首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies have highlighted the importance of deadwood, whether standing (snags) or fallen, in boreal ecosystems dynamics. However, a dearth of literature exists regarding the persistence and degradation pathways of these structures in northeastern American boreal species.  相似文献   

2.
The eastern Canadian boreal forest exhibits a specific disturbance regime where forest fires are less frequent than in the western part. This particularity may explain the abundance of irregular stands with distinct ecological features. To ensure sustainable forest management, these characteristics require the implementation of an adapted silviculture regime. In this context, two selection cutting methods were developed and compared with more conventional techniques, initially designed for cutting more regular stands of the boreal forest (cutting leaving small merchantable stems, careful logging preserving advance regeneration). The comparison focused on the capacity of treatments to maintain the primary attributes of irregular boreal forests, including complex vertical structure, abundant tree cover, species composition, and an abundance of dead wood. Mortality and regeneration processes were also compared.  相似文献   

3.
Hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) is an economically damaging defoliator that undergoes periodic outbreaks in Newfoundland, Canada. It defoliates and causes extensive tree mortality to its primary host, balsam fir (Abies balsamea [L.] Mill.). We quantified tree survival using data from permanent sample plots (PSPs) and growth reduction or release using dendrochronology, and related these impacts to defoliation severity determined from annual aerial defoliation survey data. Such impact relationships are necessary as a fundamental input to a Decision Support System. Growth and survival of balsam fir, black spruce (Picea mariana (Mill.) B.S.P.) and white birch (Betula papyrifera Marsh.) were assessed from 1996 to 2008 in 48 Newfoundland Forest Service PSPs, selected based on four classes of defoliation severity. Two years of severe (71-100%) defoliation resulted in almost complete mortality for balsam fir, 10 years after defoliation, whereas survival was 70-80% for black spruce and white birch. Lower defoliation severity (1-2 years of moderate (31-70%) or 1 year of severe) resulted in approximately 60% survival for balsam fir and no reduction in survival for black spruce and white birch. Maximum growth reduction of balsam fir was 10-15% with 1 year of moderate-severe defoliation, 35-40% with 2 years of moderate defoliation, and about 50% with 2 years of severe defoliation. Growth recovered to pre-defoliation rates 5 years after defoliation ceased in all severity classes. Growth reduction and recovery of black spruce were more variable and lower than for balsam fir, and white birch exhibited only minor (<10%) growth reduction during the defoliation year or 1 year after defoliation. Control measures should focus on avoiding severe defoliation for two consecutive years.  相似文献   

4.
This study presents new evidence of historic low-to-moderate-severity fires, intermixed with high-severity fires, in the foothills of the Rocky Mountains of west-central Alberta, Canada. High-severity fires that burned 120-300 years ago initiated even-aged cohorts of fast-growing lodgepole pine at each of the six study sites. Evidence of subsequent, low-to-moderate-severity fires included single and double fire scars on thin-barked lodgepole pine that were as small as 3.6 cm in diameter at the time of the fire, but survived. These low-to-moderate-severity fires resulted in structurally complex stands with a broad range of tree diameters and multiple cohorts of lodgepole pine, white and black spruce, and subalpine fir. At the site level, fire return intervals were variable, ranging from 29 to 167 years, but most were <80 years. Of the 9 years in which we documented low-to-moderate-severity fires, only the fires in 1889 and 1915 scarred trees at more than one site, indicating that these fires were small and had local effects. The new knowledge of historical, low-to-moderate-severity fires provided by this study has important implications for ecologically sustainable forest management. Although we recognize that further research needs to determine the extent of low-to-moderate-severity fires at the landscape scale, our results clearly indicate that a mixed-severity fires occurred at least locally. A broader range of silvicultural systems than is currently practiced would be consistent with historic forest dynamics.  相似文献   

5.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

6.
The objective of this study was to examine the impact of summer throughfall on the growth of trees, at upland and floodplain locations, in the vicinity of Fairbanks, Alaska. Corrugated clear plastic covers were installed under the canopy of floodplain balsam poplar/white spruce stands and upland hardwood/white spruce stands to control soil moisture recharge as a result of summer precipitation. The covers were installed in 1989 and tree growth measurements were conducted through 2005. Soil moisture dynamics were measured using TDR techniques. Tree basal area growth at dbh in the control plots was approximately twice as high on the floodplain compared to the upland. Summer throughfall exclusion significantly decreased white spruce growth on the floodplain sites but not in the upland sites. In upland sites the melting snow pack is a major moisture resource for tree growth although it is not clear if moisture limitation occurs during the summer in the control plots. However in the floodplain stands white spruce growth was highly dependent on seasonal throughfall even though the ground water table was within the rooting zone and the soils were supplied with a spring recharge due to snowmelt. A number of factors were suggested as a foundation for this strong relationship. These include rooting distribution, soil texture, and the electrical conductivity of the ground water.  相似文献   

7.
Seventy 1–28-year-old clearcuts were sampled to characterize post-harvest vegetation development and to determine the effect of mechanical site treatment and Picea glauca (Moench) Voss (white spruce) crop-seedling planting on regenerating boreal forest stands in the John D’Or—Wood Buffalo National Park area of northern Alberta in western Canada (58°35′N, 114°37′W). Natural Populus tremuloides/Rosa–Viburnum stands of wildfire origin (n = 25), widespread occurrence, and 52–91-year-old were sampled as a benchmark for comparison. Clearcut Populus-Picea and Picea stands reverted to early successional Populus tremuloides Michx. (trembling aspen)—dominated vegetation, with maximum sucker densities (mean 18 716, S.D. 13 239) within 4 years after stand initiation. Stem exclusion occurred most intensively 5–20 years after initiation, but was expected to continue until stands were >40–50-year-old. In untreated clearcuts, tree and understory shrub cover peaked near natural stand levels 18–20 years after harvesting, and graminoid cover remained constant (∼3%) but elevated compared to natural levels (<1%); whereas forb cover decreased linearly to natural stand levels by Year 28. The early composition of clearcuts was primarily composed of species that were common to the natural stands and also vegetatively reproduced. Mechanical site treatment and crop-seedling planting delayed attainment of maximum tree cover by 7 years, with total cover similar to natural stands. Site treatment reduced total shrub cover and prolonged the occurrence of elevated forb and graminoid cover values, probably in response to disruption of the pre-treatment ground vegetation. Calamagrostis canadensis L., a common crop-seedling competitor, was typically of minor importance on the sampled clearcuts compared to levels associated with more southerly boreal clearcuts. Detrended correspondence analysis ordinations based on species cover suggested untreated and treated clearcuts >13–16-year-old approximated the composition of natural stands. The data also suggested that silvicultural planting of P. glauca will accelerate stand development toward late-successional conifer-dominated vegetation relative to unplanted and natural stands.  相似文献   

8.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

9.
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession. We found that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40-fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.  相似文献   

10.
Growth rings of a tree are simultaneously affected by various environmental constraints, including regional factors such as climate fluctuations and also local, gap-scale dynamics such as competition and stochastic mortality of neighbor trees. Although these local effects are often discarded by dendroclimatologists as random variation, the dendroecological trends may provide valuable information on past forest dynamics. Since dendroecological trends arising from local stand dynamics often have medium-term frequencies with persistence of several years to a few decades, it is usually difficult to separate local, gap-scale forcings from regional, medium-frequency forcings such as El Niño Southern Oscillation or North Atlantic Oscillation. Moreover, conventional dendroecological practices have failed to analyze the continuously changing medium frequency trends. In this study, a continuous index of medium-frequency dendrochronological trends was developed, by generalizing previous analytical methods that evaluate relative changes using moving averages. This method was then tested against a tree ring dataset from a site with a known history of release and suppression due to a hurricane disturbance. To quantify the effects of local gap dynamics against the regional, often climatic effects, increments cores of black spruce (Picea mariana) were sampled from boreal forests in Saskatchewan, Canada, using a stratified sampling design. Assuming that regional forcings affect trees in the given stand homogeneously, the relative effect of stochastic heterogeneity within stand was quantified. The results closely agreed with conventional dendrochronological observations. In closed-canopy stands, stochastic local effects explained 12.9–35.4% of the variation in tree ring widths, because interactions between neighbor trees were likely to be intense. In open-canopy stands, on the other hand, the proportion of explained variance was 1.4–10.2%, reflecting the less-intense local tree interactions in low-density stands. These advancements in statistical analysis and study design will help ecologists and paleo-climatologists to objectively evaluate the effects of climate fluctuations, relative to the effects of local, ecological interactions. Moreover, forest managers can apply concepts of filtering medium-frequency trends to assess release and suppression caused by forest management practices, such as selective cutting and forest thinning.  相似文献   

11.
Forecasts of rapid climate change raise the question how quickly species can evolutionarily adapt to future climates. The adaptability of forest trees to environmental changes is generally promoted by high levels of genetic diversity and gene flow, but it can also be slowed down by long generation times and low mortality of established trees. Here, we investigate the adaptation of Scots pine (Pinus sylvestris) and Silver birch (Betula pendula) to climate change induced prolongation of the thermal growing season. We use quantitative genetic individual-based simulations to disentangle the relative roles of mortality, dispersal ability and maturation age for the speed of adaptation. The simulations predict that after 100 years of climate change, the genotypic growth period length of both species will lag more than 50% behind the climatically determined optimum. This lag is reduced by increased mortality of established trees, whereas earlier maturation and higher dispersal ability had comparatively minor effects. The evolutionary lag behind environmental change shown in our simulations stresses the importance of accounting for evolutionary processes in forecasts of the future dynamics and productivity of forests. Sensitivity of the adaptation speed to mortality suggests that species experiencing high mortality rates as well as populations subject to regular disturbances such as storms or fires might be the quickest to adapt to a warming climate.  相似文献   

12.
Survival and growth of planted white spruce was assessed under partial harvest treatments and different site preparation techniques in mixedwood forests of two compositions prior to logging: deciduous dominated (d-dom) – primarily comprised of mature trembling aspen (Populus tremuloides Michx.) and coniferous dominated (c-dom) – primarily comprised of mature white spruce (Picea glauca (Moench) Voss). Levels of overstory retention were 0% (clearcut), 50% and 75% of original basal area, and site preparation techniques were inverted mounding, high speed mixing, scalping and control (no treatment). The survival and growth of white spruce were assessed seven years after planting. The experiment was established as a part of the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment located in northern Alberta, Canada. In the c-dom, the 50% and 75% retention of overstory resulted in reduced growth and survival of white spruce seedlings compared to clearcuts. In contrast, in the d-dom, the seedlings performed best in sites that had 50% of the overstory retained. For the c-dom, the mounding and mixing treatments yielded the best growth of spruce seedlings, while scalping yielded the worst. In the d-dom, spruce growth was highest in sites with the mixing treatment. In the d-dom, growth and survival of the planted spruce was greater than in the c-dom. The natural regeneration of deciduous trees was suppressed by the retention of canopy regardless of original composition.  相似文献   

13.
In nutrient poor environments, such as boreal forests, many of the most important interactions between plants take place belowground. Here, we report the results of two approaches to obtain estimates of the lateral spread of tree roots.  相似文献   

14.
We evaluated the potential of tree-ring techniques for the reconstruction of recent and past seasonal activity of introduced white-tailed deer in a boreal environment of eastern Canada. Hoof scrape scars on balsam fir stems and trampling scars on roots were used to reconstruct deer activity during the winter and snow-free seasons, respectively. Tree damage showed that there was continuous deer activity in the north-central part of Anticosti Island since the mid-1960s. High scrape scars along tree stems (3–3.5 m from the ground) indicate that 1975, 1976, 1981, 1983 and 1985 were years of intensive food search by deer on high balsam fir foliage. The annual number of hoof scrape scars was low between 1982 and 1985, when severe defoliation by the spruce budworm, combined with deer browsing, led to high fir sapling mortality, food depletion, degradation of the winter shelter forests and a decrease in deer activity. The lowest scrape scars 50 cm above ground correspond to the mean height of the residual snowpack in the shelter forest at springtime, when deer start searching for food in nearby open sites and use logging roads, where dead and bonsai-like fir predominate due to overbrowsing. The trampling scar age frequency distribution from two sites indicated that deer activity during the snow-free season started synchronously in the late 1960s. In response to degradation of winter shelter forests, deer may have moved from the southern part to the north-central part of the island and other sectors to survive. Deer-induced tree damage and tree-ring techniques can thus be used to reconstruct past seasonal activity of white-tailed deer.  相似文献   

15.
This study examined the effect of wildfire and salvage harvesting on runoff generation and sediment exports from three small forest catchments in south-eastern Australia. In 2006, wildfire burnt a radiata pine catchment and two adjacent natural eucalypt forest catchments which formed part of a long-term hydrological research project. Subsequently, only the pine plantation catchment was salvage harvested. The combined effect of fire and salvage harvesting in the pine catchment caused a substantial increase in runoff compared to the burnt eucalypt forest catchments and pre-fire conditions, particularly in response to high intensity, short duration summer storms. Post-fire maximum suspended sediment concentrations from fixed-interval sampling greatly exceeded pre-fire values for both eucalypt and pine catchments, while sediment (suspended and bedload) exported from the pine catchment exceeded each of the eucalypt catchments by a minimum of 180 and 33 times. However, the export increase was probably closer to 320 and 71 times based on a survey of eroded channels in the pine catchment combined with measured post-survey exports. Notably, seven summer storm events accounted for approximately 80% of the pine catchment sediment yield. Hillslope process measurements indicated that the highest runoff velocities occurred in log drag-lines formed by cable harvesting, while soil water repellency was more extensive in the harvested pine catchment than in the adjacent eucalypt catchment. The latter effect probably resulted from higher burn severity in the pines combined with reduced soil moisture due to less shading after harvesting. Runoff modelling indicated that the log drag-lines acted as an extension to the drainage network and increased peak flows at the harvested catchment outlet by 48% for a high intensity summer storm event, while substantial reductions in modelled runoff were achieved through increasing the hillslope surface roughness coefficient. It is recommended that post-fire salvage operations should avoid the formation of log drag-lines when using cable harvest techniques and maximise surface cover to limit increases to runoff, erosion and catchment sediment exports.  相似文献   

16.
This study analyses the effects of thinning on stand transpiration in a typical mixed spruce and pine forest in the southern boreal zone. Studies of transpiration are important for models of water, energy and carbon exchange, and forest management, like thinning, would change those processes. Tree transpiration was measured by the tissue heat-balance sapflow technique, on a reference plot and a thinning plot situated in a 50-year-old stand in central Sweden. Sapflow was measured during one season (1998) on both plots before thinning, to establish reference values. In winter 1998/1999 24% of the basal area was removed from the thinning plot. Thinning was done so as to preserve the initial species composition and the size distribution. The measurements continued after thinning during the growing seasons of 1999 and 2000. The climate showed remarkable differences between the 3 years; 1998 was wet and cool, with frequent rain, and the soil-water content was high throughout the year. In contrast, 1999 was dry and warm, and the soil-water content decreased to very low values, ca. 5–6% by volume. In 2000, the weather was more normal, with variable conditions. Stand transpiration was similar on both plots during the year before thinning; the plot to be thinned transpired 6% more than the reference plot. After thinning, transpiration was initially ca. 40% lower on the thinned plot, but the difference diminished successively. When the following drought was at its worst, the thinned plot transpired up to seven times more than the reference plot. During the second season after thinning, the thinned plot transpired ca. 20% more than the reference plot. The increased transpiration of the thinned plot could not be attributed to environmental variables, but was most probably caused by changes in biological factors, such as a fertilization effect.  相似文献   

17.
Berries and mushrooms are increasingly appreciated products of Finnish forests. Therefore, there is a need to integrate them in silvicultural planning. Bilberry (Vaccinium myrtillus L.) is an economically important wild berry that is widely collected for household consumption and sale in North Karelia, Finland. In this study, bilberry yield models developed recently were included in a stand growth simulator and the joint production of timber and bilberry was optimized by maximizing soil expectation value (SEV) with 3% discounting rate, assuming that 75% of the bilberry yield is harvested. The effect of bilberry production on the optimal stand management increased with increasing bilberry price. With high bilberry prices (4–8 € kg−1) it was optimal to manage the mixed stand of Scots pine, Norway spruce and birch, and the pure stand of Norway spruce so as to promote bilberry production. In the Scots pine stand, where bilberry yields are higher, bilberry production affected optimal stand management already with a price of 2 € kg−1. Compared to timber production, joint production led to longer rotation lengths, higher thinning intensities, more frequent thinnings, and higher share of Scots pine in the mixed stand. The contribution of bilberries to the total SEV increased with increasing bilberry price and discounting rate. In the mixed stand and pine stand the SEV of bilberry production, calculated with 3% discounting rate, exceeded the SEV of timber production when bilberry price was 4 € kg−1.With 4% discounting rate this happened already with bilberry price of 2 € kg−1. It was concluded that forest management which promotes bilberry yields is the most profitable in pine stands where the potential bilberry yields are high.  相似文献   

18.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

19.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

20.
The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH + CoF) and normal nitrogen-based (CH + F or WTH + F) fertilisation were also studied. A series of 22 field experiments were established during 1977-1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10-13 years at 11 experimental sites. Seven experiments were followed for 25 years.Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response.Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10-year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site.If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH + CoF), the volume increment was equal to that in the CH plots. Nitrogen (150-180 kg ha−1) or N + P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13 m3 ha−1, followed by a negative response of 5 m3 ha−1 during the second 10-year period. The fertilisation effect of WTH + F and WTH + CoF on basal area increment was both smaller and shorter than with CH + F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号