failing to recover some of these seeds, act as seed dispersers, influencing post-dispersal seed and seedling survival. Both animal and plant benefit from scatterhoarding and natural selection of seed characteristics and adaptations of seed predators (and dispersers) is one of the most important examples of co-evolution and mutualism. We studied the producer–consumer Arolla pine (Pinus cembra)–red squirrel (Sciurus vulgaris) system in a subalpine forest in the Italian Alps. Arolla pine produced large seed-crops (masting) at irregular intervals, followed by years with poor or moderate seed production. Squirrel density fluctuated in synchrony with the food resource, eliminating the time-lag normally present when resources are produced in pulses. In all years except 2009 (a mast-crop year), all Arolla pine cones were harvested (their seeds consumed and/or cached) by September to late October by different species. Both squirrels and nutcrackers (Nucifraga caryocatactes) fed on seeds, and their relative pre-dispersal predation rates (on cones in the canopy) differed between years. Overall, nutcrackers consumed more seeds between July and October than squirrels, but in 1 year squirrels took the largest number of seeds. Pre-dispersal seed predation by squirrels tended to be lower in years with large seed-crop size and there was a positive correlation, over the entire study period, between density of recovered hoards and Arolla pine seed density of the previous year. We conclude that (i) squirrels and nutcrackers are important pre-dispersal seed predators and seeds dispersers; (ii) squirrels are also post-dispersal seed predators, and (iii) the proportion of cached seeds consumed by squirrels increased with the size of the Arolla pine seed-crop, suggesting that red squirrel is a conditional mutualistic scatterhoarder of Arolla pine seeds.  相似文献   

9.
Coarse woody debris (CWD) has been identified as a key microhabitat component for groups that are moisture and temperature sensitive such as amphibians and reptiles. However, few experimental manipulations have quantitatively assessed amphibian and reptile response to varying CWD volumes within forested environments. We assessed amphibian and reptile response to large-scale, CWD manipulation within managed loblolly pine stands in the southeastern Coastal Plain of the United States from 1998 to 2005. Our study consisted of two treatment phases: Phase I treatments included downed CWD removal (removal of all downed CWD), all CWD removal (removal of all downed and standing CWD), pre-treatment snag, and control; Phase II treatments included downed CWD addition (downed CWD volume increased 5-fold), snag addition (standing CWD volume increased 10-fold), all CWD removal (all CWD removed), and control. Amphibian and anuran capture rates were greater in control than all CWD removal plots during study Phase I. In Phase II, reptile diversity and richness were greater in downed CWD addition and all CWD removal than snag addition treatments. Capture rate of Rana sphenocephala was greater in all CWD removal treatment than downed CWD addition treatment. The dominant amphibian and snake species captured are adapted to burrowing in sandy soil or taking refuge under leaf litter. Amphibian and reptile species endemic to upland southeastern Coastal Plain pine forests may not have evolved to rely on CWD because the humid climate and short fire return interval have resulted in historically low volumes of CWD.  相似文献   

10.
对欧洲黑杨α-expansin基因PnEXPA1的SNP多态性与水分利用效率相关性状稳定碳同位素比率(δ13C)进行了关联分析。利用SNaPshot技术对PnEXPA1基因内11个SNP位点进行了基因型分型,发现各SNP位点优势基因型均为纯合,且其频率高于杂合基因型。关联分析显示:SNP8和SNP12在采用单因素方差分析(ANOVA)和一般线性模型(GLM)2种方法时均与δ13C值显著关联。SNP8为exon 1内的无义突变,可解释6.620%的表型变异;而SNP12位于intron 1中,遗传贡献率为6.613%;这2个SNP位点与SNP9、SNP13共同位于一个高连锁不平衡(LD)的单倍型块中。SNP8与SNP12的TT基因型无性系均具有较高的δ13C值,为优势基因型。  相似文献   

11.
We used an isotopic approach to evaluate the effects of three afforestation methods on the ecophysiology of an Aleppo pine plantation in semiarid Spain. The site preparation methods tested were excavation of planting holes (H), subsoiling (S), and subsoiling with addition of urban solid refuse to soil (S + USR). Five years after plantation establishment, trees in the S + USR treatment were over three times larger than those in the S treatment, and nearly five-fold larger than those planted in holes. Differences in tree biomass per hectare were even greater due to disparities in initial planting density and pine tree mortality among treatments. Pine trees in the S + USR treatment showed higher foliar P concentration, δ13C and δ15N than those in the S or H treatments. Foliar δ15N data proved that trees in the S + USR treatment utilized USR as a source of nitrogen. Foliar δ13C and δ18O data suggest that improved nutrient status differentially stimulated photosynthesis over stomatal conductance in the pine trees of the S + USR treatment, thus enhancing water use efficiency and growth. In the spring of 2002, trees in the S + USR treatment exhibited the most negative predawn water potentials of all the treatments, indicating that the rapid early growth induced by USR accelerated the onset of intense intra-specific competition for water. The results of this study have implications for the establishment and management of Aleppo pine plantations on semiarid soils. Planting seedlings at low density and/or early thinning of pine stands are strongly recommended if fast tree growth is to be maintained beyond the first few years after USR addition to soil. Foliar C, O and N isotope measurements can provide much insight into how resource acquisition by trees is affected by afforestation techniques in pine plantations under dry climatic conditions.  相似文献   

12.
13.
We examined spatial aspects of harvesting impacts on aspen regeneration at 25 sites in northern Minnesota. These sites had been clearcut or partially harvested 4–11 years ago. At each site, residual overstory, which was composed of trees other than aspen, soil disturbance, and tree regeneration were determined along transects leading away from skid trails into the neighboring stand. We characterized spatial extent of soil disturbance as soil strength using an Eijkelkamp soil cone penetrometer. Soil disturbance dropped off very quickly at the edge of skid trails, suggesting that the impact of harvesting traffic on areas adjacent to skid trails is minor. On skid trails, disturbance levels were higher on sites harvested in summer than on sites harvested in winter. Even after adjustment for differences in soil disturbance, stands harvested in winter had higher regeneration densities and greater aspen height growth than stands harvested in summer, suggesting that aspen regeneration was more sensitive to a given level of soil disturbance on summer-harvested sites versus on winter-harvested sites. Soil disturbance and residual overstory interactively reduced aspen regeneration densities and height growth, indicating that avoidance of soil disturbance is even more critical in partially harvested stands. Predictions based in the spatial patterns of impact found in this study indicated that harvesting conditions may have a great impact in future productivity of a site.  相似文献   

14.
Damage to residual stand after partial harvesting or thinning may lead to serious economic losses in terms of both timber quality at the final harvest, and tree growth reduction. Logging damages and their effect on tree growth were studied in a long term experiment on Corsican pine in central Italy. Damage frequency, agent (felling, skidding), position (root damage, stem base, between 0.3 and 1 m a.g.l., >1 m a.g.l.) and severity (light, severe) and tree growth were measured after selective thinning from below and at 10 years after the treatment. In detail, we aimed at: monitoring mechanical damages to trees at the end of thinning and after 10 years; and assessing stand stability, growing stock, ring width and basal area at 10 years after the thinning. The thinning removed about 20% of volume, 38% of trees and 26% of basal area. The basal area decreased from 56 m2 ha−1 to 42 m2 ha−1 but after 10 years it increased again to 56 m2 ha−1. Immediately after thinning, 13.6% of the standing trees was damaged, out of these 36.17% showed severe injuries. Damages to standing trees were mainly due to skidding. Ten years after thinning, the percentage of damaged trees was about 17%, out of which 86.67% showed severe wounds. An increase of damaged trees and of trees with severe wounds was observed suggesting that a deeper knowledge on long-term effect of logging damages is needed. This study did not highlight any effect of logging damage on tree growth. In fact, no difference in ring width was recorded between damaged and undamaged trees.  相似文献   

15.
Historical logging, fire suppression, and an invasive pathogen, Cronartium ribicola, the cause of white pine blister rust (WPBR), are assumed to have dramatically affected sugar pine (Pinus lambertiana) populations in the Lake Tahoe Basin. We examined population- and genetic-level consequences of these disturbances within 10 sugar pine populations by assessing current population structure and trends for 1129 individuals, genetic diversity for 250 individuals, and frequency of WPBR-resistance for 102 families. Logging had occurred in 9 of 10 sites and fire suppression was evident in all stands. High density of white fir (Abies concolor) is often an indicator of fire suppression and we found a negative relationship between sugar pine survivorship and white fir basal area (r2 = 0.31). C. ribicola was present in 90% of stands (incidence range: 0-48%) and we found a significant relationship between mean host survivorship and disease incidence (r2 = 0.46). We estimated population growth rates (λ) from size-based transition matrices. For six of 10 sugar pine populations λ was ?1.0, indicating that these populations appear to be stable; for four populations, λ was <1.0, indicating populations that may be in decline. A population specific drift parameter, ci, which is a measure of genetic differentiation in allele frequencies relative to an ancestral population, ranged from 0.009 to 0.048. Higher values of ci indicate greater genetic drift, possibly due to a bottleneck caused by historical logging, other agents of mortality or much older events affecting population sizes. Effects of drift are known to be greater in small populations and we found a negative relationship between sugar pine density and ci (r2 = 0.36). Allele frequency of the Cr1 gene, responsible for WPBR-resistance in sugar pine, averaged 0.068 for all populations sampled; no WPBR infection was found in one population in which the Cr1 frequency was 0.112. Historical disturbances and their interactions have likely influenced the population biology of sugar pine in the Tahoe Basin; for some populations this has meant reduced population size, higher genetic drift, and poor survival of small- and intermediate-sized individuals. Possible management strategies include restoring population numbers, deploying WPBR-resistance, treating stands to promote natural sugar pine regeneration, and enhancing genetic diversity.  相似文献   

16.
Fragmentation is a critical issue for tree populations because the creation of small patches can reduce local population size and increase isolation, both of which can promote inbreeding and its negative consequences, as well as loss of genetic diversity. To test the hypothesis that patch size and isolation influence mating patterns or seed production in forest trees, we utilize the spatial array of trees of an urban population of Chinese Pine (Pinus tabulaeformis Carr.) planted in patches around Beijing. Our design includes 28 urban patches, with patch size ranging from 1 to 2000 adult trees and isolation (edge distance index) ranging from 37.5 m to 245.8 m. We examined the average number of seeds per cone and percentage of viable seed per cone for each patch as measures of seed production. By utilizing seven paternally inherited chloroplast microsatellite loci, we estimated the mating pattern parameters for each patch, including the level of selfing, the amount of immigrant pollen and the effective number of pollen sources (Nep). Using a general linear model selection procedure based on AIC value, we found patch size was the best predictor of the selfing and immigration rate; smaller patches had a higher selfing and immigration rate. Small patches with one adult had relatively high Nep which indicates connectivity among urban patches. However, due to the reduced amount of immigrant pollen and limited diversity of local pollen, intermediate sized patches (with 5–10 adults) had the lowest Nep among the study patches. For patches with more than 10 adults, Nep was increased with patch size. The percentage of viable seeds per cone significantly decreased with patch size, indicating a possible negative consequence of inbreeding. The effect of patch size on mating patterns and seed production suggests that the patches of trees experience less connectivity than trees within continuous forest. These findings indicate that forest management practices should emphasize the maintenance of an optimal patch size because, despite the fact that tree species show the potential for long distance pollen movement, the number of local trees strongly influences the mating patterns.  相似文献   

17.
Climate changes induced by the anthropogenic alteration of the atmospheric radiative balance are expected to change the productivity and composition of forest ecosystems. In Europe, the Mediterranean is considered one of the most vulnerable regions according to climatic forecasts and simulations. However, although modifications in the inter-specific competition are envisaged, we still lack a clear understanding of the ability of the Mediterranean vegetation to adapt to climate changes. We investigated how two co-occurring tree species commonly used in afforestation programmes, the native Abies alba Mill. and the nonnative Picea abies L. Karst., adapt to climate change by assessing their growth performance and physiological responses in relation to past climate variability. Growth was addressed by analysing tree-ring width and carbon and oxygen stable isotopes. Statistical relationships between isotopic value and monthly climate data suggest that the two species underwent ecophysiological adaptation to Mediterranean climatic constraints. These adaptations are also expressed in the ring-width data. Based on the carbon isotope ratio reflecting the stomatal response to drought, we found that the precipitation in the first period of the growing season, i.e. early spring, is a major factor influencing the annual growth of A. alba, which although native, proved to be sensitive to drought. P. abies, on the other hand, showed a higher tolerance to summer drought stress. These findings should help define criteria for sustainability and effective forest conservation in the Mediterranean region.  相似文献   

18.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

19.
Oleoresin is an important defensive made up of acidic and neutral diterpenes together with a variable fraction of monoterpenes and sesquiterpenes. It plays a major role in plant-herbivore defense. Fire, or prescribed burning, can be a stress factor leading to metabolic changes in pine needles. Prescribed burning is used to: (i) restore fire to the ecosystem, (ii) recreate natural disturbance dynamics and (iii) reduce fuel loadings and fire risks. To our knowledge, no study has been performed on the effects of fire on the oleoresin defense system in pine trees, apart from the measurement of resin flow. We examined the effect on oleoresin production (resin flow) and the chemical composition (volatile and diterpene components) in Corsican pine (Pinus nigra subsp. laricio (Poir.) Maire var. corsicana (Loud.) Hyl.). This species is an ecologically and economically important pine in France. The chemical composition of samples was studied using HS-SPME GC and GC/MS for the volatile fraction and 13C NMR for diterpenes. A considerable increase in resin production and, consequently, an increase predominantly in diterpenes together with volatile compounds were observed at stations which had sustained recent prescribed burnings. Resin flow in trees in low-intensity prescribed burning after 4 years were no different than trees in unburned plots. Resin flow can be considered as a response to thermal stress. The major components of the two fractions were α-pinene (66.9–75.6%) and levopimaric acid (19.8–23.0%), respectively. The chemical composition of the resin remained unchanged after prescribed burning, even though resin production increased. No insect attacks were observed after low-intensity prescribed burning of P. laricio.  相似文献   

20.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号