首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

2.
Liana-dominated forest patches constitute 15–20% of old-growth forests in the Eastern Amazon but are generally excluded from management for timber production. Here we ask if liana-dominated patches may be brought into production by clearing lianas and conducting enrichment planting (EP) of native timber species. We present growth results from 8 years of such EP trials. Rapid growth and low mortality of all species in this study suggest that EP in cleared liana patches can contribute to timber stocks in second and third harvests of managed forests. The most vigorous individuals of Parkiagigantocarpa and Schizolobium amazonicum in each enrichment site grew more than 1 cm diameter per year (rates were initially >2 cm yr−1), and attained dominant canopy positions and diameters equal to those of small canopy trees in the surrounding forest within 8 years of planting (mean dbh ∼18 cm and ∼20 cm, respectively, at year 8). Limited data on Ceiba pentandra plantings indicate a similar trajectory for this species (dbh ∼40 cm in 8 years). The most vigorous Swietenia macrophylla grew at least 1 cm per year in enrichment plots (mean dbh ∼10 cm in 8 years), but take longer to attain dominant positions. Tabebuia serratifolia may take much longer to reach the canopy than other species tested (rates <1 m yr−1). We attribute the excellent performance to light availability; planting in intact soil with minimal compaction and abundant organic material; and low competition rates maintained by periodic thinning of competing vegetation.  相似文献   

3.
In regions of Australia of low–medium rainfall (500–800 mm/year), there is growing community and land-owner support for re-planting trees to achieve multiple environmental objectives, particularly amelioration of soil salinity. Sequestration of carbon by newly established trees is not only another important environmental benefit, but also a potential commercial benefit. To obtain estimates of carbon sequestered by species of commercial potential in such regions, we calibrated the carbon (C) accounting model FullCAM to Eucalyptus cladocalyx and Corymbia maculata plantations. This was achieved by harvesting trees of a range in sizes to determine the allometric relationships that most accurately predict biomass and stem density from measures of stem diameter. Predictions of stem diameter were obtained from a forest growth model (3-PG) previously calibrated for these two species. By applying these predictions of changes in stem diameter as the stand matures in our allometric relationships, we estimated changes in partitioning of biomass (between stem, branches, bark, foliage and roots) and stem wood density as the stand matures under scenarios of 500, 600 and 750 mm mean annual rainfall. We found that for both species, regardless of annual rainfall, throughout the rotation 37–50% of carbon sequestered in the total tree biomass was in the stem, 18–27% in both branches and roots, and the remainder in foliage or bark. However, rate of accumulation of carbon was dependent on annual rainfall, with average annual rate of sequestration of carbon in tree biomass and litter during the first rotation of E. cladocalyx (or C. maculata) increasing from 3.68 (or 4.17) to 4.72 (or 4.86) Mg C ha−1 yr−1 as annual rainfall increased from about 500 to 750 mm. Although it was predicted that decomposition negated any accumulation of debris between successive rotations, carbon was predicted to accumulate in sawlog products, given that assumed rates of product decomposition were slightly less than their rate of accumulation. This resulted in a slight increase (<8 Mg C ha−1) in predicted total sequestration of carbon between successive rotations.  相似文献   

4.
A high incidence of Diplodia shoot blight (site means ranging 85-100%) was observed on recently planted red pine (Pinus resinosa) seedlings where mature red pine stands previously had been clearcut. An investigation of the potential of harvest debris as a source of inoculum of Diplodia pathogens then was conducted. Cones, bark, needles, stems from shoots bearing needles, and stems from shoots not bearing needles (both suspended above the soil and in soil contact) were collected from harvest debris left at sites where clearcutting occurred. Conidia were quantified, and their germination rate was assessed, and Diplodia species were identified using PCR. Conidia of Diplodia species were found at all study sites and conidia counts increased from samples collected from 6 to 18 months after harvest. Germinable conidia were obtained from debris collected 6 months to 5 years after harvest. Fewer conidia were obtained from debris collected at intervals of up to 4-5 years after harvest and the percentage of germinable conidia was lower after longer intervals following harvest. More conidia were obtained and a greater percentage germinated from debris collected above the soil than from debris in soil contact. The host substrate also influenced the number of conidia and the percentage that germinated. Planting red pine seedlings next to debris infested with Diplodia pathogens could provide a persistent source of inoculum. Results should prompt further consideration by land managers and researchers of the potential forest health risks, in addition to benefits, that may be associated with harvest debris.  相似文献   

5.
Soil carbon (C) stocks in forest ecosystems have been widely estimated to a fixed soil depth (i.e., 0-30 cm) to clarify temporal changes in the C pool. However, surface elevations change as a result of compaction or expansion of the soil under forest management and land use. On the other hand, the calculation of soil C stocks based on “equivalent soil mass” is not affected by compaction or expansion of forest soil. To contribute to the development of a forest C accounting methodology, we compared changes in soil C stocks over 4 years between depth- and mass-based approaches using original soil data collected at 0-30 cm depths in young plantations and secondary forests in West Java, Indonesia. Our methodology expanded on the mass-based approach; rather than using one representative value for the mass-based calculation of soil C stocks, we adjusted individual values, maintaining the coefficient of variance in soil mass. We also considered the effect of an increase or decrease in soil organic matter on equivalent soil mass. Both increasing and decreasing trends in soil C stocks became clearer when the mass-based approach was used rather than the depth-based approach. The trends in soil C stocks based on equivalent soil mass were particularly evident in the surface soil layers (0-5 cm) and in plantation sites, compared with those for soil profiles including subsurface soil layers (0-30 cm) and in secondary forests. These trends in soil C stocks corresponded with temporal trends in litter stocks. We suggest that equivalent mass-basis soil C stock for the upper 30 cm of soil be calculated based on multiple soil layers to reduce estimation errors. Changes in soil organic matter mass had little effect on the estimation of soil C stock on an equivalent mass basis. For the development of a forest C accounting system, the mass-based approach should be used to characterize temporal trends in soil C stocks and to improve C cycle models, rather than simpler methods of calculating soil C stocks. These improvements will help to increase the tier level of country-specific forest C accounting systems.  相似文献   

6.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

7.
Forest ecosystems are increasingly expected to produce multiple goods and services, such as timber, biodiversity, water flows, and sequestered carbon. While many of these are not mutually exclusive, they cannot all be simultaneously maximised so that management compromise is inevitable. We used a 42-year dataset from a naturally regenerating floodplain forest of the river red gum (Eucalyptus camaldulensis) to investigate the effects of pre-commercial thinning on long-term patterns in habitat quality, forest structure and rates of carbon storage (i.e. standing aboveground carbon). Estimates of habitat quality were based on the density of hollow-bearing trees because hollows are ecologically important to many species of vertebrates and invertebrates in these forests. Thinning improved habitat value by producing 20 (±8) hollow-bearing trees per ha after 42 years, while the unthinned treatment produced none. Unthinned (highest density) stands were dominated by many slender trees, mostly <25 cm in diameter, whereas thinned stands produced negatively skewed size distributions with higher median and maximum stem diameters. Moderately thinned stands (560 trees ha−1) had the highest aboveground carbon storage rate (4.1 t C year−1) and the highest aboveground carbon stocks (200.2 ± 9.6 t C ha−1) after 42 years, while the unthinned treatment had the lowest carbon storage rate (1.6 t C year−1) and an intermediate level of aboveground standing carbon (165.1 ± 31.1 t C ha−1). Our results highlight the importance of early stand density as a determinant of long-term forest structure, habitat quality and carbon storage rates. We recommend that thinning be considered as one component of a broader strategy for enhancing the structure, habitat value and aboveground carbon storage of developing floodplain forests.  相似文献   

8.
In Mediterranean environments, availability of water and nutrients are the main factors limiting the success of afforestation. As part of a wider project, an experiment was established in Northeast Portugal, aiming at testing the effect of several site preparation techniques on plant survival and growth (height and diameter) in a newly installed mixed forest stand. Results presented regard plant response during 42 months after plantation. The experimental protocol consisted in seven treatments described by mechanical operations that rank soil disturbance intensity from none to high, set in plots of 375 m2, randomly distributed in three blocks, in different topographic positions (gentle slope plateau, moderate slope shoulder, and steep mid-slope). Pseudotsuga menziesii (PM) and Castanea sativa (CS) forest species were planted in a 4 m × 2 m scheme and in alternate rows with 12 plants on each row per plot, summing up 72 plant per specie and treatment at start of the experiment. The results show that: (i) the highest mortality was observed immediately after the plantation and before the dry season, on the lowest intensity treatments; (ii) after the dry season, the highest mortality was also observed in treatments with the lowest intensity of soil disturbance, while the lowest values were found on the intermediate intensity treatments; (iii) during the experimental period, the effect of treatments on plant growth (height and diameter) was statistically significant; however, experimental results do not lead yet to a clear quantitative relationship between soil disturbance intensity due to site preparation and plant response under the conditions tested.  相似文献   

9.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

10.
Species richness and species composition of ectomycorrhizal (EM) fungi were compared among rehabilitated mine sites and unmined jarrah forest in southwest Western Australia. Species richness, measured in 50 m × 50 m plots, was high. In the wetter, western region, mean species richness per plot in 16-year-old rehabilitated mine sites (63.7 ± 2.5, n = 3) was similar to that of unmined jarrah forest (63.6 ± 9.6, n = 9). In the drier, eastern region, species richness in 12-year-old rehabilitated mine sites (40.3 ± 2.1, n = 3) approached that of nearby forest (52.4 ± 9.3, n = 9). Species composition was analysed by detrended correspondence analysis. Rehabilitated sites of similar age clustered together in the analysis and species composition was closer to the native jarrah forest in the older rehabilitated plots. In unmined forest, species composition of fungal communities in the wetter, western region was different from communities in the drier, eastern region.  相似文献   

11.
Few long-term studies have been conducted on changes in soil nutrients after afforestation in Iceland, a country with a young history of forest management. While fertilization was shown to improve survival of seedlings in the first years after planting on the nutrient limited soils, knowledge about the nutrients status of the soils that develop under maturing forest stands is still scarce. In a chronosequence study, the development of base cations and Olsen-phosphorus (Olsen-P) in the mineral soil was followed in six forest stands of two different tree species of increasing age (14–97 years): native birch (Betula pubescens) and introduced Siberian larch (Larix sibirica). A treeless heathland was included to present soil conditions prior to forest establishment. The sites are part of the largest forest area in Iceland, located in the east of the country. Results revealed an effect of stand age on all soil nutrients investigated except for potassium (K). Olsen-P increased in 0–10 cm depth of the mineral soil, indicating a better availability and thus improved P supply in maturing forest stands. Calcium (Ca) and magnesium (Mg) concentrations decreased with stand age in 0–10 and 10–20 cm soil depth, while sodium (Na) decreased only in the upper soil layer. Only Olsen-P and K concentrations were higher in the upper soil layer as compared to 10–20 cm depth. This indicates a higher biotic control as opposed to the geochemical control of the other base cations.  相似文献   

12.
Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity?The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m2 each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla × E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m−2) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded.  相似文献   

13.
South African coastal dune forests are young, highly disturbed subtropical communities where conventional models of forest dynamics may be challenged. We tested predictions from the gap-phase regeneration model by comparing seedlings of three common species representing contrasting regeneration strategies: Acacia karroo as a ruderal, Celtis africana as a coloniser of forest gaps, and Diospyros natalensis as a late-successional species. We grew seedlings under contrasting light and nitrogen levels in a greenhouse and in the field for 1 year to compare their growth and survival rates, allocation and photosynthetic traits. Species’ growth rates generally followed the expected order: Acacia > Celtis > Diospyros, but Acacia responded strongly to light and Celtis responded strongly to nitrogen, leading to cross-overs in growth rates. The plasticity of allocation and photosynthesis did not clearly differentiate the strategies, although it was greater in the light-demanding species. Acacia and Celtis tended to survive better in Acacia stands than in forest plots. Leaf-level light compensation points (LCPs) were similar for the three species in most conditions, but auxiliary data suggest Diospyros has a lower whole-plant LCP than Acacia. Growth rates and LCPs were lower than most of those reported for primary-forest species in the literature, suggesting an unusual degree of shade-tolerance in this habitat. We discuss reasons why variation in shade-tolerance may be less important here than in the prevailing model for forest regeneration and suggest other biotic factors that may help differentiate regeneration niches.  相似文献   

14.
There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

15.
We examined the relative susceptibility of four mahogany species, Khaya ivorensis, Khaya anthotheca, Entandrophragma angolense, and E. utile, to Hypsipyla robusta attack. Seeds were obtained from one to three parent trees for each species. The research was conducted in the moist semideciduous forest zone in Ghana and used a randomized complete block design. Tree height and diameter and height to first branch were measured until 24 months after out-planting in the field. H. robusta damage was assessed by counting the numbers of shoots attacked, branches, and dead shoots. Khaya spp. grew better but experienced more attack than Entandrophragma spp. The relative susceptibility to H. robusta attack, from most to least, of the four species was: K. anthotheca > K. ivorensis > E. angolense > E. utile. At 24 months, the mean number of shoots attacked per tree ranged from 1.0 for an E. utile seed source to 3.6 on for a K. anthotheca seed source. At 15 months, K. anthotheca and K. ivorensis started branching at about 1.5 m, but height of clear trunk increased over time due to self-pruning. As K. anthotheca grew taller, the number of H. robusta attacks per tree declined. This suggested that selection of genotypes and species that are tolerant of H. robusta attack based on infestation of young plants may not be appropriate. Genetic factors more completely reflecting the response of different species and genotypes to H. robusta attack may manifest themselves at later growth stages.  相似文献   

16.
Although the removal or addition of understory vegetation has been an important forest management practice in forest plantations, the effects of this management practice on soil respiration are unclear. The overall objective of this study was to measure and model soil respiration and its components in a mixed forest plantation with native species in south China and to assess the effects of understory species management on soil respiration and on the contribution of root respiration (Rr) to total soil respiration (Rs). An experiment was conducted in a plantation containing a mixture of 30 native tree species and in which understory plants had been removed or replaced by Cassia alata Linn. The four treatments were the control (Control), C. alata addition (CA), understory removal (UR) and understory removal with C. alata addition (UR + CA). Trenched subplots were used to quantify Rr by comparing Rs outside the 1-m2 trenched subplots (plants and roots present) and inside the trenched subplots (plants and roots absent) in each treatment. Annual soil respiration were modeled using the values measured for Rs, soil temperature and soil moisture. Our results indicate that understory removal reduced Rs rate and soil moisture but increased soil temperature. Regression models revealed that soil temperature was the main factor and soil moisture was secondary. Understory manipulations and trenching increased the temperature sensitivity of Rs. Annual Rs for the Control, CA, UR and UR + CA treatments averaged 594, 718, 557 and 608 g C m−2 yr−1, respectively. UR decreased annual Rs by 6%, but CA increased Rs by about 21%. Our results also indicate that management of understory species increased the contribution of Rr to Rs.  相似文献   

17.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

18.
An accurate characterization of tree carbon (TC), forest floor carbon (FFC) and soil organic carbon (SOC) in tropical forest plantations is important to estimate their contribution to global carbon stocks. This information, however, is poor and fragmented. Carbon contents were assessed in patula pine (Pinus patula) and teak (Tectona grandis) stands in tropical forest plantations of different development stages in combination with inventory assessments and soil survey information. Growth models were used to associate TOC to tree normal diameter (D) with average basal area and total tree height (HT), with D and HT parameters that can be used in 6–26 years old patula pine and teak in commercial tropical forests as indicators of carbon stocks. The information was obtained from individual trees in different development stages in 54 patula pine plots and 42 teak plots. The obtained TC was 99.6 Mg ha−1 in patula pine and 85.7 Mg ha−1 in teak forests. FFC was 2.3 and 1.2 Mg ha−1, SOC in the surface layer (0–25 cm) was 92.6 and 35.8 Mg ha−1, 76.1 and 19 Mg ha−1 in deep layers (25–50 cm) in patula pine and teak, respectively. Carbon storage in trees was similar between patula pine and teak plantations, but patula pine had higher levels of forest floor carbon and soil organic carbon. Carbon storage in trees represents 37 and 60% of the total carbon content in patula pine and teak plantations, respectively. Even so, the remaining percentage corresponds to SOC, whereas FFC content is less than 1%. In summary, differences in carbon stocks between patula pine and teak trees were not significant, but the distribution of carbon differed between the plantation types. The low FFC does not explain the SOC stocks; however, current variability of SOC stocks could be related to variation in land use history.  相似文献   

19.
Land-use and land cover strongly influence carbon (C) storage and distribution within ecosystems. We studied the effects of land-use on: (i) above- and belowground biomass C, (ii) soil organic C (SOC) in bulk soil, coarse- (250–2000 μm), medium- (53–250 μm) and fine-size fractions (<53 μm), and (iii) 13C and 15N abundance in plant litter, bulk soil, coarse-, and medium- and fine-size fractions in the 0–50 cm soil layer in Linaria AB, Canada between May and October of 2006. Five adjacent land-uses were sampled: (i) agriculture since 1930s, (ii) 2-year-old hybrid poplar (Populusdeltoides × Populus × petrowskyana var. Walker) plantation, (iii) 9-year-old Walker hybrid poplar plantation, (iv) grassland since 1997, and (v) an 80-year-old native aspen (Populus tremuloides Michx.) stand. Total ecosystem C stock in the native aspen stand (223 Mg C ha−1) was similar to that of the 9-year-old hybrid poplar plantation (174 Mg C ha−1) but was significantly greater than in the agriculture (132 Mg C ha−1), 2-year-old hybrid poplar plantation (110 Mg C ha−1), and grassland (121 Mg C ha−1). Differences in ecosystem C stocks between the land-uses were primarily the result of different plant biomass as SOC in the 0–50 cm soil layer was unaffected by land-use change. The general trend for C stocks in soil particle-size fractions decreased in the order of: fine > medium > coarse for all land-uses, except in the native aspen stand where C was uniformly distributed among soil particle-size fractions. The C stock in the coarse-size fraction was most affected by land-use change whilst the fine fractions the least. Enrichment of the natural abundances of 13C and 15N across the land-uses since time of disturbance, i.e., from agriculture to 2- and then 9-year-old hybrid poplar plantations or to grassland, suggests shifts from more labile forms of C to more humified forms of C following those land-use changes.  相似文献   

20.
Allometric equations have been developed for various different vegetation types but have rarely been validated in the field and never for dry tropical forest such as caatinga. In three areas of semi-arid Brazil, with regenerating caatinga vegetation, we measured and weighed twelve hundred individuals of four tree species and used the data to validate equations previously determined in mature caatinga. They and several other equations developed for tropical vegetations overestimate the biomass (B) of trees from the regeneration areas by more than 20%, possibly because these trees have reduced crowns, with lower branch masses. We then determined new allometric equations for them, validating equations for one site against data of the others and pooling the data if they were cross-validated. The best equations were power ones, based on diameter at breast height (D), with little improvement by including height, crown area and/or wood density (Caesalpinia pyramidalis, B = 0.3129D1.8838; Croton sonderianus, B = 0.4171D1.5601; Mimosa ophthalmocentra, B = 0.4369D1.8493; and Mimosa tenuiflora, B = 0.3344D1.9648 and 0.4138D1.7718).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号